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Powdery mildew (PM) is one of the most devastating and wide spread fungal diseases
of rose, which seriously decrease its productivity and commercial value. In the present
study, the endophytic fungal communities of two wild Rosa varieties (Rosa multiflora
Thunb and R. multiflora var. carnea Redouté and Thory) with different PM susceptibilities
were studied through Illumina MiSeq sequencer. A total of 14,000,424 raw reads
were obtained from 60 samples, and 6,862,953 tags were produced after merging
paired-end reads. 4462 distinct OTUs were generated at a 97% similarity level. It
was found that only 34.2% of OTUs shared between two plant varieties. All of the
OTUs were assigned into four fungal phyla, 17 classes, 43 orders, 86 families, 157
genera, and 208 species. Members of Ascomycota were found to be the most common
fungal endophytes (EF) among all plant samples (93.7% relative abundance), followed
by Basidiomycota (4.7% relative abundance), while Zygomycota and Glomeromycota
were found to be rare and incidental. At each developmental stage of plants, the
diversity and community structure of EF between two Rosa varieties showed significant
differences. Both PCoA plots and PERMANOVA analyses indicated that developmental
stage was the major factor contributing to the difference between the Rosa varieties
(R2 = 0.348, p < 0.001). In addition, plant varieties and tissues were also important
factors contributing to the difference (R2 = 0.031, p < 0.05; R2 = 0.029, p < 0.05).
Moreover, Neofusicoccum, Rhodosporidium, and Podosphaera, etc., were found to be
significantly different between two Rosa varieties, and some of the endophytes may
play a role in PM resistance. These finding are encouraging to testify the potential use
of these fungi in the biocontrol of PM in future studies.

Keywords: wild rose, powdery mildew, fungal endophytic community, disease resistance, Illumina MiSeq

INTRODUCTION

Roses are one of the most economic and important ornamental crops (Debener and Byrne, 2014),
however, they are adversely affected by some fungal pathogens. Powdery mildew (PM) is one of the
most devastating and widespread fungal diseases of rose, which is mainly caused by Podosphaera
pannosa (Wallr.) de Bary (Belanger et al., 1994; Braun and Takamatsu, 2000). The pathogen appears
on the upper surface of young leaves in the form of white powdery pustules which ultimately cover
the entire leaf surface, thus resulting lower yield, poor market value and consumer acceptance.
The use of various fungicides has been the main control strategy adopted against the disease
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(Pasini et al., 1997; Kim et al., 2008; Debener and Byrne, 2014).
However, the decreasing efficacy of many fungicides as well as
the risk of fungicide residues on the leaves and flowers has
highlighted the need for more effective and safe alternative
control measures. One of the potential methods of reducing the
severity of PM in an environmentally safe manner is the use of
biocontrol agents. Some isolates of Ampelomyces quisqualis Ces.,
Lecanicillium lecanii Zimm., Bacillus subtilis, Bacillus velezensis
CC09, and Gjaerumia minor Nyland have been found to be
effective biocontrol agents as PM control (Nasir et al., 2014;
Mmbaga et al., 2016; Cai et al., 2017).

Endophytic fungi (EF) can be defined as fungi that reside
asymptomatically in the interior of host plant tissues (Hyde
and Soytong, 2008). They have been widely studied and found
to be ubiquitous within all examined plants. They play an
important role in biotic and abiotic stress tolerance of host
plants (Li et al., 2012b; O’Hanlon et al., 2012; Ibrahim et al.,
2017). Burketova et al. (2015) demonstrated that induced
resistance can be conferred by plant-associated microorganisms.
O’Keeffe et al. (2017) also pointed out that plant-associated
microbes influenced the emergence, spread and evolution of
plant pathogens. Therefore, EF can be explored as potential
biocontrol agents. Despite the increasing interest in EF, little
is known about the diversity and community structure of
EF associated with Rosa spp. as well as its ecological roles.
Bahig et al. (2012) studied the culturable endophytic bacterial
community of rose plants inhabiting dry desert ecosystems.
They found that some endophytic bacteria were able to
produce indole acetic acid (IAA), soluble phosphate and
siderophore. Bibi et al. (2012) also used culture-dependent
method to study the endophytic bacterial community of
Rosa rugosa Thunb and found that some isolates exhibited
in vitro inhibitory activity against target plant pathogenic
oomycetes.

Although Rosa multiflora Thunb (RSM) is a wild Rosa
species highly resistant to PM, R. multiflora var. carnea
Redouté and Thory (RSMC) is a variant of R. multiflora
is highly susceptible to PM (Wylie, 1954; Chatani et al.,
1996; Leus, 2005; Zhang et al., 2009; Qiu et al., 2015).
Fungal endophytic communities of Rosa are still poorly
known. Thus, present study was designed to examine fungal
endophytic communities at different developmental stages of
these two Rosa varieties having variable susceptibilities to
PM.

The recent advanced cutting edge technologies such as
high-throughput sequencing technology have now enabled
us to study the microbial colonization under specific
environmental conditions and habitat in unprecedented
details (Beeck et al., 2015; Eevers et al., 2016). These high-
throughput sequencing techniques can be used to detect
both culturable and unculturable microorganisms, and
thus can reflect the diversity and community structure
more close to its natural state (Eevers et al., 2016). Here
we report the first comprehensive investigation of the
fungal endophytic communities associated with different
varieties of R. multiflora through Illumina sequencing
technology.

MATERIALS AND METHODS

Sample Collection
The plants of RSM and RSMC were collected from the Cangshan
Mountain, Dali, Yunnan Province, Southwest China (25◦25′–
27◦58′ N, 99◦58′–100◦27′ E) on the 15th of each month between
April and August, 2015. This timing was decided considering
different developmental stages of PM in rose at the sampling
location, i.e., April was the month of early stage, May and June
were the major outbreak period, while July and August were the
period of later stage (Leus, 2005; Xiang et al., 2017). The altitudes
of sampling sites were between 1,980 and 2,220 m a.s.l. Sampling
and further analysis were done in triplicate. Each replicate
consisted of 15 branches from three plants of corresponding
variety of Rosa. All samples were cut down with sterile scissors,
placed in a sterile plastic bag and transported to the lab and
processed within 24 h.

Total Genomic DNA Extraction and
Sequencing
The plants were separated as leaves and stems, and then washed
in running tap water and processed as follows: the samples were
cut into segments and surface-sterilized by sequentially dipping
into 75% ethanol (2 min) and 5% sodium hypochlorite (2 min),
then, washed with sterile distilled water and dried on sterile filter
paper (Li et al., 2012a). The efficiency of the surface sterilization
process was confirmed by making imprints of disinfected plant
fragments on Petri dishes containing PDA (potato dextrose
agar); the absence of any fungal growth was observed as an
effective surface sterilization (Schulz et al., 1998). Afterwards,
the surface-sterilized tissues were homogenized in sterile mortars
with liquid nitrogen. The total genomic DNA was extracted by
PowerSoil R© DNA Isolation Kit (Mobio, United States), and then
was verified by gel electrophoresis (1% agarose, 120 V, 30 min).
The fragment of the ITS2 region (200–400 bp) was targeted using
the primers ITS3_KYO2 (5′-GATGAAGAACGYAGYRAA-3′)
and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) for fungal
community analysis (White et al., 1990; Bokulich and Mills,
2013). PCR reactions were performed in a 25 µl volume and
contained: 2.5 µl 10 × PCR buffer, 1.5 µl Mg2+ (25 mM
MgCl2), 2.5 µl dNTP mixture (4 mM each), 0.5 µl KOD-Plus-
Neo (1 units/µl; TOYOBO), 1 µl Template DNA (0.4 ng), 2.5 µl
primer (10 µM each), and 14.5 µl sterilized double-distilled
H2O. The PCR program consisted of an initial denaturation
step at 94◦C for 5 min, followed by 30 cycles of denaturation
at 94◦C for 20 s, annealing at 50◦C for 30 s, elongation at
72◦C for 30 s, with a final extension of 5 min at 72◦C. The
PCR products were purified with an OMEGA Gel Extraction Kit
(Omega Bio-Tek, United States) according to the manufacturer’s
protocol. The library quality was assessed on the Qubit 2.0
Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100
system. Paired-end sequencing (2 × 250 bp) was carried out on
an Illumina MiSeq sequencer at Rhonin Biosciences Co., Ltd.
(Chengdu, China). The Illumina sequencing data obtained in
these experiments are publicly available in the NCBI Sequence
Read Archive under No. SRR5312521.
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Analysis of Pyrosequencing Data
The raw pyrosequencing data were obtained in FASTQ files along
with sequencing quality files. Paired-end reads from the original
DNA fragments theoretically were merged using FLASH, which
is a very fast and accurate analysis tool (Magoč and Salzberg,
2011). All sequences were denoised, as well as trimmed for
barcodes and primers. The cleaned-up sequences were aligned
and classified with those in the SILVA rRNA database. Chimeric
sequences, as well as mitochondrial and chloroplast sequences
were removed using UCHIME (Edgar, 2013). The remaining
sequences were subsampled (excluding singletons) and grouped
into operational taxonomic units (OTUs) based on a 97%
similarity criterion (Eevers et al., 2016). Taxonomy were assigned
using the UNITE database1. Rarefaction curves were performed
to check the sample adequacy using a 50 sequence increment. The
representative sequence for each OTU was provided taxonomical
annotation by a naive Bayesian classifier, the Ribosomal Database
Project (RDP) Classifier2 at 0.5 confidence threshold (Wang et al.,
2007).

Statistical Analysis
The diversity indices and rarefaction curves were performed with
R software (Liaw and Wiener, 2002). In addition, the difference
of Shannon diversity index (H′) between two different groups
was analyzed by one-way ANOVA (Response variable residuals
are normally distributed and variances of populations are equal)
or Kruskal–Wallis test in SPSS (Yatsunenko et al., 2012). To
calculate the relative abundance of each OTU per sample pool,
matching reads were divided by the total number of processed
reads in the sample pool (Turnbaugh et al., 2009). Bray–Curtis
dissimilarities were calculated using the “vegdist” function of
the R package using measurable OTU abundances (Coleman-
Derr et al., 2016). Venn diagrams were plotted with the package
“Venn Diagram.” Principal coordinate analysis (PCoA) based
on Bray–Curtis dissimilarities were used to examine community
dissimilarity and determine the impact of experimental factors
on microbial community structure (Forsberg et al., 2014). To
find out the differences among groups, permutational ANOVAs
(PERMANOVAs) were performed with the function “adonis” in
the package “vegan” (Desgarennes et al., 2014). PERMANOVAs
were used to elucidate the contribution of following factors to the
dissimilarity among the endophytic fungal communities: plant
varieties, plant tissues (leaf and stem), and developmental stages
(Peršoh, 2013; Pérez-Izquierdo et al., 2017).

RESULTS

Sequencing Yields
A total of 14,000,424 raw reads were obtained from the sequencer,
and 6,862,953 tags were produced after merging paired-end reads
(length > 200 bp, without ambiguous base “N,” and average
base quality score > 30), the average length was 340 base pairs.
Excluding all reads that showed no clear taxonomic affinity, 4462

1https://unite.ut.ee/
2http://rdp.cme.msu.edu/classifier/classifier.jsp

distinct OTUs were generated at a 97% similarity level (Table 1).
The rarefaction curves of all the plant samples tended to approach
the saturation plateau (Figure 1).

The OTUs were assigned into four fungal phyla, 17 classes,
43 orders, 86 families, 157 genera, and 208 species. Members
of Ascomycota were found to be the most common EF among
all plant samples (93.7% relative abundance), followed by
Basidiomycota (4.7% relative abundance), while Zygomycota
and Glomeromycota were found to be rare and incidental
(Supplementary Figure S1).

The Venn diagram illustrates the distribution of fungal
communities across samples (Figure 2). It was found that 34.2%
OTUs found in RSM (both leaf and stem) shared in RSMC. On
the contrary, 35.5 and 30.3% OTUs were only detected in RSM
and RSMC, respectively. The OTUs of RSM (both leaf and stem)
were higher than that of RSMC (Figure 2 and Table 1).

Diversity of Fungal Endophytes
Computational analyses of the Shannon index (H′) estimated the
richness and evenness of EF associated with plant tissues at OTU
cutoffs of 0.03 distance units (Klaubauf et al., 2010; Glynou et al.,
2016; Figure 3 and Supplementary Table S1). Remarkably, the
H′ of both plant varieties increased with the development of PM.
However, at the early stage (April), the H′ of EF of RSM was
significantly lower than that of RSMC at the tissue level. But
contrary to this, at the middle and later stages (May–August), the
H′ of RSM was higher than that of RSMC, although the difference
was not significant (Supplementary Table S1). In addition, it
was found that at the same developmental stage, the H′ between
leaves and stems of the same plant species showed no significant
difference (one-way ANOVA, p > 0.05).

Rarefaction curves of H′ showed that the diversity of EF of
RSM fluctuated substantially during the developmental stages,
ranging from 1.3 to 3.5 (leaves) and 0.9 to 3.6 (stems),
respectively. However, the diversity of EF of RSMC did not
fluctuate so greatly when compared with RSM, ranging from 1.7
to 3.0 (leaves) and 1.6 to 3.6 (stems). Similarly, rarefaction curves
of the observed OTUs and the Chao1 estimator of EF of RSM
fluctuated largely than that of RSMC (Figure 1).

Fungal Endophytic Community
Composition
Fungal endophytic communities of the two Rosa varieties
showed a certain difference at each developing stage. At

TABLE 1 | The detailed information of tags and number of OTUs from different
samples.

Sample Raw PE Raw tags Clean tags Effective
tags

Number of
OTUs

C-L 4421416 2167361 1321247 1321237 1840

C-S 3379208 1656474 680511 680508 1907

M-L 3480020 1705892 1207530 1207523 2031

M-S 2719780 1333226 811236 811228 2029

C-L and C-S, M-L and M-S: Leaf and stem of R. multiflora var. carnea (RSMC) and
R. multiflora (RSM), respectively.
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FIGURE 1 | Rarefaction curves of the observed OTU number, Chao1, and Shannon index at 97% similarity of samples. CL and CS, ML and MS: leaf and stem of
R. multiflora var. carnea and R. multiflora, respectively; 1, 2, and 3 represent triplicate; 4, 5, 6, 7, and 8 stand for the sampling time April, May, June, July, and August.

FIGURE 2 | Venn diagram describing the OTU distribution across two R. multiflora varieties and their tissues. CL and CS, ML and MS: leaf and stem of R. multiflora
var. carnea and R. multiflora, respectively.

the early stage (April), although Alternaria and Botryotinia
were the dominant genera of both rose varieties (Figure 4
and Table 2), while their average relative abundance showed
significant differences (one-way ANOVA, p < 0.05). In
PM resistant rose variety (RSM), Botryotinia was the most
dominant genus and its average relative abundance was

more than 71% both in leaves and stems. However, in PM
susceptible rose variety (RSMC), its average relative abundance
was lower than 39%, both in leaves and stems (Table 2).
On the contrary, Alternaria was the most dominant genus
of RSMC, and the average relative abundance was more
than 49%.
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FIGURE 3 | Shannon index (H′) of endophytic fungi from two R. multiflora varieties at different developing stages, demonstrated by box plots with median and 95%
confidence intervals displayed.

In May, Alternaria remained to be the dominant genus of
both rose varieties. Strikingly, Neofusicoccum was detected
at a higher level in the stems of RSM (average relative
abundance of 24.77%) when compared with that (1.09%)
of RSMC (Supplementary Figure S2). While, the relative
abundance of Neofusicoccum was almost same in the leaves
of both plant varieties (Supplementary Figure S2). In
June, Rhodosporidium was found to be the most dominant
genus in the stem of RSM, while Botryotinia was the
most dominant genus in the stem of RSMC, followed by
Alternaria.

In July, Rhodosporidium was detected in all samples, and it
showed a dominant presence in both rose varieties (Table 2).
Remarkably, Podosphaera, the causal fungus of PM in rose, was
detected in RSMC with higher relative abundance (13.25%),
but was almost absent (0.62%) in RSM (Figure 4 and
Table 2). In August, Passalora and Diaporthe were found to

be the dominant genera respectively in the leaves and stems
of RSM, while Alternaria was the only dominant genus in
RSMC.

Factors Driving Endophytic Fungal
Communities
Permutational ANOVA analysis indicated that the developmental
stage was the major factor contributing to the difference
between the endophytic fungal communities of two Rosa varieties
(R2 = 0.348, p < 0.001). In addition, plant varieties and
tissues were also important factors contributing to the difference
(R2 = 0.031, p < 0.05; R2 = 0.029, p < 0.05) (Supplementary
Table S2). The results were supported by PCoA using the Bray–
Curtis dissimilarity matrixes on rarefied OTUs to identify the
main drivers of microbial composition. PCoA plots displayed
clustering of plant varieties, plant tissues and developmental
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FIGURE 4 | Relative abundance of endophytic fungi of two Rosa varieties at genus-level. The fungi with a relative abundance below 0.1% were grouped as “others.”
CL and CS, ML and MS: leaf and stem of R. multiflora var. carnea and R. multiflora, respectively; 1, 2, and 3 represent triplicate samples; 4, 5, 6, 7, and 8 stand for
the sampling time April, May, June, July, and August.

TABLE 2 | Dominant endophytes associated with two Rosa varieties at different developmental stages.

Time Dominant genera

R. multiflora R. multiflora var. carnea

Leaf Stem Leaf Stem

April Botryotinia (71.83%) Botryotinia (74.07%) Alternaria (49.38%) Alternaria (49.19%)

Alternaria (16.16%) Alternaria (15.29%) Botryotinia (30.37%) Botryotinia (38.66%)

May Alternaria (60.47%) Alternaria (30.33%) Alternaria (58.95%) Alternaria (63.43%)

Botryotinia (9.88%) Neofusicoccum (24.77%) Botryotinia (9.18%) Botryotinia (12.62%)

June Alternaria (29.94%) Rhodosporidium (15.64%) Alternaria (39.05%) Botryotinia (26.97%)

Botryotinia (11.14%) Botryotinia (15.76%) Alternaria (18.09%)

July Alternaria (23.54%) Botryotinia (25.25%) Alternaria (26.33%) Botryotinia (25.51%)

Rhodosporidium (20.28%) Alternaria (11.94%) Rhodosporidium (19.20%) Rhodosporidium (21.04%)

Botryotinia (12.70%) Botryotinia (15.61%)

Podosphaera (13.25%)

August Passalora (16.84%) Alternaria (20.04%) Alternaria (11.85%)

Diaporthe (16.23%)

Data represents the average of total relative abundance, the fungi with a relative abundance below 10.0% were not shown in the table.

stages, but the relative contribution of each factor differed. The
samples from RSM in April were grouped together and clustered
separately as compared to the other samples (Figure 5A).
Similarly, in May, the stem samples of RSM differed comparably
from the samples collected in other months (Figure 5A). In
order to further differentiate the variables contributing to the
distribution of endophytic fungal community between two wild
rose varieties, we evaluated the impact of plant variety, plant
tissue and developmental stage, separately (Figures 5B–D).
Regardless of plant varieties and plant tissues, with the exception
of June and July, the samples were grouped into distinct clusters

according to the developmental stage (Figure 5D). In other
words, our data indicate that endophytic fungal communities of
wild roses were more influenced by developmental stage, whereas
the plant varieties and tissues played a minor role in shaping the
microbiome of the studied rose varieties.

DISCUSSION

A total of 4462 distinct OTUs were generated from two rose
varieties at a 97% similarity level. The OTUs were assigned into
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FIGURE 5 | Main factors driving the endophytic microbiota composition of two Rosa varieties. Principal coordinate analysis (PCoA) among all sixty samples based
on Bray–Curtis distance matrixes. (A) All factors; (B) plant varieties factor; (C) plant tissue factor; and (D) developmental stage factor. CL and CS, ML and MS: leaf
and stem of R. multiflora var. carnea and R. multiflora, respectively; 4, 5, 6, 7, and 8 denotes the sampling time April, May, June, July, and August.

four fungal phyla. Ascomycota was found to be the most common
EF among the plant samples (93.7% relative abundance). This
is consistent with previous findings that Ascomycota was the
dominant group of EF in many plant species from various
environments (Gazis and Chaverri, 2010; Peršoh et al., 2010;
Khan et al., 2017). Alternaria and Botryotinia are very common
and have been reported as the dominant EF of various plant
species (González and Tello, 2011; Setati et al., 2015). In the
present study also, they were found to be the most dominant EF
(Table 2). Similarly, Alternaria was found to be the dominant
EF of R. rugosa and R. hybrid in our previous studies (Zhou
et al., 2014). Moreover, Kumar and Chandel (2018) found that the
phylloplane fungus Alternaria sp. from rose can inhibit conidial
germination of P. pannosa in vitro.

Endophytic fungal community differs across plant species,
soil type, climate, altitude, and other environmental conditions

(Hardoim et al., 2008; Lundberg et al., 2012; Siddique and
Unterseher, 2016; Asemaninejad et al., 2018). In the present
study, samples of RSM and RSMC were collected at each
developmental stage parallel from the same site. However, their
endophytic fungal communities were significantly different, and
there were only 34.2% of the OTUs shared between them
(Figures 1–3 and Supplementary Table S1). We suggest that the
difference mainly come from the difference of plant varieties.
PERMANOVA analysis also supported this suggestion. Plant
varieties contributed more to shape the endophytic community
than the other factors (Supplementary Table S2). The result
was consistent with previous findings that host plant species can
influence the diversity and composition of microbial endophytes
(Inceoğlu et al., 2010; Ding et al., 2013; Hardoim et al., 2015).
Raghavendra et al. (2017) also found that Mimosa pigra L.
(Fabaceae) had similar fungal communities within stems among
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regions, suggesting that host plant rather than environment
determined endophytic communities in this species.

Siddique and Unterseher (2016) found that the microbiota was
little affected by the physiological state of the leaves. Lundberg
et al. (2012) also found that the developmental stage of plants
contributed less to shape the community composition. However,
in the present study, both PCoA plots and PERMANOVA
analyses indicated that the developmental stage was the major
factor contributing the difference between two wild rose varieties.
Giordano et al. (2009) also demonstrated that the EF inhabiting
sapwood of Scots pine (Pinus sylvestris L.) are significantly
affected by the degree of decline of trees. We suppose that
the pathogen infection can influence the fungal endophytic
community. Similarly, Pan et al. (2008) found that the pathogen
Ustilago maydis DC infection had significant effect to the
endophytic community of maize (Zea mays L.). Moler and Aho
(2018) also found that the pathogen infection affected white bark
pine foliar fungal endophytic community. In addition, it was
demonstrated that the plant tissue also have important effects
on the fungal community (Figures 5A,C and Supplementary
Table S2). The same phenomenon was found by Yang et al.
(2017). They found plant tissues contribute to shape the bacterial
communities associated with tree peony. The influence may be
attributed to the endophytic specificity and adaptation to the
anatomical aspects and nutritional conditions of different plant
organ compartments (Gaiero et al., 2013; Liotti et al., 2018).

Although the H′ of both rose varieties increased with PM
development (from April to August), while at the early stage
of PM (April), the H′ of RSM (PM resistant) was significantly
lower than that of RSMC (PM susceptible) (Figure 3 and
Supplementary Table S1). The same phenomenon was observed
by Martin et al. (2013). They found that the resistant plant
genotypes exhibit a lower frequency and diversity of fungal
endophytes in the xylem of the elm (Ulmus spp.) than susceptible
plant genotypes. Similarly, Reiter et al. (2002) also found a higher
diversity of bacterial endophytes in potato due to the presence
of the pathogen Erwinia carotovora subsp. atroseptica. However,
with the development of PM (at the middle and late stages of
PM), the H′ of RSM was higher than that of RSMC (Figure 3 and
Supplementary Table S1). This could be due to the developed
defense system of RSM that allows fungal endophytes to colonize
in order to suppress the pathogen stress. This hypothetical
mechanism needs further investigation.

In addition to fungal endophytic community and diversity,
it was found that the relative abundance of some fungal
endophytes were significantly different between the two Rosa
varieties: in May, Neofusicoccum spp. was common in the
stems of RSM. On the contrary, it was less common in the
stems of RSMC (Supplementary Figure S2 and Table 2).
Neofusicoccum batangarum have been reported as an endophyte
of Terminalia catappa L. (Shetty et al., 2011). This fungus
can produce a diverse variety of phytotoxins that confer
high flexibility to adapt several environmental conditions
(Abou-Mansour et al., 2015). Therefore, the fungus may
have facilitated host plants resistance to PM by secreting
phytotoxins. In June, Rhodosporidium spp. was found to be
the most dominant EF in RSM, while Botryotinia spp. was the

most dominant EF in RSMC. Contrary to this, Podosphaera
spp. was detected in higher relative abundance in RSMC
(13.25%), however, it was almost absent in RSM (0.62%).
Rhodotorula paludigena has been reported as an antagonistic
yeast, that mainly control postharvest fungal pathogens through
the production of lytic enzymes, induction of resistance,
formation of biofilms, and competition for limiting nutrients
and space (Spadaro and Droby, 2016; Sun et al., 2018).
Mmbaga et al. (2008) reported that Rhodosporidium spp. were
highly effective biological control agents of PM on flowering
dogwoods (Cornus florida L.). Sansone et al. (2018) have
demonstrated that Rhodosporidiobolus fluvialis could be used
as a biocontrol agent against Botrytis cinerea. Therefore, higher
endophytic colonization of Rhodosporidium spp. may have
improved its resistance to PM, and resulted lower Podosphaera
infestation.

Genotype of the host plant plays a significant role in the
selection of associated fungal community (Preto et al., 2017;
Kumar and Chandel, 2018), which in turn have a positive
or negative effect on host plants (Heijden and Hartmann,
2016). In the present study, two rose varieties have significantly
different PM resistance, preferentially harbor some selected EF
during different developmental stages that may have important
implications on the PM susceptibility. However, to prove this
hypothesis, more work need to be carried out in the future.
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