Relationship between total vitamin D metabolites and complications in patients with type 2 diabetes

LINA H.M. AHMED¹, ALEXANDRA E. BUTLER², SOHA R. DARGHAM¹, AISHAH LATIF³, ELHADI A. AHMED⁴, ABUBAKER HASSAN⁴ and STEPHEN L. ATKIN⁵

 ¹Research Department, Weill Cornell Medicine-Qatar, P.O. Box 24144, Doha; ²Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha;
 ³Antidoping Laboratory Qatar, P.O. Box 27775, Doha, Qatar; ⁴Faculty of Medical Laboratory Sciences, University of Gezira, P.O. Box 20, Wad Medani, Sudan; ⁵Royal College of Surgeons in Ireland, P.O. Box 15503, Manama, Bahrain

Received July 14, 2020; Accepted October 30, 2020

DOI: 10.3892/br.2020.1394

Abstract. In our previous study, it was shown that endogenous vitamin D₃ and its metabolites are associated with diabetic microvascular complications and cardiovascular risk factors. The aim of the present study was to determine if the relationship between total vitamin D (vitamin D₂ supplements plus endogenous vitamin D₃) was a better predictor of complications in type 2 diabetes (T2DM). A total of 460 patients with T2DM participated in the present cross-sectional study. Plasma levels of total vitamin D and its metabolites (1,25-dihydroxyvitamin D (1,25(OH)D), 25-hydroxyvitamin D (25(OH)D) and 24,25-dihydroxyvitamin D (24,25(OH)D) were measured by isotope-dilution liquid chromatography tandem mass spectrometry analysis. 1,25-dihydroxyvitamin D₃ and 25-hydroxyvitamin D₃ were associated with diabetic retinopathy and coronary artery disease, but total 1,25-dihydroxyvitamin D and total 25-hydroxyvitamin D levels were not statistically associated with any complications. Total 1,25-dihydroxyvitamin D showed the same positive association as 1,25-dihydroxyvitamin D_3 for hypertension and dyslipidemia, and total 25-hydroxyvitamin D showed the same positive association as 25-hydroxyvitamin D₂ for dyslipidemia. Total 24,25-dihydroxyvitaminD showed the same positive association only with dyslipidemia as did 24,25-dihydroxyvitamin D₃. However, total 25-hydroxyvitamin D was associated with hypertension, whereas 25-hydroxyvitamin D₃ was not Vitamin D₃ metabolites were associated with diabetic retinopathy, whereas total vitamin D levels were not, suggesting that endogenous vitamin D₃ metabolites are a better measure of diabetic microvascular complications. However, both total vitamin D and vitamin D_3 metabolites were associated with cardiovascular risk factors in patients with type 2 diabetes.

Introduction

Vitamin D deficiency may increase the risk of development of type 2 diabetes (T2DM) (1-3), given its inverse relationship with diabetes onset (4). Both insulin resistance and b cell dysfunction are associated with vitamin D deficiency (5), and obesity can exacerbate vitamin D deficiency through sequestering of vitamin D into adipose tissue (6). Vitamin D deficiency in T2DM has also been associated with microvascular complications, although causality remains unclear (7).

Vitamin D₃ (also known as cholecalciferol) is produced endogenously in the body, whereas vitamin D₂ is ingested in the diet as ergosterol, with mushrooms and fungi being the primary sources, and is then converted to ergocalciferol by ultraviolet light; multiple 25-hydroxylases then convert the ergosterol and cholecalciferol to vitamin D₂ (25(OH)D₂) and vitamin D₃ (25(OH)D₃), respectively (8,9). In the kidney, vitamin D is converted to the active 1,25(OH)₂D form by 1a-hydroxylase, or to 24,25(OH)₂D (10) (Fig. 1); 1,25(OH)₂D is produced in extrarenal tissues and may, and act locally (10).

Vitamin D_2 is readily available as an oral supplement to counter vitamin D deficiency, and is often preferentially used over vitamin D_3 as the latter is more costly; therefore, the vitamin D levels and its metabolites assayed and reported may be a composite of vitamin D_2 and vitamin D_3 , as assays may not distinguish between them (11).

In our previously study, the association between of vitamin D_3 deficiency and microvascular or cardiovascular risk complications in patients with T2DM was reported (12). Therefore, the aim of the present study was to determine if total vitamin D was a better predictor of complications in T2DM than vitamin D_3 alone.

Patients and methods

Study population. A total of 460 patients with T2DM (median age 55.2 years; age range, 30-90 years; 227 male and 233 female) were recruited from patients attending the Hamad

Correspondence to: Professor Alexandra E. Butler, Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar E-mail: aeb91011@gmail.com

Key words: vitamin D deficiency, vitamin D, vitamin D3, vitamin metabolites, type 2 diabetes, diabetes complications

General Hospital diabetes clinic, Qatar, between July 2013 and July 2015 (Table I). The criteria for inclusion in the study were: Qatari ethnicity and ≥30 years old. T2DM was diagnosed based on the World Health Organization guidelines (13). For inclusion in the T2DM cohort, one or more of the following criteria had to be met: Fasting plasma glucose of >7 mmol/l, HbA1c >6.5% or a diagnostic glucose tolerance test. All diabetic patients had an estimated glomerular filtration rate of >60 ml/min/kg to ensure that vitamin D levels were not confounded by renal dysfunction. A total of 290 control subjects were included in the present study (median age 46.1 years; age range, 30-85 years; 151 male and 139 female). To be included in the nondiabetic control group, a normal glucose tolerance test was required. Criteria for exclusion were type 1 diabetes, gestational diabetes or secondary diabetes due to steroid treatment. The T2DM subjects underwent retinal photography, foot examination and measurement of blood pressure.

All study subjects had received vitamin D_2 supplements, 50,000 units weekly, prescribed for at least the preceding 4 months. Diabetes subjects were all treated with at least 2 antidiabetic medications that included metformin, and whilst patients were prescribed insulin, compliance could not be confirmed.

This study was approved by Weill Cornell Institutional Review Board (approval no. IRB# 13-00063); all study subjects provided written informed consent. Trial conduct was undertaken in accordance with the International Conference on Harmonisation-Good Clinical Practice (ICH GCP) and the Declaration of Helsinki (14).

Study design. The study design has been previously described (15). Briefly, patients were fasted overnight, and subsequently, blood samples were collected, as well as the baseline weight and blood pressure. Fasting venous blood was collected in fluoride oxalate and serum gel tubes (BD Diagnostics; Becton, Dickinson and Company). The samples were separated by centrifugation at 2,000 x g for 15 min at 4°C, and within 1 h of collection, the aliquots were stored at -80°C. Overnight urine samples were also collected, aliquoted and stored at -80°C, and analyzed in batches. Blood pressure was measured using an automated device (NPB-3900; Nellcor Puritan Bennett) during each visit. Blood pressure measurements were performed after the subjects had been seated quietly for at least 5 min, using the right arm which was supported at heart level. For each measurement, three readings were taken, at least 2 min intervals, and the mean of the three readings was recorded (15).

Diabetic retinopathy was diagnosed using fundoscopy and diabetic neuropathy was diagnosed based on the vibration perception threshold (Neurothesiometer NU-1, Horwell-UK) of the great toe being >25 V (16).

Coronary artery disease (CAD) was defined as a history of myocardial infarction or angina, confirmed by coronary angiography (17). Peripheral arterial disease (PAD) was defined as a history of claudication or pain at rest with evidence of artery stenosis on ultrasound or lower limb angiography (18). Stroke was defined as a sudden onset neurological deficit lasting >24 h (19).

Serum vitamin D levels were measured using isotopedilution liquid chromatography tandem mass spectrometry (LC-MS/MS) as described previously (12). Statistical analysis. Statistical analysis was performed as described previously (20). The sample size used in the present study was based on a previous study, which found that 51% of diabetics without microvascular complications and 80% with retinopathy exhibited vitamin D deficiency (7). Using the 49% of patients without retinopathy as the comparison group, a sample size of 274 diabetic patients was selected, which provides 80% statistical power to detect a 68% prevalence of vitamin D deficiency in the retinopathy group. When examining the mean differences in vitamin D, the 460 patients, assuming 40% (n=184) have retinopathy, this would yield an harmonic mean of the sample size of ~132. Using this sample size provided 95% power for a difference in vitamin D means of 0.35 deviations using a t-test, which was considered a moderate-sized effect.

Data trends were visually and statistically evaluated for normality. Non-parametric tests (Mann Whitney U) were used on data that violated the assumptions of normality when tested using a Kolmogorov-Smirnov Test (20). Statistical analysis was performed using SPSS version 24.0. Values are reported as the median (inter-quartile range).

Results

Baseline characteristics. The baseline characteristics for the T2DM and the control cohorts are shown in Table I. The diabetic patients were significantly older (P<0.001) and had a higher BMI (P<0.001) compared to the control subjects. The diabetic patients also had elevated HbA1c (P<0.001) and fasting glucose levels compared with the control group (P<0.001).

Vitamin D measurements. The levels of total 25(OH)D were significantly higher compared with the 25(OH)D₃ (P<0.001). The levels of total $1,25(OH)_2D$ and total $24,25(OH)_2D$ did not differ compared with the levels of $1,25(OH)_2D_3$ and $24,25(OH)_2D_3$ (P>0.05).

The lower active total 1,25(OH)₂D levels were associated with hypertension and dyslipidemia in diabetic patients (P=0.03) in comparison with the lower $1,25(OH)_2D_3$ levels, which were associated with diabetic retinopathy (P=0.006) hypertension and dyslipidemia (both P=0.01) as well as CAD (P=0.012). There was no association between either total 1,25(OH)₂D or 1,25(OH)₂D₃ levels with diabetic neuropathy, PAD or CAD. Total 25(OH)D levels were associated with both hypertension and dyslipidemia (P<0.001) in comparison with 25(OH)D₃ levels, which were associated with diabetic retinopathy (P=0.03) and dyslipidemia (P=0.04). There was no association between either total 25(OH)D or $25(OH)D_3$ levels with diabetic neuropathy, dyslipidemia, PAD, CAD or stroke. Total 24,25(OH)₂D levels were associated with dyslipidemia (P=0.03) in accordance with $24,25(OH)_2D_3$ levels (P<0.02). There was no association between either total 24,25(OH)₂D or 24,25(OH)₂D₃ with diabetic neuropathy, diabetic retinopathy, hypertension, PAD, CAD or stroke. None of the vitamin D metabolites were associated with diabetic neuropathy or stroke (Table II).

Total 25(OH)D levels were significantly higher compared with 25(OH)D₃ (P<0.001), but those of $1,25(OH)_2D$ and 24,25(OH)₂D did not differ between total and D₃ metabolites. When the subjects with 25(OH)D deficiency (≤ 20 ng/ml) were compared to those who were replete (≥ 30 ng/ml), there was no difference in hypertension, dyslipidemia, retinopathy

Parameter	Control ^c	Diabetes ^c	P-value
Age, years	46 (30.0-85)	55 (30-90)	<0.001 ^b
BMI, kg/m ²	30.1 (21.7-53.5)	32.4 (17.0-61.0)	<0.001 ^b
HbA1c, %	5.6 (4.4-9.0)	7.9 (4.9-15.9)	<0.001 ^b
Glucose, mmol/l	5.2 (2.9-11.1)	8.6 (2.3-29.0)	<0.001 ^b
Total 1,25(OH) ₂ D, ng/dl	0.044 (0.000-2.087)	0.02 (0.000-0.189)	<0.001 ^b
Total 25(OH)D, ng/dl	19.58 (4.41-63.73)	26.46 (0.00-61.21)	<0.001 ^b
Total 24,25(OH)D, ng/dl	0.387 (0.000-4.486)	0.290 (0.000-7.772)	<0.001 ^b
Total 3epi25(OH)D, ng/dl	0.206 (0.000-7.564)	0.326 (0.000-4.001)	0.005ª

Table I. Clinicopathological characteristics, vitamin D levels and metabolite levels in the Control and Type 2 Diabetic cohorts.

^aP<0.01, ^bP<0.001. ^cMedian (range).

Figure 1. Vitamin D pathways. In the skin, 7-dehydrocholesterol is converted to pre-vitamin D3 and then to vitamin D_3 . This is transported to the liver via DBP, which also transports 25(OH)D₃ to the kidney. In the kidney, 25(OH)D₃ is taken up by tubular cells and undergoes conversion to the active 1,25 (OH)₂D₃ and 24,25(OH)₂D₃. Vitamin D₂ comes from the diet (yeasts and fungi) and is converted to 25(OH)D₂ in the liver and to 1,25(OH)₂D₂ and 24,25(OH)₂D₂ in the kidney. DBP, vitamin D binding protein 25(OH)D₃, 25 hydroxy vitamin D.

or neuropathy (data not shown). There was no correlation between the estimated glomerular filtration rate and any of the vitamin D metabolites (data not shown).

Discussion

Total 25(OH)D levels were significantly higher compared with those of 25(OH)D₃, and this reflects the vitamin D₂ supplementation that these patients were taking. However, the levels of total 1,25(OH)₂D and total 24,25(OH)₂D did not differ to those of 1,25(OH)₂D₃ and 24,25(OH)₂D₃. This result is in agreement with a study on high dose vitamin D₂ supplementation, which showed that vitamin D₂ was less efficacious at raising serum 25(OH)D levels than vitamin D₃, and that vitamin D₂ did not increase the 1,25(OH)₂D levels to the same degree that vitamin D₃ supplementation did (21). This also supports the notion that vitamin D₃ is better than vitamin D₂ for treating vitamin D deficiency (21), and that vitamin D₂ supplements may not sufficiently increase the levels of active 1,25(OH)₂D. Both 25(OH)D₃ and 1,25(OH)₂D₃ were associated with diabetic retinopathy, whereas neither total 25(OH)D nor total 1,25(OH)₂D levels were associated with diabetic retinopathy. It has been reported that in type 2 diabetes, vitamin D deficiency is associated with development of microvascular complications (22) and a recent meta-analysis highlighted an association between vitamin D deficiency and retinopathy (23); however, these outcomes were not specifically correlated to either total vitamin D or the vitamin D₃ forms. These data may also suggest why vitamin D and diabetes studies reported in the literature are conflicting on the relationship of complications and benefits of vitamin D supplementation if the effects of total vitamin D differs from that of vitamin D₃(24).

Total vitamin D, in comparison with vitamin D_3 metabolites, showed very similar associations with the other cardiovascular parameters, including dyslipidemia, hypertension, PAD and stroke. The only additional significant result was the association between 1,25(OH)₂D₃ and CAD, that was not seen with total 1,25(OH)₂D.

IaUIV II. IUIAI		auuu ν_3 iv	IT A CHINE DAMA THE		Jased IIIICIO Vased	Ial UlaUVIIV	computations at	in caluio a	orutat computed	.cliOlli		
Complication	Total 1,25 (OH)D, ng/dl ^d	P-value	Total 25(OH) D, ng/dl ^d	P-value	Total 24,25 (OH)D, ng/dl ^d	P-value	1,25(OH) 2D3, ng/dl ^d	P-value	25(OH) D3, ng/dl ^d	P-value	24,25(OH) 2D3, ng/dl ^d	P-value
Diabetic		0.1		0.1		0.87		0.006 ^b		0.03ª		0.97
No	0.018		25.42 (18.23_35.00)		0.288 0.187_0.604)		0.028 0.010-0.047)		5.24		0.278 (0.185_0.587)	
Yes	0.025		30.82		0.302		0.015		7.50		0.302	
	(0.010 - 0.047)		(20.91-37.73)		(0.200 - 0.472)		(0.006 - 0.035)		(3.97-15.66)		(0.197 - 0.472)	
Diabetic		0.8		0.3		0.73		0.48		0.63		0.77
No	0.020		26.06		0.288		0.015		6.14 (2 24 14 000)		0.283	
Yes	0.020		(10.00-00-00) 28.56		0.310		0.013		(00.41-40.0) 6.18		(0.271 0.271	
	(0.000-0.042)		(22.27 - 36.31)		(0.622)		(0.000-0.033)		(3.73-11.53)		(0.185 - 0.622)	
Hypertension		0.03^{a}		<0.001°		0.29		0.009 ^b		0.46		0.23
No	0.030		22.65		0.297		0.021		6.39		0.295	
	(0.011-0.047)		(15.46-33.24)		(0.193-0.587)		(0.006-0.043)		(3.44-13.66) 5.65		(0.193-0.587)	
Yes	0.000-0.042) (0.000-0.042)		29.43 (20.77-38.82)		0.278 (0.187-0.518)		0.012 (0.000-0.032)		(3.31-13.88)		0.260 (0.187-0.518)	
Dyslipidemia		0.003^{b}		$^{0.00}$		0.03^{a}		0.003^{b}		0.04^{a}		0.02^{a}
No	0.033		22.81		0.330		0.024		6.86		0.330	
;	(0.014 - 0.054)		(16.00-31.29)		(0.221-0.638)		(0.009-0.045)		(3.84 - 14.47)		(0.221 - 0.638)	
Yes	0.016 (0.000-0.041)		28.29 (19.82-37.60)		0.267 (0.185-0.472)		0.013 (0.000-0.033)		5.30 (3.02-12.02)		0.260 (0.183-0.471)	
Peripheral	~	0.19	~	0.23	~	0.7	~	0.22	~	0.55	~	0.65
artery disease												
No	0.019		26.48		0.289		0.014		6.06		0.283	
Yes	(0.000-0.044) 0.025		(CC.0C-14/.81) 72.12		(1750-1917) 0315		(0.000-0.038) 0.025		(3.38-13.88) 10.38		(175.0-281.0) 0.260	
	(0.017 - 0.050)		(14.07-32.78)		(0.144-0.622)		(0.012 - 0.050)		(4.06-15.40)		(0.144-0.622)	
Coronary artery disease		0.99		0.28		0.44		0.01^{b}		0.75		0.45
No	0.021		25.98		0 295		0.028		6 28		0.289	
)	(0.000-0.045)		(18.36-36.14)		(0.190-0.515)		(0.011-0.041)		(3.38-14.00)		(0.190-0.515)	
Yes	0.018		29.73		0.241		0.015		5.43		0.241	
	(0.005 - 0.039)		(21.65 - 36.97)		(0.189 - 0.604)		(0.005 - 0.027)		(3.21 - 11.69)		(0.187 - 0.604)	

Table II. Total vitamin D and vitamin D₃ level in patients with diabetes based microvascular diabetic complications and cardiovascular complications.

4

AHMED et al: VITAMIN D AND DIABETES COMPLICATIONS

sd.
nue
onti
Ŭ
Ξ.
<u>e</u>

	Total 1.25		Total 25(OH)		Total 24,25		1,25(OH)		25(OH)		24,25(OH)	
Complication	(OH)D, ng/dl ^d	P-value	D, ng/dl ^d	P-value	(OH)D, ng/dl ^d	P-value	2D3, ng/dl ^d	P-value	D3, ng/dl ^d	P-value	2D3, ng/dl ^d	P-value
Stroke		0.75		0.28		0.23		0.05ª		0.41		0.24
No	0.020		26.08		0.290		0.015		6.18		0.285	
	(0.000-0.044)		(18.42 - 36.27)		(0.192 - 0.541)		(0.000-0.040)		(3.38-14.00)		(0.191 - 0.541)	
Yes	0.023		30.13		0.218		0.011		4.92		0.218	
	(0.000-0.040)		(25.49 - 36.10)		(0.151 - 0.431)		(0.000-0.024)		(2.32-11.20)		(0.151 - 0.431)	

There is increasing evidence showing that vitamin D deficiency serves a role in the pathogenesis of type 2 diabetes (25-27) with evidence from epidemiological studies linking vitamin D deficiency and insulin resistance (28,29). In adults at high risk of developing type 2 diabetes, supplementation with cholecalciferol has been shown to improve b cell function (30) and 1,25(OH)₂D may also improve insulin sensitivity by activating peroxisome proliferator-activated receptor δ (31). Conversely, long-term studies have found that vitamin D and calcium supplementation do not offer protection against the risk of diabetes development (22), and giving supplements to vitamin D replete patients with T2DM had no effect on insulin resistance or glycemic control (32); however, differing meta-analyses have shown an improvement in HbA1c in response to supplementation with vitamin D in some studies (33,34), but not in others (35).

Both the total 24,25(OH)₂D and 24,25(OH)₂D₃ levels were significantly associated with dyslipidemia; 24,25(OH)₂D may not be an inactive metabolite, as it has been shown to suppress Apo A-1 in hep G cells (36), and it may exhibit a physiological role in growth plate formation (8); therefore, a direct effect on lipid metabolism cannot be excluded.

The strength of the present cross-sectional study was the homogeneous Qatari population studied and the number of participants assessed using state-of-the-art measurements of 25(OH)D and metabolites, and these results may be generalizable to other Qatari populations. However, this study was limited by its cross-sectional design and that, whilst all subjects were prescribed vitamin D₂ supplements, it was not possible to ascertain compliance. Additionally, the results may not be generalizable to other ethnicities, for which a multi-center approach with participation from institutes in several different countries is required.

In conclusion, vitamin D₃ metabolites were associated with diabetic retinopathy, whereas total vitamin D levels were not, suggesting that endogenous vitamin D₃ metabolites are the better measure of diabetic microvascular complications. However, both total vitamin D and vitamin D₃ metabolites were associated with cardiovascular risk factors in patients with type 2 diabetes.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Authors' contributions

AEB analyzed and interpretated the data as well as wrote the manuscript. LHMA analyzed and interpretated the data. SRD performed the statistical analysis. AL performed the vitamin D measurements. EAA and AH participated in data analysis and interpretation, as well as prepared the manuscript. SLA designed the study and contributed to the discussion. All authors read and approved the final manuscript.

Ethics approval and consent to participate

This study was approved by Weill Cornell Institutional Review Board (approval no. IRB# 13-00063). All study subjects provided written informed consent.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

- 1. Nakashima A, Yokoyama K, Yokoo T and Urashima M: Role of vitamin D in diabetes mellitus and chronic kidney disease. World J Diabetes 7: 89-100, 2016.
- 2. Husemoen LL, Thuesen BH, Fenger M, Jorgensen T, Glumer C, Svensson J, Ovesen L, Witte DR and Linneberg A: Serum 25(OH)D and type 2 diabetes association in a general population: A prospective study. Diabetes Care 35: 1695-1700, 2012.
- A prospective study. Diabetes Care 53: 1095-1700, 2012.
 Mathieu C: Vitamin D and diabetes: Where do we stand? Diabetes Res Clin Pract 108: 201-209, 2015.
 Pittas AG, Dawson-Hughes B, Li T, Van Dam RM, Willett WC, Manson JE and Hu FB: Vitamin D and calcium intake in relation to type 2 diabetes in women. Diabetes Care 29: 650-656, 2006.
 Chin ACC W, ACC W, Seed ME: Hyperviteming in Diabetes in Planet Seed ME: Hyperviteming in
- 5. Chiu KC, Chu A, Go VL and Saad MF: Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am Clin Nutr 79: 820-825, 2004.
- Wortsman J, Matsuoka LY, Chen TC, Lu Z and Holick MF: Decreased bioavailability of vitamin D in obesity. Am J Clin
- Bajaj S, Singh RP, Dwivedi NC, Singh K, Gupta A and Mathur M: Vitamin D levels and microvascular complications in type 2 diabetes. Indian J Endocrinol Metab 18: 537-541, 2014.
 Biblio DD: Vitamin D metabolism metabolism of action and
- Bikle DD: Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21: 319-329, 2014.
 Sakaki T, Kagawa N, Yamamoto K and Inouye K: Metabolism of vitamin D3 by cytochromes P450. Front Biosci 10: 119-134, 2005.
- Christakos S, Dhawan P, Verstuyf A, Verlinden L and Carmeliet G: Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96: 365-408, 2016.
- Lhamo Y, Chugh PK and Tripathi CD: Vitamin D Supplements in the Indian Market. Indian J Pharm Sci 78: 41-47, 2016.
 Butler AE, Dargham SR, Latif A, Mokhtar HR, Robay A, Chidiac OM, Jayyousi A, Al Suwaidi J, Crystal RG, Abi Khalil C and Atkin SL: Association of vitamin D3 and its metabolites in subjects with and without type 2 diabetes and their relation-ship to diabetes complications. Ther Adv Chronic Dis 11: 2040622320924159, 2020.
- 13. Deckers JG, Schellevis FG and Fleming DM: WHO diagnostic criteria as a validation tool for the diagnosis of diabetes mellitus: A
- study in five European countries. Eur J Gen Pract 12: 108-113, 2006. 14. Carlson RV, Boyd KM and Webb DJ: The revision of the Declaration of Helsinki: Past, present and future. Br J Clin Pharmacol 57: 695-713, 2004. 15. Dakroury Y, Butler AE, Dargham SR, Latif A, Robay A.
- Crystal RG and Atkin SL: Association of differing qatari genotypes with Vitamin D metabolites. Int J Endocrinol 2020: 7831590, 2020.
- 16. Young MJ, Breddy JL, Veves A and Boulton AJ: The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study. Diabetes Care 17: 557-560, 1994.

- 17. Hansson GK: Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352: 1685-1695, 2005.
- 18 Campia U, Gerhard-Herman M, Piazza G and Goldhaber SZ: Peripheral artery disease: Past, present, and future. Am J Med 132: 1133-1141, 2019.
- 19. Hu X, De Silva TM, Chen J and Faraci FM: Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ Res 120: 449-471, 2017.
- 20. Ahmed LHM, Butler AE, Dargham SR, Latif A, Robay A, 20. Annuel Entwi, Bartel AL, Bargham SK, Eath A, Robay A, Chidiac OM, Jayyousi A, Al Suwaidi J, Crystal RG, Atkin SL and Abi Khalil C: Association of vitamin D₂ and D₃ with type 2 diabetes complications. BMC Endoc Disord 20: 65, 2020.
 21. Shieh A, Chun RF, Ma C, Witzel S, Meyer B, Rafison B, Swinkels L, Huijs T, Pepkowitz S, Holmquist B, et al: Effects of high dogs Vitamin D2 and total and Free
- Effects of high-dose Vitamin D2 versus D3 on total and Free 25-Hydroxyvitamin D and markers of calcium balance. J Clin Endocrinol Metab 101: 3070-3078, 2016.
- 22. de Boer IH, Tinker LF, Connelly S, Curb JD, Howard BV, Kestenbaum B, Larson JC, Manson JE, Margolis KL, Siscovick DS, et al: Calcium plus vitamin D supplementation and the risk of incident diabetes in the Women's Health Initiative. Diabetes Care 31: 701-707, 2008.23. Luo BA, Gao F and Qin LL: The association between Vitamin D
- deficiency and diabetic retinopathy in type 2 diabetes: A meta-analysis of observational studies. Nutrients 9: 307, 2017.
- Issa CM: Vitamin D and type 2 diabetes mellitus. Adv Exp Med Biol 996: 193-205, 2017.
- 25. Liu E, Meigs JB, Pittas AG, Economos CD, McKeown NM, Liu E, Meigs JB, Pittas AG, Economos CD, McKeown NM, Booth SL and Jacques PF: Predicted 25-hydroxyvitamin D score and incident type 2 diabetes in the Framingham Offspring Study. Am J Clin Nutr 91: 1627-1633, 2010.
 Gagnon C, Lu ZX, Magliano DJ, Dunstan DW, Shaw JE, Zimmet PZ, Sikaris K, Grantham N, Ebeling PR and Daly RM: Course 25 Independent of the Dashking in the head side form?
- Serum 25-hydroxyvitamin D, calcium intake, and risk of type 2 diabetes after 5 years: Results from a national, population-based prospective study (the Australian Diabetes, Obesity and Lifestyle study). Diabetes Care 34: 1133-1138, 2011.
- 27. Lim S, Kim MJ, Choi SH, Shin CS, Park KS, Jang HC, Billings LK and Meigs JB: Association of vitamin D deficiency with incidence of type 2 diabetes in high-risk Asian subjects. Am J Clin Nutr 97: 524-530, 2013.
- Devaraj S, Jiala G, Cook T, Siegel D and Jialal I: Low vitamin D levels in Northern American adults with the metabolic syndrome. Horm Metab Res 43: 72-74, 2011.
- 29. Jorde R, Sneve M, Emaus N, Figenschau Y and Grimnes G: Cross-sectional and longitudinal relation between serum 25-hydroxyvitamin D and body mass index: The Tromso study. Eur J Nutr 49: 401-407, 2010.
- 30. Mitri J, Dawson-Hughes B, Hu FB and Pittas AG: Effects of vitamin D and calcium supplementation on pancreatic beta cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: The Calcium and Vitamin D for diabetes mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr 94: 486-494, 2011
- 31. Dunlop TW, Vaisanen S, Frank C, Molnar F, Sinkkonen L and Carlberg C: The human peroxisome proliferator-activated receptor delta gene is a primary target of 1alpha,25-dihydroxyvi-tamin D3 and its nuclear receptor. J Mol Biol 349: 248-260, 2005.
- 32. Angellotti E, D'Alessio D, Dawson-Hughes B, Nelson J, Cohen RM, Gastaldelli A and Pittas AG: Vitamin D supple-mentation in patients with type 2 diabetes: The Vitamin D for established type 2 diabetes (DDM2) study. J Endocr Soc 2: 310-321, 2018
- Mirhosseini N, Vatanparast H, Mazidi M and Kimball SM: The effect of improved serum 25-Hydroxyvitamin D status on glycemic control in diabetic patients: A Meta-analysis. J Clin Endocrinol Metab 102: 3097-3110, 2017.
- 34. Wu C, Qiu S, Zhu X and Li L: Vitamin D supplementation and glycemic control in type 2 diabetes patients: A systematic review and meta-analysis. Metabolism 73: 67-76, 2017.
- 35. Krul-Poel YH, Ter Wee MM, Lips P and Simsek S: Management of Endocrine Disease: The effect of vitamin D supplementation on glycaemic control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Eur J Endocrinol 176: R1-Ř14, 2017
- Wehmeier K, Onstead-Haas LM, Wong NC, Mooradian AD and Haas MJ: Pro-inflammatory signaling by 24,25-dihydroxyvitamin D3 in HepG2 cells. J Mol Endocrinol 57: 87-96, 2016.
 - This work is licensed under a Creative Commons International (CC BY-NC-ND 4.0) License.