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Abstract

Background: Evolutionary theory predicts that antagonistically selected alleles, such as those with divergent
pleiotropic effects in early and late life, may often reach intermediate population frequencies due to balancing
selection, an elusive process when sought out empirically. Alternatively, genetic diversity may increase as a result of
positive frequency-dependent selection and genetic purging in bottlenecked populations.

Results: While experimental evolution systems with directional phenotypic selection typically result in at least local
heterozygosity loss, we report that selection for increased lifespan in Drosophila melanogaster leads to an extensive
genome-wide increase of nucleotide diversity in the selected lines compared to replicate control lines, pronounced
in regions with no or low recombination, such as chromosome 4 and centromere neighborhoods. These changes,
particularly in coding sequences, are most consistent with the operation of balancing selection and the antagonistic
pleiotropy theory of aging and life history traits that tend to be intercorrelated. Genes involved in antioxidant defenses,
along with multiple lncRNAs, were among those most affected by balancing selection. Despite the overwhelming
genetic diversification and the paucity of selective sweep regions, two genes with functions important for central
nervous system and memory, Ptp10D and Ank2, evolved under positive selection in the longevity lines.

Conclusions: Overall, the ‘evolve-and-resequence’ experimental approach proves successful in providing unique
insights into the complex evolutionary dynamics of genomic regions responsible for longevity.

Background
Developing the evolutionary theory of aging has been a
key endeavor since the very beginning of the modern
evolutionary synthesis [1, 2]. Two major non-mutually
exclusive models of how aging can originate and evolve
have been formulated. Both of them rest on the fact that
natural selection is weak at old age due to small cohort
size and declining contributions to reproduction. One
stems from Medawar's ideas [3] that drift and mutation
accumulation results in the loss of late-acting beneficial
alleles or the emergence of late-acting deleterious alleles
[2, 4]. Another is based on Williams’s model of pleiotropy
[5] in which aging evolves as a consequence of pleiotropic
effects of some genes that are beneficial early in life and

then harmful at later ages. A corollary to the antagonistic
pleiotropy theory of aging is that late-life selection op-
erating on genes with pleiotropic effects will lead to the
establishment and maintenance of genetic polymorphism,
effectively becoming balancing selection [6]. However, the
conditions for balancing selection due to antagonistic
pleiotropy are fairly restrictive compared with balancing
selection due to selective pressures varying in time and
space [7–9].
While genomic studies now suggest balancing selection

might be relatively common, to date most evidence for it
remains indirect. For example, the relative levels of the
effects of artificial selection on the population mean
and inbreeding depression for the selected trait can sep-
arate variation maintained largely by mutation-selection
balance and variation from a contribution from alleles at
intermediate frequencies (tantamount to balancing se-
lection) [10]. Intermediate allele frequencies played a
key role in a selection experiment on female fecundity
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in Drosophila melanogaster [11], similar to selection on
several traits in the monkeyflower Mimulus guttatus
[12, 13]. Balancing selection could also account for the
genetic variance in viability linked to the small fourth
chromosome of D. melanogaster [14, 15], and poly-
morphism in numerous sites across Drosophila ge-
nomes seem to be maintained by balancing selection
due to seasonal oscillations in climate [16].
Although through a different mechanism, the mutation

accumulation theory of aging also predicts that poly-
morphism will be increased among genes with age-specific
effects. As long as late-expressed alleles have no or very lit-
tle differential effect on fitness, and the older the age the
less fitness effects are indeed expected, such alleles will be
subject to mostly neutral evolution, notwithstanding their
discernible phenotypes [6]. Other processes, such as posi-
tive frequency-dependent selection [17] and purging selec-
tion against homozygotes for deleterious alleles affects [18]
may also boost genetic polymorphism, especially when a
reduction in population size is involved.
To test the prediction that selection for longevity in-

creases genetic diversity, here we survey genome-wide
patterns of nucleotide polymorphism in Drosophila mela-
nogaster experimentally selected for increased lifespan
[19–21]. Unsurprisingly, Drosophila have been a historic-
ally important system for investigating the genetic under-
pinnings of longevity [22, 23], and recently have become
an even more attractive model owing to their tractable,
relatively small genomes. In addition to dissecting the gen-
etic basis of longevity, Drosophila have been indispensable
in investigating the physiology of aging [24–26].
Experimental evolution employs well-established selection

protocols to enforce phenotypic divergence, which coupled
with the genome-wide analysis (‘evolve-and-resequence’)
may narrow down the candidate target regions under
selection, and provide a powerful alternative to genome-
wide association studies (GWASs) and linkage mapping ex-
periments as strategies to link genotype with phenotype
[27–32]. A major advantage of experimental evolution
compared to other evolutionary approaches is its ability to
distinguish between stochastic and deterministic effects
based on parallel replicates under controlled conditions.
Another advantage of experimental evolution is that selec-
tion for life history traits, such as longevity, under a con-
trolled laboratory environment with ample food, reduced
competition and other antagonistic interactions is less likely
to be affected by the constraints posed by trade-offs in sub-
optimal environments under natural conditions [33, 34].

Results
Variant discovery analysis
Three longevity lines after 48 generations of selection
and three parallel control lines (standard laboratory con-
ditions without selection) were sequenced using pooled

genomes per line (Pool-seq). We found a total of
1,497,961 polymorphic sites, 1,212,878 of which were
heterozygous in all longevity lines and 1,050,542 were
heterozygous in all control lines. A total of 192,558 SNPs
were homozygous in all longevity lines while being het-
erozygous in at least one of the control lines, and, con-
versely, 305,601 SNPs were fixed in all control lines
while heterozygous in at least one of the longevity lines.
Only 169 SNPs were fixed in all selection lines with an
alternative allele fixed in all control lines. Average
SNP-based FST estimates were the lowest between the
longevity lines (0.082) and the highest in control-
longevity pairwise comparisons (0.124), compared with
those between control lines (0.104). The inspection of
site frequency spectra (SFSs) indicates that there were
substantially more alleles with intermediate frequen-
cies in the longevity lines than control lines (Fig. 1).

Heterozygosity and Tajima’s D analysis
Overall, mean heterozygosity was 21% higher in longevity
lines relative to control lines, across all genomic regions,
including coding sequences (Fig. 2a). The highest hetero-
zygosity increase (~77%) was recorded for chromosome 4
and the lowest (17%) for chromosome arm 2R (Fig. 3).
The genome-wide profiles of Tajima’s D values produced a
similar result, with significant differences (Mann–Whitney
test, P < 0.001) between control and longevity lines across
all genomic regions (except the promoter region, Fig. 4)
and across all chromosomes (Fig. 5), implying an extensive
increase of nucleotide diversity in the selected lines. The
highest Tajima’s D values were recorded in CDSs and
chromosome 2L of the longevity lines (Fig. 5). The differ-
ence in heterozygosity and Tajima’s D between control
and longevity lines was most pronounced in the centro-
mere regions (2 Mb each) of chromosomes 2 and 3 (47%
heterozygosity increase in longevity lines compared with
the 19% increase in non-centromere regions), and the ~71
Kb yellow-achaete-scute complex near the tip of chromo-
some X (2,281% increase compared with 47% increase
along the rest of the chromosome X) (Table 1).
We then ranked genes according to the increase in

Tajima’s D-values in the longevity lines relative to con-
trol lines (Table 2). One of the top genes with differen-
tial D values was intrepid (intr) encoding a serine
protease homolog, involved in negative regulation of fe-
male mating receptivity and sperm storage [35]. Other
genes with differential D > 2 included PH4alphaNE3
and CG31021, both involved in the oxidation-reduction
process, Prosbeta5R1having endopeptidase activity, and
tailless (tll), a transcription factor playing a role in a
variety of developmental and metabolic processes.
Overall, oxidoreductase and dioxygenase activities were
the most significant GO term enrichments (P < 0.01)
among genes with Tajima’s D values increased in the
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longevity lines (Additional file 1: Table S1). Among the
top 200 genes with the largest difference in Tajima’s D,
as many as 32 (16%, P = 0.058, Additional file 1: Table S1)
were long non-coding RNAs (lncRNAs). In addition, a
similar pattern of differentiation was found in eight
small nucleolar RNAs and three miRNAs (mir-961,
mir-968, and mir-2501, P = 0.018, Additional file 1:
Table S1).

Simulations of neutral evolution and positive frequency-
dependent selection
Since the longevity lines had an increasingly longer life-
span and the control lines thus had been through 94
more generations at the same time, it was necessary to
control for the difference and determine a baseline
(95% CIs) for heterozygosity and Tajima’s D changes in
control lines due to drift effects alone. Simulations of

Fig. 1 Site frequency spectra (SFSs) in three control (C1-C3) and three longevity (L1-L3) Drosophila melanogaster lines
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neutral evolution under conditions mimicking our ex-
perimental system, based on genomic variation within
the DGRP2, showed on average a 9.88% ± 0.02% (95%
CIs) heterozygosity decrease in the group that went
through ~2x more (201) generations than the other
group (107) (Additional file 2: Figure S1). Drift effects
on Tajima’s D after the 94 additional generations were
negligible: −0.08% ± 0.61% (95% CIs) change. Separately,
we also tested effects of positive frequency-dependent
selection in conjunction with a bottleneck, which might
enhance linkage disequilibrium (LD) and create selec-
tion for the commoner allele at the selected locus, po-
tentially leading to an increase of heterozygosity in

linked neutral loci. However, no increase of heterozy-
gosity due to a stronger selection pressure was ob-
served, compared with low/no selection under various
recombination rates (Additional file 3: Figure S2).

Signatures of positive selection
Genomic regions of depleted genetic variation correspond-
ing to putative selective sweeps were highly reduced in the
selected lines (Fig. 6). One protein receptor gene (Ptp10D)
belonging to the protein-tyrosine phosphatase family was
under significant positive selection in the comparison be-
tween selection and control groups (Ka/Ks = 9, McDonald-
Kreitman test p = 0.0217). Ptp10D is responsible for central
nervous system development [36], axon guidance [37], and
long-term memory [38]. Another gene with Ka/Ks = 4 (but
MKT p > 0.05) was Ank2, involved in axon extension [39],
neuron cellular homeostasis [39], sensory perception of
pain [40] and short-term memory [41].

Discussion
Strikingly, genome differentiation patterns produced by
selection for increased lifespan are opposite to those we
observed in selection for desiccation tolerance (Fig. 2b),
evolving under strong positive selection [42]. Selection
for longevity led to >20% genome-wide increase in

Fig. 2 Average heterozygosity (±SEM) across various genomic regions
in (a) control and longevity D. melanogaster lines, compared with (b) an
experimental evolution system selected for desiccation resistance [42]

Fig. 3 Average heterozygosity (±SEM) across chromosome arms

Fig. 4 Profiles of average Tajima’s D values (±SEM) across various
genomic regions

Fig. 5 Profiles of average Tajima’s D values (±SEM) across chromosomes
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heterozygosity relative to control lines, with coding se-
quences being proportionally more affected than other
genomic regions. These results are inconsistent with neu-
tral evolution, given the parallelism in responses across
replicates within each group, and the experimental design
controlling for numbers of flies used in each generation.
Even if effective population sizes (Ne) deviated from the
experimental numbers of flies, Ne was presumably lower

in selected lines, as some of the living old flies were likely
past reproduction. Increased variance in reproductive out-
put compared to young flies would lower Ne even further,
which is in contrast to our observations. However, control
lines went through approximately twice as many genera-
tions as selection lines at the same time, as a consequence
of increasingly extended generation time in the selected
group. Our simulations show that although this differ-
ence in generation numbers and associated drift effects
accounted for approximately 50% of the observed decline
in heterozygosity estimates for control lines, Tajima’s D
estimates were essentially unaffected. Mutation accu-
mulation effects alone are also unlikely to explain the
pattern of variation, due to the moderate population
sizes and generation numbers used in this experimental
evolution system.
Balancing selection, which entails heterozygote advan-

tage, negative frequency dependence or spatiotemporal
heterogeneity (or a combination of any of these), thus
emerges as the most likely mechanism capable of produ-
cing the increase in genetic diversity. By providing a
means to maintain genetic variation, balancing selection
is especially relevant to diversification of phenotypic
variation in natural populations, including variation in
life history traits, such as longevity. However, despite
longstanding interest in the process of balancing selection,
its prevalence, the extent of footprints in the genome, and
evolutionary significance remain largely unknown due to
challenges related to its detection [43–46]. Balancing se-
lection is expected to boost neutral polymorphism in
linked genome regions, in inverse proportion to their
genetic map distances from the selected site, but the
size and distribution of genomic regions showing indir-
ect footprints of balancing selection have been un-
known [45]. Our results prove that such effects at the
genome-wide level can be pervasive and rapid, invoking
newly established neutral polymorphisms from standing
genetic variation.
Antagonistic pleiotropy theory of aging involves selec-

tion operating on genes with pleiotropic effects that can
be subject to balancing selection [6], and some aging-
related genes in Drosophila, such as Ddc, were in fact
implicated in the evolution under balancing selection
[47]. Life history traits in general evolve as a result of in-
tricate trade-offs, or negative correlations, and antagon-
istic pleiotropy has been believed to play a central role
in this process [6, 48, 49]. At the phenotypic level, there
are two critical sources of correlations characterizing
aging: the negative correlation between lifespan and
reproduction [50–52], and the positive correlation be-
tween lifespan and stress tolerance [23, 53]. Antagonistic
and non-antagonistic mechanisms of balancing selection
are predicted to differentially affect population genomic
signatures of recent balancing selection, with weaker

Table 1 Mean heterozygosity and Tajima’s D estimates in
regions expected to differ in the levels of recombination,
including 2Mb neighborhoods of autosome centromeres
and the ~71 Kb yellow-achaete-scute complex (Y-AS-C) on
chromosome X

Heterozygosity

Centromeres Non-centromeres Y-AS-C Non-Y-AS-C

Longevity lines 0.244 0.231 0.381 0.203

Control lines 0.166 0.194 0.016 0.138

Tajima’s D

Longevity lines −0.053 0.292 0.214 0.115

Control lines −0.163 0.251 −0.201 0.011

Table 2 List of top differentiated genes ranked according to
the increase in Tajima’s D-values in the longevity lines relative
to control lines

Gene Symbol Diff_D Selection_D Control_D

CG42591 2.586 1.4701 −1.1159

snoRNA:Psi28S-3378 2.5005 1.5192 −0.9813

CR43358 2.4878 1.6261 −0.8617

CG43880 2.4578 1.1891 −1.2687

intr 2.4081 1.914 −0.4941

CG9168 2.3787 1.3942 −0.9845

Or94a 2.3183 1.9587 −0.3597

CR44225 2.305 1.3609 −0.9441

CR45322 2.3025 1.3841 −0.9184

CG34432 2.2633 1.6055 −0.6578

PH4alphaNE3 2.2457 1.594 −0.6518

CR44236 2.2203 1.2507 −0.9696

CG4763 2.1983 1.6423 −0.556

Prosbeta5R1 2.1706 1.5612 −0.6095

CG31021 2.137 1.52 −0.617

CG31093 2.1198 1.452 −0.6678

snoRNA:Psi18S-1389b 2.0825 1.2012 −0.8812

CG15398 2.0724 1.5682 −0.5042

tll 2.0553 1.0246 −1.0307

CR44713 2.0283 0.7839 −1.2444

CR44714 2.0283 0.7839 −1.2444

Or94b 2.0223 1.4939 −0.5284

CG32320 2.0082 0.818 −1.1902
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signatures under antagonism [9]. Non-antagonistic pro-
cesses entail partial selective sweeps that proceed rap-
idly, which results in stronger hitchhiking effects relative
to partial sweeps from antagonistic selection [9]. The
longevity lines exhibit very weak sweep signatures, even
compared with the control lines, a pattern consistent
with the antagonistic evolution.
However, even though antagonistic pleiotropy appears

as a likely source of balancing selection accounting for
the observed pattern of polymorphisms, the set of condi-
tions under which this mechanism can be the sole driver
of balancing selection without any temporal change in
selection are limited [7–9]. Many insect species go
through multiple generations per year, whereby different
generations are exposed to different seasonal selection
landscapes [16, 54], which is likely to result in a differ-
ence in optimal age of reproduction between cohorts.
This change in selection landscape was mimicked in this
study, as selection for longevity was relaxed every other
generation, resulting in a substantial increase in longev-
ity without a decrease in the reproductive capacity in
early life [20]. We therefore argue that temporal shifts in
selection coefficients on genes showing antagonistic plei-
otropy for early life and late life fitness have driven

maintenance of genetic variation in the selection lines
while extending their longevity.
The association between stress resistance and lifespan

has motivated the hypothesis that reactive oxygen spe-
cies (ROS) cause aging [55] and led to experimental tests
for lifespan extension by targeting activity of genes that
promote antioxidant defenses. For example, overexpres-
sion of Catalase (Cat), Superoxide dismutase (SOD),
msrA, and glucose-6-phosphate dehydrogenase (G6PD) all
increased lifespan in Drosophila [56–59]. Even though we
have not found significant polymorphism in these genes,
genes with oxidoreductase activities that reduce or block
oxygen in different forms from generating free-radical
damage belonged to the most overrepresented group
among those under the strongest balancing selection.
Interestingly, many lncRNAs showed a polymorphism
pattern consistent with signatures of balancing selec-
tion. Although their functions in Drosophila still await
characterization, lncRNAs in mammals play important
roles in a wide range of biological processes, including
age-related diseases like cancer, cardiovascular patholo-
gies, and neurodegenerative disorders [60]. In cucum-
ber, some lncRNAs seem to be affected by balancing
selection as well [61].

Fig. 6 Sweeps found in the Longevity group and the Control group. Average length (±SEM) of sweep regions (a) and length of shared sweep
regions (b) for Longevity and Control groups by chromosomes
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Drift and balancing selection are by no means the only
evolutionary processes capable of increasing the levels of
genetic diversity. Positive frequency-dependent selection,
as selection for common alleles, is typically predicted to
result in monomorphism, and therefore perceived as a
process opposite to balancing selection. However, it oc-
casionally may maintain rather than eliminate poly-
morphism, under the influence of their interactions with
other alleles in the system [17]. One could argue that
this mechanism may be sufficient to create hitchhiking
effects on variability across the genome, especially when
LD is increased due to bottlenecking of the experimental
populations. Our simulations of this scenario under vari-
ous LD (recombination) conditions and selection pres-
sures (see Materials and Methods) failed to increase
heterozygosity in the in silico longevity lines.
Genetic purging whereby allelic diversity is eroded by

negative selection under inbreeding [62] potentially pro-
vides another alternative explanation of our results, as-
suming that purging of early-acting mildly deleterious
variants in the control lines was more effective. However,
the patterns of heterozygosity and Tajima’s D within
recombination-suppressed regions are not consistent with
purging effects. Since linkage slows down the decline of
genetic diversity due to purging [18], one would expect
the regions with suppressed recombination to produce the
lowest difference in heterozygosity/diversity between lon-
gevity and control lines, a pattern opposite to actually ob-
served. For example, the neighborhoods of centromeres
representing regions of low recombination on the other
chromosomes showed major increases in heterozygosity
and Tajima’s D in the longevity lines relative to control
lines. In another region characterized by a very low level
of recombination, the ~71 Kb yellow-achaete-scute com-
plex near the tip of chromosome X [63], the heterozygos-
ity increase in the longevity lines was even more dramatic
(2,281% compared with a 47% increase along the rest of
the chromosome X). Detection of balanced polymorphism
is enhanced by lower levels of recombination facilitating
the correlation between genealogical histories of adjacent
SNPs.
The Drosophila fourth chromosome is usually the

smallest autosome (~5 Mb), with only a ~1 Mb
euchromatic-like region of the right arm containing ~80
genes, believed to experience no—or very low—rates of
recombination [64–68]. As predicted, chromosome 4
was most affected by selection for longevity and showed
patters of increased heterozygosity in the selection lines.
Notably, another study reported that the genetic vari-
ance in viability of D. melanogaster for the chromosome
4 was approximately one-half of that for the second
chromosome [14], despite the fact that it contains less
than 1/20th the number of genes. The chromosome is
variable in several regions forming domains within

20-30% of the euchromatic arm with highly dimorphic
haplotypes, already presumed to be maintained by balan-
cing selection [66, 68].
Despite the paucity of sites with SNP polymorphism

patterns that would suggest positive selection in the lon-
gevity lines, several genes still seem to have diverged be-
tween the selection and control groups through positive
selection. The two most prominent were Ptp10D and
Ank2 with important roles in central nervous system
and memory [36–39, 41].

Conclusions
In sum, these results show that directional selection for
extended life span in D. melanogaster leads to genetic
diversification consistent with the operation of balan-
cing selection either through antagonistic pleiotropy or
cycling conditions between late reproduction and early
reproduction generations. Such balancing selection ef-
fects may be prevalent in other ‘evolve-and-resequence’
experiments in which life history traits are under direc-
tional selection, but may go unnoticed when detection
of genetic divergence and signatures of positive selec-
tion is the main focus of genomic analyses. Processes
other than balancing selection, such as drift, genetic
purging, and hitchhiking around sites under positive
frequency-dependent selection (or their combination)
may also be factors contributing to inflated genetic di-
versity, even if our simulations did not support such a
conclusion in the presented case.

Methods
Drosophila culturing and experimental evolution
The lines were derived from a mass population of D.
melanogaster established in our laboratory in September
2002. To ensure ample genetic diversity of the starting
material, this population was founded by mixing four
pre-existing laboratory stocks (600–700 flies from each).
The stocks were discrete or mixed populations from four
natural populations, two located in Denmark, one from
Australia and one from the Netherlands, maintained in
the laboratory in large numbers of breeding individuals.
Flies were reared under low to moderately high density
on standard Drosophila medium at 25 °C unless other-
wise stated. The four stocks were:

1) Hov–Copenhagen basic strain

The flies were collected in two sites in Denmark
(October 1997), Hvidovre (Zealand island, near
Copenhagen) and Hov (Jutland peninsula, east coast).
They were kept as 30 and 27 isofemale lines, respectively.
The lines were mixed in February 1998 and maintained as
one large interbreeding population.
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2) Supermass Hov–Copenhagen population

This population was founded in September 2001 by
mixing a number of heat-resistant and longevity selec-
tion lines. The heat-resistant selection lines were
founded using offspring from the 16th generation of
the Hov–Copenhagen basic strain. There were four sets
of lines: lines selected for increased survival after heat
shock (38.6 °C) with and without prior heat-hardening
(37.0 °C), lines that were heat-hardened, but not se-
lected, and lines reared at cycling temperatures (25 and
35 °C for 18 and 6 h, respectively). From May 2001, the
first three sets were maintained without selection and/
or hardening treatment. The longevity selection lines
were established in April 2000 by sampling flies from
the Hov– Copenhagen basic strain. They were selected
for increased lifespan at two temperature regimes, 25
and 29 °C.

3) Heat-knockdown selection lines

These lines originate from two sets of highly inbred la-
boratory lines described by Norry et al. [69]. The first of
them (SH) was founded by flies collected near Melbourne,
Australia in February 1994 and selected for increased
heat-knockdown resistance. The second set of lines (D)
was founded by flies from the 10th generation of the
Hov–Copenhagen basic strain and later selected for re-
duced heat-knockdown resistance.

4) Leiden strain

This strain was represented by 30 isofemale lines
originating from females collected near Leiden (the
Netherlands) in October 1999. For the first five
generations it was maintained at 25 °C and then at
20 °C.
The mass population was maintained at 25 °C on a

standard oatmeal-sugar-yeast-agar Drosophila medium.
Every subsequent generation was founded using a mix
of parents from different bottles. There were 25 bottles
in total with ca. 50 pairs of parents per bottle. The six
experimental lines described below (three selection
and three control lines) were established by flies from
the fourth generation of the mass population.

Selection and control lines
Each replicate line was maintained in five culture bottles
with a minimum population size of 60 pairs in each (in
total a population size of 300 pairs). The five bottles,
within a replicate line, were mixed each generation. The
longevity selection took place every other generation.
New emerged flies were placed in food vials and trans-
ferred to new vials every second day until approximately

50% mortality was reached. In the first generation of se-
lection, this took 4 weeks, and after 48 generations of se-
lection 50% mortality was reached after approximately
7–8 weeks. The surviving flies were used to start the
next generation. Replicate lines of the control regime
were allowed to breed within a week from eclosing and
kept under standard laboratory conditions at 25°C and a
12/12 h light/dark cycle on standard agar–sugar–yeast–
oatmeal medium. When flies for this experiment were
sampled the lines selected for increased longevity had on
average a 66% longer median lifespan than control lines
in males and 63% in females [70, 71]. Flies from the se-
lection group sampled for sequencing were offspring
from an unselected generation, after 48 generations of
selection (a total of 107 generations). Flies from the
control regime used for sequencing were sampled after
201 generations. From each line 500 individuals of
equal sex ratio were sampled. The DNA was extracted
using the CTAB method in batches of 25 flies and
pooled by line. TruSeq DNA libraries were prepared
and sequenced on the HiSeq 2000 platform following
Illumina’s protocols, and 2x90 bp paired-end reads were
generated (Additional file 1: Table S2).

Mapping and genotyping
The Drosophila melanogaster genome (dm3) and corre-
sponding annotations (RefSeq) from UCSC (http://genome.
ucsc.edu/) were used as reference for mapping. Raw reads
were quality-controlled and filtered with FastqMcf [72].
The remaining reads were mapped to the reference using
BWA [73] using default parameters. GATK [74] with
default parameters (except for using ‘–sample_ploidy’
for pooled data and setting –heterozygosity to 0.01) was
employed to generate genotypes in each line. Genotypes
with more than 2 alleles were discarded. Only sites with
genotyping quality greater than 30, minimum depth 10,
and maximum depth 250 were used in the analysis.

Estimates of Fst, π, θ, Tajima’s D, and heterozygosity
Samtools [75] was used to generate the pileup result.
SNPs within 10 bp of indels were discarded. FST value
for each SNP was generated using Poopolation2 [76], while
PoPoolation [77] was used to calculate π, Watterson's θ
and Tajima’s D with the window size set to 10 Kb.
Heterozygosity was estimated using a 100 Kb sliding
window with a step of 10 Kb.

Sweep region detection
Putative selective sweep regions were detected with Pool-
hmm [78], a hidden Markov model for finding selective
sweep signatures from Pool-Seq data. The parameters
used in Pool-hmm were “-n 100 -c 5 -C 400 -q 20 -e
sanger -p -k 0.0000000001”, while “–theta” was set to be
the θ estimated for each sample.

Michalak et al. BMC Genomics  (2017) 18:84 Page 8 of 11

http://genome.ucsc.edu/
http://genome.ucsc.edu/


Neutrality and positive frequency-dependent selection
simulations
Genome simulations under a neutrality model were
conducted using forqs [79]. The haplotype data for the
simulation were obtained from the Drosophila Genetic
Reference Panel 2 (DGRP2, http://dgrp2.gnets.ncsu.edu/)
of 205 inbreed lines. The mass-breeding phase of the ex-
periment was simulated for 1,000 generations with a
population size of 100,000. Conditions corresponding to
our experimental system were simulated for 201 genera-
tions with population size limited to 300 individuals. Two
types of simulations were performed: 1) To test whether
observed patterns of genomic differentiation could be pro-
duced by drift alone, the recombination rate was set to 2
and no selection was added. Simulations were run three
times to mimic the replicas in our study. A total of 6 chro-
mosomes/arms (chr2L, chr2R, chr3L, chr3R, chr4 and
chrX) were generated. Missing genotypes were set as het-
erozygous. Heterozygosity and Tajima’s D were computed
based on the same window size as for the real experimen-
tal data and compared between generations 107 and 201,
corresponding to the experimental gap between longevity
and control lines, respectively. 2) To test the hitchhiking
effects of positive frequency-dependent selection in con-
junction with increased LD, the recombination rate was
set to either 2 or 0.2 for testing under conditions of mod-
erate and low recombination. A 1.1M-size region from
chr2L:9,500,000-11,500,000 was simulated, while a total of
22 selected sites were evenly distributed along the region.
The initial deleterious allele frequencies for all selected
sites were set to 0.1 (under the Hardy-Weinberg equilib-
rium) and fitness for the deleterious allele was set to 0.9
or 0.999 for mimicking strong selection or weak/no selec-
tion. A total of 1,000 generations were simulated and the
simulations were repeated 100 times. Heterozygosity was
calculated with the same window size (100 Kb) along this
region every 100 generations.
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