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Abstract

Background: Iron-refractory iron deficiency anaemia (IRIDA) is a rare disorder which was linked to mutations in two genes
(SLC11A2 and TMPRSS6). Common polymorphisms within these genes were associated with serum iron levels. We identified
a family of Serbian origin with asymptomatic non-consanguineous parents with three of four children presenting with IRIDA
not responding to oral but to intravenous iron supplementation. After excluding all known causes responsible for iron
deficiency anaemia we searched for mutations in SLC11A2 and TMPRSS6 that could explain the severe anaemia in these
children.

Methodology/Results: We sequenced the exons and exon–intron boundaries of SLC11A2 and TMPRSS6 in all six family
members. Thereby, we found seven known and fairly common SNPs, but no new mutation. We then genotyped these seven
SNPs in the population-based SAPHIR study (n = 1,726) and performed genetic association analysis on iron and ferritin levels.
Only two SNPs, which were top-hits from recent GWAS on iron and ferritin, exhibited an effect on iron and ferritin levels in
SAPHIR. Six SAPHIR participants carrying the same TMPRSS6 genotypes and haplotype-pairs as one anaemic son showed
lower ferritin and iron levels than the average. One individual exhibiting the joint SLC11A2/TMPRSS6 profile of the anaemic
son had iron and ferritin levels lying below the 5th percentile of the population’s iron and ferritin level distribution. We then
checked the genotype constellations in the Nijmegen Biomedical Study (n = 1,832), but the profile of the anaemic son did
not occur in this population.

Conclusions: We cannot exclude a gene-gene interaction between SLC11A2 and TMPRSS6, but we can also not confirm it. As
in this case candidate gene sequencing did not reveal causative rare mutations, the samples will be subjected to whole
exome sequencing.
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Introduction

Iron deficiency is a global health concern and usually attributed

to chronic blood loss or inadequate dietary iron intake [1]. In rare

cases iron deficiency can be referred to insufficient duodenal iron

absorption which cannot be sufficiently treated by oral iron

supplementation. This type of anaemia is termed iron-refractory

iron-deficiency anaemia (IRIDA) and is an autosomal-recessive

disorder, characterized by (i) congenital, hypochromic, microcytic

anaemia; (ii) very low mean corpuscular volume (MCV); (iii) low

serum iron and low transferrin saturation; (iv) normal ferritin or

ferritin levels in the lower limits of normal; (v) no response to oral
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iron treatment; and (vi) inappropriately high levels of hepcidin

[2,3].

At the luminal side of the gut dietary iron is transferred into the

enterocyte by the divalent metal transporter 1 (DMT1, SLC11A2)

[4]. SLC11A2 (solute carrier family 11 (proton-coupled divalent

metal ion transporters), member 2) also transfers iron from the

endosomes to the cytosol following the uptake of iron via a

transferrin receptor complex, is also of importance for the shuttling

of iron in several tissues such as the liver or kidney and importantly

for the transfer of iron taken up via transferrin receptor mediated

endocytosis from the endosome into the cytoplasm [4–6].

Dysregulation of SLC11A2 can lead to disturbances of iron

homeostasis. For example, activation of SLC11A2 in the brain was

associated with toxic iron accumulation, autophagy and cell death

in mouse models of Parkinson disease [7] whereas pharmacolog-

ical modulation of SLC11A2 activity can reverse hepatic iron

overload in mouse models of hemochromatosis [4]. Importantly, a

loss of function mutation was responsible for the development of

severe microcytic anaemia in mk/mk mice [6]. Subsequently,

several rare mutations in SLC11A2 were identified and were linked

to the development of microcytic anaemia in a total of 4 patients

[8–11]. Interestingly, such patients present with low serum ferritin

levels but normal or increased transferrin saturation along with

low hepcidin concentrations [8–12].

TMPRSS6 (transmembrane serine protease 6) mutations were

described to cause IRIDA [13–16]. TMPRSS6 encodes for

matriptase-2, a type II transmembrane serine protease mainly

produced by the liver. TMPRSS6 belongs to a large group of type

two serine proteases which modulate a variety of cellular processes

including the selective cleavage of specific substrates which is

fulfilled by a conserved catalytic motif. Type two serine proteases

act as membrane bound proteases, however, soluble forms – as for

TMPRSS6 – have also been described. Accordingly, TMPRSS6

expression is increased in early embryogenesis and mislocalization

of this protease has been associated with high grade prostate

cancer [17].

Recently, TMPRSS6 has been identified as a modifier of iron

homeostasis because it regulates the expression of the systemic iron

regulatory hormone hepcidin [18] and inhibits hepcidin activation

by cleaving membrane hemojuvelin [19]. Hepcidin controls iron

absorption by binding to the only known cellular iron export

protein ferroportin thereby leading to ferroportin degradation and

blockage of iron egress from the enterocyte into the circulation

[18,20]. In addition, hepcidin blocks the transfer of iron from

macrophages into the circulation, which is the major iron source

for erythropoiesis following erythrophagocytosis and re-utilization

of the metal from senescent erythrocytes [20–22]. Thus, under

physiologic conditions high levels of hepcidin as observed with iron

overload reduce iron absorption from the diet. In iron deficiency,

however, low iron levels inhibit hepcidin formation and thus

enables iron to be transferred from the gut to the blood [18]. Part

of the iron-mediated control of hepcidin can be referred to the

action of TMPRSS6 and thus functional mutations in this gene are

associated with insufficient iron absorption on the basis of

increased hepcidin levels [13–16]. In addition, in genome-wide

association studies (GWAS) common variants in TMPRSS6 were

associated with alterations of serum iron status, erythrocyte

volume [23–25], or hemoglobin levels [26,27].

We identified a family with asymptomatic non-consanguineous

parents with three of four children presenting with severe anaemia.

After excluding all known causes responsible for iron deficiency

anaemia we searched for mutations in SLC11A2 and TMPRSS6

that could explain the severe anaemia in these children.

Materials and Methods

Patient characteristics and evaluation of anaemia
We describe a family of Serbian origin with asymptomatic non-

consanguineous parents and three out of four children suffering

from IRIDA (Table 1). This disease was diagnosed in a two year

old infant (son 2) characterized by hypochromic, microcytic anaemia,

very low MCV, low serum iron and low transferrin saturation and

very low ferritin levels. Despite oral Fe therapy 5 mg/kg/day over

four months no response of reticulocytes or hemoglobin was

observed. Poor compliance or incorrect medication/dose was

excluded. Usual reasons for microcytic anaemia such as chronic

blood loss, gastrointestinal disease-like celiac disease, thalassemia,

concurrent chronic illness or sideroblastic anaemia were excluded.

Further laboratory investigations of other family members

revealed that also two one year old unidentical female twins

suffered from iron-refractory iron deficiency anaemia (Table 1).

Because of a marginally low birth weight daughter 1 (2045 g) and

daughter 2 (2550 g) (gestational age 37 weeks) received iron

supplements during the whole first year of life [28]. The twin

daughters received four intravenous infusions of 15 mg iron(III)-

hydroxide-saccharose-complex (VenoferH), Son 2 was treated with

four intravenous infusions of 50 mg each. These infusions resulted

in a significant rise in hemoglobin and normalization of iron status

in all three patients. Laboratory parameters at baseline and after

four intravenous iron infusions on day +108 and day +152,

respectively, as well as serum hepcidin levels are shown in Table 1.

The 7 year old son (son 1) and their parents did not suffer from

anaemia (Table 1). None of the six family members received blood

transfusions or recombinant human erythropoietin at least three

months before study entry. Written informed consent was

obtained to take additional blood samples for determination of

iron parameters and genetic analyses during a routine blood draw.

The study was approved by the local ethics committee at the

Medical University of Innsbruck (Approval-Nr. UN3256).

Measurement of iron status
Blood samples were drawn on a routine basis and laboratory

parameters, e.g. hemoglobin, red blood cell count and serum iron

parameters were determined by routine laboratory tests. Serum

specimens were drawn during this routine examination and stored

at 280uC until determination of serum hepcidin by a combination

of weak cation exchange chromatography and time-of-flight mass

spectrometry (TOF-MS), using a Microflex LT matrix-enhanced

laser desorption/ionisation TOF-MS platform (Bruker Daltonics,

Bremen, Germany) [29]. An internal standard (synthetic hepcidin-

24; Peptide International Inc., Louisville, KT, USA) was used for

quantification [29,30].

Sequencing of exons in SLC11A2 and TMPRSS6
Genomic DNA was extracted from peripheral blood collected

on EDTA on a BioRobot EZ1 advanced Workstation with the

EZ1 DNA blood kit (QIAGEN, Hilden, Germany) and quantified

with a NanoDrop spectrophotometer (Thermo Fisher Scientific

Inc., Waltham, MA).

Seventeen exons of the SLC11A2 gene (following the nomen-

clature of transcript ENST00000262051, Ensembl Release 58;

www.ensembl.org) were amplified in 16 PCR reactions (Table S1)

and sequenced with 32 primers (Table S2). The sequenced exons

and exon-intron boundaries of SLC11A2 summed up to a total of

8678 bp. An overview of the amplification and sequencing

strategy of the exons within SLC11A2 is given in Figure S1. A

detailed description can be found in Text S1.

SLC11A2 & TMPRSS6 in a Family with Severe Anaemia
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For setting up the amplification strategy for exons in TMPRSS6,

we used transcript ENST00000346753, which described 16 exons;

however, transcript ENST00000381792 included another exon

located between Exon 16 and Exon 17 in transcript

ENST00000346753. Therefore, we included this exon and

renamed it ‘‘Exon 16a’’. The sequenced exons and exon-intron

boundaries of TMPRSS6 summed up to a total of 7075 bp. An

overview of the amplification and sequencing strategy of the exons

within TMPRSS6 is given in Figure S2. Amplification and

sequencing primers are given in Tables S3 and S4.

Electrophoretic separation was carried out on an ABI3130xl

capillary sequencer with POP-7 and a 36 cm capillary array.

Single nucleotide polymorphism (SNP) genotyping in the
SAPHIR study

For replication of the identified variants, four SNPs within

SLC11A2 (rs6580779, rs161044, rs150909, rs149411) and three

SNPs within TMPRSS6 (rs11704654, rs4820268, rs855791) were

genotyped in a multiplex-format with the iPLEXH Gold assay on a

MassARRAY Analyzer 4 platform (SEQUENOM, Hamburg,

Germany) in the SAPHIR study. The Salzburg Atherosclerosis

Prevention Program in Subjects at High Individual Risk

(SAPHIR) is an observational study conducted in the years

1999–2002 involving 1,770 healthy unrelated subjects: 663

females from 39 to 67 years of age and 1,107 males from 39 to

66 years of age [31,32]. DNA was available for 1,726 samples.

Study participants were recruited by health screening programs in

large companies in and around the city of Salzburg. The fraction

of samples that were genotyped twice for quality assurance were

4%, the genotyping discordance rate was 0.

Replication in the NBS study
As an additional replication, the identified variants in TMPRSS6

and SLC11A2 were also analyzed in 1,832 samples of the

Nijmegen Biomedical Study (NBS) for which both genotype data

(Illumina HumanHap370CNV-DuoBeadChip) and iron and

ferritin measurements were available. Details of the Nijmegen

Biomedical Study (NBS) have been described before [33]. Briefly,

the NBS is a population-based survey conducted by the

Department of Epidemiology, Biostatistics, and HTA and the

Department of Laboratory Medicine of the Radboud University

Nijmegen Medical Centre, The Netherlands. Approval to conduct

the study was obtained from the Radboud University Nijmegen

Medical Centre Institutional Review Board.

Genotype data for SNPs rs4820268, rs855791 and rs149411

were present on the applied genome-wide BeadChip and were

extracted for the purpose of this study. Genotype data for SNPs

rs11704654, rs6580779, rs161044 and rs150909 were imputed

(with CEU HapMap phase II as a reference sample) and extracted

and transformed to hard calls using a probability threshold of 0.9.

Table 1. Laboratory parameters of the family at the time of taking of the first blood samples, and after intravenous iron
administrations in the family’s children suffering from IRIDA, i.e. Son 2, and Daughters 1 and 2.

Adult reference
ranges (m/f)a Father Mother

Children ref.
ranges Son 1 Son 2 Daughter 1 Daughter 2

Age [y] 41 34 7 2 1 1

Hb [g/l] Baseline m:135–175/ 139 141 115–155 133 84 81 89

After Fe substitution f: 120–160 126 105 109

MCHC [g/l] Baseline 310–370 335 326 300–600 339 296 298 304

After Fe substitution 344 329 328

MCV [fl] Baseline 80–100 94 83 78–102 83 56 58 57

After Fe substitution 73 69 61

Serum iron [mg/l] Baseline m:11–28 17.7 18.4 22–184 22.2 2.7 2.8 ,0.9

After Fe substitution f:7–26 16.6 18.6 5.7

Serum ferritin [mg/l] Baseline m:30–400/ 48 33 15–200 18 ,3 ,3 ,3

After Fe substitution f:15–150 41 11 25

Serum hepcidin [ng/l]b Baseline m:0.5–11.0 ,1.0 ,1.0 n.a. 1.6 n.a. ,1 ,1

After Fe substitution f:0.5–15.2b n.a. n.a. n.a.

Transferrin saturation (%) Baseline 16–45% 29% 32% 7–46% 26% 3% 3% ,2%

After Fe substitution 27% 21% 7%

Transferrin [mg/dl] Baseline 200–360 244 230 200–360 336 392 408 154

After Fe substitution 242 325 310

Leucocytes [G/l] Baseline 4.5–11 9.9 4.2 6–17.5 7.8 8.5 9.1 21.8

After Fe substitution 6.3 8.5 7.1

Platelets [G/l] Baseline 150–400 375 228 150–400 401 428 665 752

After Fe substitution 320 439 308

Notes:
aIf reference values are different for males (m) and females (f), both reference values are indicated.
bReference values can be found at www.hepcidinanalysis.com (date of consulting the website: January 24, 2012);
n.a. not available.
doi:10.1371/journal.pone.0035015.t001
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Statistical analyses
Expectations between two unrelated variables were tested for

equality using a Mann-Whitney-U-test. To indicate the strength

and direction of a linear relationship between two random

variables, Spearman’s rho correlation coefficient was measured.

Linear regression was used to model the relationship between the

seven analyzed SNPs and iron as well as ferritin levels in the

SAPHIR population; adjustments were made for age and gender

by adding them as additive covariates into the regression models.

Both outcome variables were log-transformed, since their

distribution was skewed. Therefore, p-values from single SNP

and haplotype analysis are based on the log-transformed model.

For better interpretability, beta-estimates of the regression models

are based on the original scale of iron and ferritin. To adjust for

multiple testing, Bonferroni correction was applied to the number

of effective loci calculated by the algorithm proposed by Li et al.

[34]. As 5 out of 7 SNPs turned out to be effective loci, we

assumed p-values,0.01 as significant.

Haplotypes within TMPRSS6 and SLC11A2 for the family

members could be derived unambiguously, since there was one

family member for each locus, who was heterozygote at no more

than one locus (the father for TMPRSS6) or who was homozygote

at all loci (son 1 for SLC11A2). All other haplotype combinations

could be concluded from these. Haplotypes in the SAPHIR study

were derived using the EM algorithm implemented in the

haplo.stats package in R. Subsequently, haplotypes were allocated

to individuals by taking the most probable one. By using these

‘‘best guess’’ haplotypes, it was possible to also look at the specific

haplotype combinations, which were present in the family

members. Regression models were calculated for the specific

haplotype-pairs in TMPRSS6 and SLC11A2, and for the

combination of haplotype pairs in both genes. For the haplotype

pairs in SLC11A2 and TMPRSS6, the regression was performed on

all haplotype pairs in one model with the most probable haplotype

pair as the reference. For the combined analysis, the particular

haplotype-pairs of interest were tested versus all other pairs. Each

of the regression models (on iron and ferritin) was adjusted for age

and sex. In the haplotype analysis, for both genes, all haplotype

pairs were tested in one regression model against a reference

haplotype pair. Therefore, within each haplotype regression

model, there was no need for correcting for multiple testing

anyway.

Statistical analyses were performed with SPSS (version 18, SPSS

Inc., Chicago, Illinois) and R (version 2.14.1).

Bioinformatic analysis
Following functional considerations based on the SNP position,

the potential effects of the 7 SNPs were investigated using selected

bioinformatic applications [35]. An extended description can be

found in Text S2.

Results

In the present paper, we report the clinical case of three siblings

with severe iron deficiency anaemia being refractory to oral iron

substitution. Given the wealth of publications describing mutations

in two genes (SLC11A2 and TMPRSS6) being associated with iron

deficiency anaemia [8–10,13,15,16,36,37], we initially hypothe-

sized that mutations in these two candidate genes were the reason

for this anaemia. Sequencing of the exons and exon–intron

boundaries of both SLC11A2 and TMPRSS6 revealed seven known

SNPs to occur in the family, but no novel mutations. No allele

clearly segregated with the IRIDA trait in this family.

Four SNPs were found within SLC11A2: rs6580779, rs161044,

rs150909, and rs149411. All family members except for the first

son were heterozygotes for these SNPs (Table 2). Given the length

of 8678 bp of non-redundant sequence information, we found one

SNP in 2170 bp. Within the entire gene region of SLC11A2 of

,50 kb, ,730 SNPs were found in dbSNP (build 135).

Although mutations in TMPRSS6 are described to be linked to

severe iron deficiency anaemia in patients with relatively increased

hepcidin levels, we decided to sequence the exons and exon–intron

boundaries of the TMPRSS6 gene. We found three SNPs:

rs11704654, rs4820268, and rs855791 (Table 2). Given the length

of 7075 bp of non-redundant sequence information, we found one

SNP in 2358 bp. Within the entire gene region of TMPRSS6 of

,44 kb, ,784 SNPs were described in dbSNP (build 135). The

SNP rs855791 results in a nonsynonymous (V736A) change in the

serine protease domain of TMPRSS6 and was recently described as

the top-hit of genome-wide association studies (GWAS) to be

associated with alterations of serum iron, transferrin saturation,

erythrocyte mean cell volume, blood hemoglobin levels, and

glycated hemoglobin [23,26,38]. Similarly, rs4820268, located in

exon 13, was associated with lower serum iron concentrations,

lower hemoglobin levels, smaller red cells, and more variability in

red cell size [24]. This variant was also discussed to have a

lowering effect on hepcidin levels in urine [25].

We genotyped the seven SNPs in the population-based

SAPHIR study (n = 1,726) and replicated them in NBS

(n = 1,832) and found that the TMPRSS6-SNPs were very frequent

in these populations, but that the three SNPs in SLC11A2 occurred

at minor allele frequencies of 6.1% (Table 3). In addition, the

SNPs rs6580779, rs161044, and rs150909 were highly correlated

with each other, although they were dispersed over the entire gene

region of ,40 kb (Figure S3). Due to this correlation structure, the

number of effective loci was calculated to be 5 out of the 7 SNPs.

Therefore, the significance level for the single genotype analysis

was set to 0.01.

When performing genetic association analysis of these seven

SNPs with either iron or ferritin levels in the SAPHIR population,

we found that only the two top-hit SNPs of recent GWAS on iron

levels [23,24,26] (rs4820268 and rs855791) exhibited a slight,

though significant effect on iron and ferritin (Table 4). These

associations remain significant even after correction for multiple

testing. The remaining five SNPs showed no influence on the

analyzed outcome variables. Since rs4820268 and rs855791 were

highly correlated (D’ = 0.95, r2 = 0.83), they rather reflect the same

information. In order to test for a possible interaction of the only

two significant SNPs rs4820268 and rs855791 on both iron and

ferritin levels, we introduced the interaction term

rs4820268*rs855791 to the linear regression model, but it was

neither significant on iron (p = 0.469) nor on ferritin levels

(p = 0.686). Therefore, we could not detect an epistatic effect of

these two SNPs on iron-related traits.

The haplotypes of all family members within TMPRSS6 and

SLC11A2 are summarized in Table S5 together with the haplotype

frequencies in SAPHIR. Interestingly, the most common

TMPRSS6-haplotypes in SAPHIR was not observed in the family

members. When combining the haplotypes to haplotype pairs as

observed in family members, the TMPRSS6 haplotype-pair of son

2 showed significantly reduced iron values as well as ferritin levels

(Table 5). The corresponding individuals from the SAPHIR

population (n = 6) showed markedly reduced iron as well as ferritin

values than the average SAPHIR population (Table S6).

Finally, when we combined the TMPRSS6 and SLC11A2

genotypes to a joint profile, we saw that the one SAPHIR

individual exhibiting the profile of the anaemic son had extremely

SLC11A2 & TMPRSS6 in a Family with Severe Anaemia
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low iron and ferritin levels lying below the 5th percentile of the iron

and ferritin level distribution in SAPHIR. This individual

exhibited also the same combination of TMPRSS6 and SLC11A2

haplotype-pairs as son 2, which was also associated with lower iron

and ferritin levels (Table 5). Although this analysis is only based on

one person, the laboratory parameters are in line with the

observations made in the family.

However, this observation could not be confirmed in the

Nijmegen Biomedical Study [39]. Although the NBS population

was of similar size as the SAPHIR study, the SLC11A2/TMPRSS6-

profile of the anaemic son was not observed (Table S7).

Taken together, neither the single SNP effects nor the

haplotypes could explain the observed phenomenon that both

the family and unrelated individuals carrying the family’s joint

TMPRSS6/SLC11A2-profiles in SAPHIR showed reduced iron

and ferritin levels.

Bioinformatic analysis
Bioinformatic analysis of the 7 SNPs was inconclusive and did

not provide an evident candidate SNP (Table S8).

The most promising SNP for SLC11A2 was rs6580779, which

was predicted to affect a ‘‘motif ten element’’ (MTE), which are

core promoter elements located between 18 and 27 nucleotides

downstream of the transcriptional initiator element [40]. The SNP

rs150909 was predicted to affect a binding site for the micro-RNA

star form miR-106a* [41].

All TMPRSS6 SNPs affected the coding region and rs855791

produced a conservative amino acid exchange, which was

concordantly predicted to be benign. Also the Grantham matrix

score of 64 for a Valine to Alanine substitution pointed towards a

rather benign effect [42]. Furthermore, also the synonymous

TMPRSS6 SNPs were predicted to have considerable functional

consequences by affecting splicing regulation elements, mRNA

stability or translation efficiency [43]. Unfortunately, the in-silico

prediction of these effects is, however, challenging and the

Table 2. SNP genotypes of the family within the two genes SLC11A2 and TMPRSS6.

SLC11A2 TMPRSS6

rs6580779 rs161044 rs150909 rs149411 rs11704654 rs4820268 rs855791

Chromosome:Base pair position 12:51420164 12:51382232 12:51381077 12:51380232 22:37499386 22:37469591 22:37462936

Located in: 59UTR Intron 39UTR 39UTR Exon 2 Exon 13 Exon 17

Ancestral/derived allele: A/C C/T T/C A/G C/T A/G G/A

SNP effect: - - - - Syn. Syn. V736A

Father 1 1 1 1 0 1 2

Mother 1 1 1 1 2 1 1

Son 1 0 0 0 0 1 0 1

Son 2 1 1 1 1 1 1 2

Daughter 1 1 1 1 1 1 0 1

Daughter 2 1 1 1 1 1 1 1

Coding of genotypes

0 = AA CC TT GG CC AA GG

1 = AC CT TC GA CT AG GA

2 = CC TT CC AA TT GG AA

doi:10.1371/journal.pone.0035015.t002

Table 3. SNP genotyping results in SAPHIR (n = 1,726) and NBS (n = 1,832).

SLC11A2 TMPRSS6

Genotype rs6580779 rs161044 rs150909 rs149411 rs11704654 rs4820268 rs855791

0 88.1/88.7% 88.0/88.7% 88.0/88.7% 34.9/38.1% 66.4/66.2% 30.2/27.1% 33.0/29.1%

1 11.6/10.7% 11.7/10.7% 11.7/10.7% 49.3/46.5% 29.8/30.1% 48.9/51.5% 48.0/50.8%

2 0.3/0.6% 0.3/0.6% 0.3/0.6% 15.7/15.4% 3.9/3.7% 20.9/21.4% 19.0/20.1%

MAF 6.1/6.0% 6.1/6.0% 6.1/6.0% 40.4/38.7% 18.8/18.7% 45.4/47.2% 43.0/45.5%

CR 99.2/99.9% 99.7/99.9% 99.7/99.9% 99.5/99.9% 99.7/95.6% 98.8/99.7% 98.7/100%

HWE 0.348/0.089 0.539/0.089 0.538/0.089 0.311/0.431 0.313/0.638 0.552/0.159 0.408/0.323

Notes:
The coding of genotypes is indicated in Table 2. SAPHIR data are indicated on the left side of the slash, and NBS data are given on the right side of the slash.
MAF… minor allele frequency.
CR… call rate (genotyping success rate).
HWE… p-value for test for Hardy-Weinberg-Equilibrium.
doi:10.1371/journal.pone.0035015.t003
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performance of current algorithms for the prediction of splicing

regulation elements is still improvable [44].

Discussion

The children reported in the present study showed all features of

iron deficiency anaemia, especially the inability to respond to oral

iron administration. Interestingly, neither the father nor the

mother was anaemic, but both were borderline iron-deficient,

which is also reflected by low or undetectable serum hepcidin

levels. This observation is in line with previous reports that the

degree of anaemia is more evident in infancy than during adult life

[16,45].

In accordance, the results of our comparative observation with

the SAPHIR study indicated that adult individuals from the

SAPHIR population with identical SNP combinations and

haplotypes as seen in the children of the family under investigation

in this study had low iron levels but not that severe iron deficiency

as seen in the children. These discrepancies might thus possibly be

attributed to the fact that iron parameters of very young children

were compared with adults and that the phenotype could only be

seen in case of high iron demand as it occurs in early childhood

and adolescence where high amounts of the metal are needed for

haemoglobin synthesis and growth. This also fits to observations

made in TMPRSS6 mutated subjects which have been shown to

give a more severe phenotype in young children and which

becomes milder with aging [16,36].

The results of the haplotype analyses indicated that the

combined SLC11A2/TMPRSS6 haplotype of SON 2 was signifi-

cantly associated with lowered iron and highly significantly

associated with lowered ferritin values in SAPHIR. Unfortunately,

we could not replicate this finding, as the SLC11A2/TMPRSS6

Table 4. Genetic association between iron and ferritin levels and SNPs in SLC11A2 and TMPRSS6 in SAPHIR.

Iron [mg/dl] Ferritin [mg/l]

SNP AA Aa aa b 95% CI p-value AA Aa aa b 95% CI p-value

rs6580779 (SLC11A2) 100.23 98.82 97.41 21.41 (26.11–3.29) 0.567 175.30 166.62 157.94 28.68 (235.03–17.67) 0.108

rs161044 (SLC11A2) 100.23 98.57 96.90 21.67 (26.34–3.01) 0.506 175.77 167.09 158.40 28.68 (234.86–17.50) 0.102

rs150909 (SLC11A2) 100.25 98.57 96.89 21.68 (26.36–2.99) 0.503 175.51 167.02 158.53 28.48 (234.66–17.69) 0.107

rs149411 (SLC11A2) 100.76 99.84 98.93 20.91 (23.19–1.37) 0.564 175.80 174.55 173.29 21.25 (214.07–11.56) 0.534

rs11704654 (TMPRSS6) 100.44 99.40 98.37 21.03 (23.83–1.78) 0.675 173.97 175.99 178.01 2.02 (213.65–17.70) 0.569

rs4820268 (TMPRSS6) 104.61 99.58 94.54 25.03 (27.24–22.82) 3.9E-6 191.17 172.98 154.78 218.19 (230.62–25.75) 0.001

rs855791 (TMPRSS6) 104.60 99.41 94.22 25.19 (27.40–22.96) 2.0E-6 187.97 171.86 155.75 216.10 (228.60–23.61) 0.002

Note: For linear regression, an additive genetic effect of the SNPs on the outcome variable was assumed; linear regression analyses were adjusted for age and gender.
The p-values were based on the log-transformed model, and the b-estimates were based on the model on the original scale.
doi:10.1371/journal.pone.0035015.t004

Table 5. Genetic association between iron and ferritin levels and haplotype-pairs in SLC11A2 and TMPRSS6 in SAPHIR.

Gene Family member Haplotype pair N Iron Ferritin

b p-value b p-value

SLC11A2 Reference ACAC/ACAT 776 – – – –

Son 1 ACAC/ACAC 600 20.8251 0.614 210.2684 0.638

All others ACAC/CTGT 123 21.3861 0.577 210.1689 0.241

TMPRSS6 Reference CAC/CGT 551 – – – –

Father CGT/CAT 13 7.4050 0.32302 215.080 0.5242

Mother TGT/TAC 30 23.2822 0.85529 20.153 0.4125

Son 1 & Daughter 1 TAC/CAT 4 2.1344 0.92762 2.234 0.5159

Son 2 TGT/CAT 6 234.115 0.00278 275.317 0.0387

Daughter 2 CGT/TAC 0 Not present Not present

SLC11A2/TMPRSS6 Father ACAC/CTGT; CGT/CAT 1 28.65582 0.9257 10.7409 0.712

combined Mother ACAC/CTGT; TGT/TAC 0 Not present Not present

Son 1 ACAC/ACAC; TAC/CAT 1 250.7302 0.0630 2131.511 0.566

Son 2 ACAC/CTGT; TGT/CAT 1 260.555 0.0128 2260.230 9.57e-05

Daughter 1 ACAC/CTGT; TAC/CAT 0 Not present Not present

Daughter 2 ACAC/CTGT; CGT/TAC 0 Not present Not present

Notes: For the haplotype pairs in SLC11A2 and TMPRSS6, the regression was performed on all haplotype pairs in one model with the most probable haplotype pair as
the reference. For the combined analysis, each line reflects the results from a regression model of this particular haplotype-pair versus all other pairs on the traits (each
model sex- and age-adjusted). The p-values are based on the log-transformed model; the b-estimates are based on the model on the original scale.
doi:10.1371/journal.pone.0035015.t005
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haplotype of SON 2 was not present in the Nijmegen Biomedical

Study. However, it would be interesting to validate this finding in

further populations.

Although GWAS have been very successful at identifying risk

alleles for complex genetic traits, there still remains the fact that

the identified risk alleles for a particular trait, together, don’t fully

explain the trait heritability. The results of our study fit well into

this observation. Various explanations for this missing-heritability

problem have been proposed, but a recent study by Song et al.

[46] supports the idea that perhaps this heritability is not missing

at all, or at least not completely. Typically, the risk information

from multiple alleles is combined by using a multiplicative model,

thereby assuming that the individual loci behave independently.

Song et al., however, calculated recurrence risks to close relatives

under different models and found that the results yielded higher

estimated recurrence risks than were predicted under a multipli-

cative model, particularly when the risk alleles were rare [46]. This

indicates that gene-gene interactions could account for more

heritability than is often assumed. The empirical data from our

family study confirm the results of Song and colleagues [46], thus

implying that gene-gene interactions might account for an

important section of the missing heritability of complex diseases.

In addition to gene-gene interactions one has also to consider

interaction of the gene products at the protein level, which is a

form of epistatic interaction, as has recently been shown for DMT1

and hepcidin [47].

With this in mind, we hypothesized that the combined

impairment of SLC11A2 and TMPRSS6 activities by the different

polymorphisms effected both transmembrane iron-flux and

hepcidin regulation which in summary would lead to the iron-

deficient phenotype in situations with an increased iron demand

(growth phase of children).

Although our data are suggestive for a gene-gene interaction,

based on the methodology used, one cannot fully exclude another

gene defect that might contribute to the dramatic anaemia in the

children which might be identified by whole exome sequencing.
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