
Journal of

Imaging

Article

A Computationally Efficient Reconstruction
Algorithm for Circular Cone-Beam Computed
Tomography Using Shallow Neural Networks

Marinus J. Lagerwerf 1,* , Daniël M. Pelt 1,2, Willem Jan Palenstijn 1 and Kees Joost Batenburg 1,2

1 Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, The Netherlands;
d.m.pelt@liacs.leidenuniv.nl (D.M.P.); wjp@cwi.nl (W.J.P.); k.j.batenburg@cwi.nl (K.J.B.)

2 Leiden Institute of Advanced Computer Science, Universiteit Leiden, 2333 CA Leiden, The Netherlands
* Correspondence: m.j.lagerwerf@cwi.nl

Received: 17 November 2020; Accepted: 4 December 2020; Published: 8 December 2020
����������
�������

Abstract: Circular cone-beam (CCB) Computed Tomography (CT) has become an integral part of
industrial quality control, materials science and medical imaging. The need to acquire and process
each scan in a short time naturally leads to trade-offs between speed and reconstruction quality,
creating a need for fast reconstruction algorithms capable of creating accurate reconstructions from
limited data. In this paper, we introduce the Neural Network Feldkamp–Davis–Kress (NN-FDK)
algorithm. This algorithm adds a machine learning component to the FDK algorithm to improve
its reconstruction accuracy while maintaining its computational efficiency. Moreover, the NN-FDK
algorithm is designed such that it has low training data requirements and is fast to train. This ensures
that the proposed algorithm can be used to improve image quality in high-throughput CT scanning
settings, where FDK is currently used to keep pace with the acquisition speed using readily available
computational resources. We compare the NN-FDK algorithm to two standard CT reconstruction
algorithms and to two popular deep neural networks trained to remove reconstruction artifacts
from the 2D slices of an FDK reconstruction. We show that the NN-FDK reconstruction algorithm is
substantially faster in computing a reconstruction than all the tested alternative methods except for
the standard FDK algorithm and we show it can compute accurate CCB CT reconstructions in cases
of high noise, a low number of projection angles or large cone angles. Moreover, we show that the
training time of an NN-FDK network is orders of magnitude lower than the considered deep neural
networks, with only a slight reduction in reconstruction accuracy.

Keywords: tomography; circular cone-beam CT; machine learning; neural network; multilayer
perceptron; Feldkamp–Davis–Kress (FDK); reconstruction algorithm

1. Introduction

Circular cone-beam (CCB) Computed Tomography (CT) has become an integral part of
non-destructive imaging in a broad spectrum of applications, such as industrial quality control [1],
materials sciences [2,3] and medical imaging [4,5]. Especially in industrial and medical applications,
the scanning time, reconstruction time and the scanning dose are limited resources. Such limitations
lead to trade-offs between computation time and scanning time—i.e., number of projections,
noise level—on the one hand, and reconstruction accuracy on the other hand. Additionally,
CT reconstruction has become a big data problem due to the development of readily available
high-resolution CT-scanners [6–8]. This stresses the need for computationally efficient reconstruction
methods that are applicable to a broad spectrum of high-resolution problems and produce accurate
results from data with high noise levels, low numbers of projection angles or large cone angles.

J. Imaging 2020, 6, 135; doi:10.3390/jimaging6120135 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0003-1916-4665
http://dx.doi.org/10.3390/jimaging6120135
http://www.mdpi.com/journal/jimaging
https://www.mdpi.com/2313-433X/6/12/135?type=check_update&version=3

J. Imaging 2020, 6, 135 2 of 26

In practice, if computational efficiency is a constraint and especially for high-resolution problems,
direct methods (e.g., the filtered backprojection (FBP) algorithm [9], the Feldkamp–Davis–Kress (FDK)
algorithm [10] and the Katsevich algorithm [11]) are still the common choice of reconstruction
method [12]. While iterative methods have been shown to be more accurate for noisy and limited
data problems [13–18], they have a significantly higher computational cost. Consequently, there have
been efforts to improve the accuracy of direct methods by computing data-specific or scanner-specific
filters [19–23]. Although these strategies do improve the reconstruction accuracy, they also add
significant computational effort or are specific to one modality, e.g., tomosynthesis [24].

An emerging approach for improving direct methods is to use machine learning to remove
artifacts from the reconstructions. The idea is to use high-quality reconstructions to train a neural
network that removes artifacts from low-quality reconstructions using a supervised learning approach.
This post-processing approach has shown promising results for computed tomography using deep
neural networks (DNNs) [25–27]. Deep neural network structures contain a large number of layers,
leading to millions of trainable parameters and, therefore, require a large amount of training data [28].
This is problematic in CT imaging, since there is often a limited amount of training data available,
e.g., due to scanning time, dose, and business-related concerns. Moreover, for the available data, there
are often no reference datasets or annotations available [29]. The large amount of training data and large
number of parameters also lead to long training times. While for standard 2D networks, the training
time ranges between a couple of hours and a couple of days (see Section 5.1.2), for 3D networks the
training time becomes prohibitively long [30] (i.e., weeks). Therefore, to apply post-processing to 3D
problems, the reconstruction volume can be considered as a stack of 2D problems [26,31] for which
one 2D network is trained and then applied in a slice-by-slice fashion to the 3D volume. Although this
strategy reduces the training time and the training data constraints, applying a 2D network to all slices
can still be computationally intensive due to the number of slices in the 3D volume. A more in-depth
discussion on current developments related to machine learning methods in CT imaging is given in
Section 2.

In this work, we propose the Neural Network FDK (NN-FDK) reconstruction algorithm. It is a
direct reconstruction method that is designed to produce accurate results from noisy data, data with
a low number of projection angles, or a large cone angle, but still maintains a similar computational
efficiency and scalability as the standard FDK algorithm. Moreover, the algorithm has a fast training
procedure, and requires a limited amount of training data.

The NN-FDK algorithm is an adaptation of the standard FDK algorithm using a shallow multilayer
perceptron network [32] with one fully connected hidden layer, a low number of trainable parameters
and low memory constraints. We will show it is possible to interpret the weights of the first layer of
the perceptron network as a set of learned filters for the FDK algorithm. We can then use the FDK
algorithm to evaluate the network efficiently for all voxels simultaneously to arrive at an accurate
reconstruction for the CCB CT problem.

The NN-FDK algorithm is an extension of the method proposed in [33] for the Filtered
Backprojection (FBP) algorithm [9]. The derivation of the approach outlined in [33] relies on the
shift-invariance property of the FBP algorithm. We will show that, although the FDK algorithm does not
have this shift-invariance property, we can derive a similar method for the FDK algorithm. Moreover,
the proposed strategy can be extended to any linear filtered backprojection type reconstruction method.

Using both simulated and experimental data, we compare the proposed method with the standard
FDK algorithm, SIRT [34] with a nonnegativity constraint (SIRT+), which is a commonly used iterative
algorithm for CT problems, and two 2D deep neural networks (U-net [31] and MSD-net [26]) trained to
remove reconstruction artifacts from slices of standard FDK reconstruction. We show that the NN-FDK
algorithm is faster to evaluate than all but the standard FDK algorithm and orders of magnitude faster
to train than the considered DNNs, with only a slight reduction in reconstruction accuracy compared
to the DNNs.

J. Imaging 2020, 6, 135 3 of 26

The paper is structured as follows. In Section 3, we give definitions and introduce our method.
In Section 4, we introduce the data and the parameters used for the experiments. The experiments
and their results are shown and discussed in Section 5. The paper is summarized and concluded in
Section 6.

2. Related Work

Using machine learning methods is an emerging approach in CT imaging [29]. Deep learning
methods have shown promising results for many applications within the development of CT
reconstruction methods [35]. For the sake of exposition, we split these machine learning approaches
into two categories: (i) Improving standard reconstruction methods by replacing components of the
reconstruction method with networks specifically trained for the application; and (ii) improving the
image quality of reconstructions computed with existing reconstruction methods by training neural
networks to perform post-processing in order to remove artifacts or reduce noise.

Examples of the first strategy (improving standard reconstruction methods) applied to iterative
methods are the learned primal-dual reconstruction algorithm [36,37], variational networks [38,39],
plug and play priors [40–42], and learned regularizers [43,44]. These methods achieve promising
results in reconstruction accuracy and generalizability. However, their high computational cost limits
the applicability if high throughput is required. Examples for this strategy applied to direct methods
are the NN-FBP method [33], and also the NN-FDK method introduced in this paper. These methods
are designed to improve the image quality of direct methods for data with limitations (e.g., data with
noise or a low number of projection angles), while maintaining their computational efficiency.

Examples of the second strategy (learned post-processing) have demonstrated substantial
improvements in reconstruction quality for CT imaging [25,28,31,35]. This is aided by the fact that the
post-processing problem can be viewed as a classic imaging problem—e.g., denoising, segmentation,
inpainting, classification— for which many effective machine learning methods have already been
developed [45–47]. Although the general trend is towards deeper networks to make such networks
more expressive [48], this can lead to problems with scalability for large 3D image datasets.

The rise in popularity of machine learning in CT is driven by the increased computational
possibilities and although these advances are sufficient to handle most 2D problems, scaling towards
3D problems can be problematic, due to memory constraints. This is illustrated in Section 5.1.1, where
we plotted the memory constraints for applying a 2D and 3D U-net and MSD-net in terms of gigabytes
(GB) of memory as a function of the size of the image. This shows that, in theory, one could apply
a 2D MSD-net to images of 7500× 7500 pixels (with a 24GB GPU), but in 3D, this limit lies around
400× 400× 400 voxels. Considering that CT problems range between 256× 256× 256 (small image
size) up to 4096× 4096× 4096 images, this gives an indication that scalability can become an issue,
especially for 3D problems.

When applying machine learning techniques for improving the reconstruction quality in CT,
a balance must be struck between image quality, running time, and memory requirements. Here, we
propose a method that achieves relatively high accuracy, while also being computationally efficient
and scalable.

3. Method

The NN-FDK algorithm is a reconstruction algorithm with a machine learning component,
meaning that a number of parameters of the reconstruction algorithm are optimized through supervised
learning [49]. Similar to the network presented in [33], the NN-FDK network is a two layer neural
network with a hidden layer and an output layer. We design the network such that it reconstructs one
single voxel, but handles all voxels in a similar manner. This means that we only have to train one
network for a full reconstruction. We consider the NN-FDK algorithm to have three parts: The NN-FDK
network, the NN-FDK reconstruction algorithm and the training process.

J. Imaging 2020, 6, 135 4 of 26

We introduce the reconstruction problem, FDK algorithm, a filter approximation method and the
definition of a perceptron in Section 3.1. In Section 3.2, we provide the NN-FDK reconstruction algorithm
and derive from this algorithm the NN-FDK network. The input of the network that is needed in the
training process is a pre-processed version of the input of the reconstruction algorithm. In Section 3.3,
we discuss how to compute this pre-processing step for all voxels simultaneously and we introduce
the optimization problem and related notation for the training process. Lastly, we summarize and
discuss the characteristics of the method in Section 3.4.

3.1. Preliminaries

3.1.1. Reconstruction Problem

In this paper, we focus exclusively on the circular cone-beam (CCB) geometry, where the object
rotates with respect to a point source and a planar detector, acquiring 2D cone-beam projections.
The reconstruction problem for the CCB geometry can be modeled by a system of linear equations

Wx = y, (1)

where x ∈ Rn is the vector describing the reconstruction (i.e., every element coincides with a voxel
value), y ∈ Rm is the vector describing the measured projection data, and W ∈ Rm×n is a discretized
version of the cone-beam transform or forward projection. For the sake of simplicity, we assume that the
volume consists of n = N×N×N voxels and the detector consists of N×N pixels. We denote the
number of angles by Na, so we have m = Na × N × N.

3.1.2. FDK Algorithm & Filter Approximation

The FDK algorithm, as presented in [10], is a filtered backprojection-type algorithm that solves the
CCB reconstruction problem (1) approximately. First, for each projection angle, it applies a reweighting
step, r : RNa×N×N → RNa×N×N , that adapts the cone-beam data such that it approximately behaves as
fan-beam data. Second, it applies a filtering step, that convolves the data with a one-dimensional filter
h in a line-by-line fashion, (− ∗−)1D : R2N ×RNa×N×N → RNa×N×N . Last, it applies a backprojection
step. This step transforms the filtered projection data to the image domain. Using the notation of (1),
the FDK algorithm is given by

FDK(y, h) = WT(h ∗ r (y))1D, (2)

with WT the transpose of W. The operator WT is also known as the backprojection operator.
In [22,23,33], exponential binning is used to approximate filters, leading to Ne ≈ log N coefficients

to describe a filter. This approximation can be seen as a matrix E ∈ R2N×Ne applied to a coefficient
vector he ∈ RNe :

h ≈ Ehe. (3)

The implementation details of this filter approximation can be found in [23].

3.1.3. Perceptron

In a similar manner as in [32], we define a perceptron or node P : Rl → R as a non-linear activation
function σ : R→ R applied to a weighted sum of the input η ∈ Rl with the weights ξ ∈ Rl and a bias
b ∈ R:

Pξ,b(η) = σ(η · ξ − b) (4)

J. Imaging 2020, 6, 135 5 of 26

In this paper, we will only consider the sigmoid function as an activation function,
i.e., σ(t) = 1/(1 + e−t).

A multilayer perceptron is a network structure containing two types of layers with perceptrons,
where each perceptron operates on the outputs of the previous layer. These layers are, in order,
any number of hidden layers, and the output layer. Note that the number of hidden layers and number
of hidden nodes Nh in these layers can be chosen freely.

3.2. Reconstruction Algorithm & Network Design

We formulate the NN-FDK reconstruction algorithm in a similar fashion as the NN-FBP method
in [33]. The NN-FDK reconstruction algorithm consists of Nh individual FDK algorithms executed
on the input data y, each using its own (exponentially binned) filter hk

e ∈ RNe . It combines these Nh
volumes into a single reconstruction, using point-wise application of the activation function σ and an
output perceptron with parameters bo, bk ∈ R, and ξ ∈ RNh .

We use θ = (ξ, bo, hk
e , bk) as short-hand for the full set of parameters of the NN-FDK reconstruction

algorithm. The full algorithm (Algorithm 1) is then given by the following equation.

NN-FDKθ(y) = σ
(Nh

∑
k=1

ξkσ
(

FDK(y, Ehk
e)− bk

)
− bo

)
(5)

The FDK algorithm is a bilinear map in the input projection data and the used filter. Therefore,
for fixed input projection data y and an expanded exponentially binned filter Ehe, the FDK algorithm
can be written as a linear map Fy applied to Ehe. The product FyE can be considered as a matrix of
size N3 × Ne, and the v-th voxel of the output of the FDK algorithm is given by the inner product of he

with (FyE)v:, the v-th row of the matrix FyE. This leads to the following:

(NN-FDKθ(y))v = σ
(Nh

∑
k=1

ξkσ
(
(FyEhk

e)v − bk

)
− bo

)
, (6)

= σ
(Nh

∑
k=1

ξkσ
(
(FyE)v:hk

e − bk

)
− bo

)
, (7)

= Pξ,bo

([
Phk

e ,bk
((FyE)v:)

]
k

)
. (8)

Therefore, we define the two-layer perceptron network Nθ : RNe → R:

Nθ(q) = Pξ,b0

([
Phk

e ,bk
(q)
]

k

)
. (9)

This is our NN-FDK network, and as we derived above, it has the following relationship with the
NN-FDK reconstruction algorithm:

Nθ((FyE)v:) = (NN-FDKθ(y))v. (10)

This relationship shows that we can evaluate the NN-FDK reconstruction algorithm efficiently on
full input projection data at once, but also train the NN-FDK network efficiently with each individual
voxel (xHQ)v in a high-quality reconstruction yielding a training pair with input (FyE)v: and target
(xHQ)v. A schematic representation of the network is given in Figure 1.

Note that we arrive at the same network structure as found in [33] for FBP, using only the
properties that the FDK algorithm is a bilinear map in the data and the filter, and that all operations
can be applied point-wise. Using this reasoning, we can derive a similar network structure for any
FBP-type method satisfying these conditions.

Even though we use the same network structure as [33], the way we compute inputs to the network
is different. In [33], the input to the NN-FBP network is explicitly calculated by shifting and adding

J. Imaging 2020, 6, 135 6 of 26

projection data for each reconstruction pixel. The FDK algorithm has additional weighting factors and
lacks the shift-invariance property, which makes the approach presented in [33] not directly applicable.
In the next section, we detail an alternative method to compute the input. The same approach could be
applied to the NN-FBP method, similarly simplifying the network input computations.

Algorithm 1 Neural Network Feldkamp–Davis–Kress (NN-FDK) reconstruction algorithm

1: Given a set of parameters, θ :=
(

ξ, bo, hk
e , bk

)
.

2: Compute Hk for all nodes k of the hidden layer:
3: for k = {1, 2, .., Nh} do

4: Hk(y) = σ
(

FDK(y, Ehk
e)− bk

)
5: end for
6: Compute the output of the output layer:

NN-FDKθ(y) = σ
(

∑Nh
k=1 ξk Hk(y)− bo

)

...
q

Ph1
e ,b1

Ph1
e ,b1

P
h

Nh
e ,bNh

·ξ1

...

·ξ2

·ξNh

−bo σ Nθ

Hidden layer Output layer

Figure 1. Schematic representation of the NN-FDK network, Nθ : RNe → R, with Nh hidden nodes.
Note that if we take q = (FyE)v: we get q · hk

e = (FDK(y, Ehk
e))v in the perceptrons of the hidden layer

and the output of the network is equal to the v-th voxel of the NN-FDK reconstruction algorithm.

3.3. Training Process

3.3.1. Training and Validation Data

We will train our network using supervised learning, where we assume that we have NTD and
NVD datasets available for training and validation, respectively. These datasets consist of low-quality
tomographic input data and a high-quality reconstruction from which we randomly draw a total of NT

training pairs and NV validation pairs. Note that we ensure that every drawn pair is unique and that an
equal number of pairs is taken from each dataset. Moreover, to avoid selecting too many training pairs
from the background, we only take training pairs from a region of interest (ROI) around the scanned
object. This ROI is defined from the high-quality reconstruction as the voxels in the reconstructed
object plus a buffer of roughly 0.2 N voxels around it.

Recall from the previous section that given low-quality tomographic data y and a high-quality
reconstruction xHQ, the matrix FyE contains each input vector Z =

(
FyE

)
v: ∈ RNe corresponding to

the target voxel O = (xHQ)v. However, due to memory constraints, FyE cannot be computed directly
as a matrix product. Therefore, we observe that each column of FyE is an FDK reconstruction with a
specific filter:

(FyE):j = FyEej = FDK(y, Eej), (11)

with ej ∈ RNe the unit vector with all entries equal to zero except for the j-th element.

J. Imaging 2020, 6, 135 7 of 26

3.3.2. Learning Problem

The parameters of the NN-FDK network are learned by finding the set of parameters θ? that
minimize the loss function L on the training set. We minimize the `2-distance between the network
output and the target voxel for all training pairs in T:

θ? = argmin
θ

L(θ, T) = argmin
θ

1
2

NT

∑
j=1

(
Oj −Nθ(Zj)

)2 . (12)

To minimize the loss function, we use a quasi-Newton optimization scheme,
the Levenberg–Marquardt algorithm (LMA) as proposed in [50,51]. This is a combination of
gradient descent and the Gauss-Newton algorithm, improving the stability of Gauss-Newton while
retaining its fast convergence and it is specifically designed to minimize a non-linear least squares
problem such as (12). Note that the small number of parameters of the proposed network allows us to
use such a method. Lastly, to avoid overfitting we check whether every update of the parameters
also reduces the loss function on the validation set. We discuss the specifics of this algorithm in
Appendix B.

3.4. Method Characteristics & Comparison

To conclude the method section, we compare the characteristics of the NN-FDK algorithm to
those of several other methods. These methods are two 2D post-processing DNNs (U-net [31] and
MSD-net [28]) applied in a slice-by-slice fashion, the SIRT+ algorithm [34] and the FDK algorithm.
We focus our discussion on the goals formulated in Section 1 and show a summary of this comparison
in Table 1. The reconstruction accuracy will be discussed in Section 5.

Table 1. Comparison of reconstruction methods with respect to the goals formulated in Section 1.
We consider a DNN to be 2D deep convolutional neural network (U-net and MSD-net) applied in
slice-by-slice fashion to a standard FDK reconstruction. Reconstruction accuracy is defined as the
accuracy of a method when reconstructing low-quality data, e.g., data with high noise or a low number
of projection angles.

Reconstruction Training

Method Time Accuracy Data Time

NN-FDK ++ ? ++ +++
DNN ± +++ ± - - -

FDK +++ - -
SIRT+ - - +

Method comparison: Goals.

3.4.1. Computational Efficiency

We approximate the reconstruction time by counting how many times it has to evaluate its most
expensive computations. For simplicity, we assume that a backprojection takes approximately the
same time as a forward projection, TBP.

• FDK: The FDK algorithm consist of one reweighting, filtering and backprojection step, i.e.,:

TFDK ≈ TBP. (13)

• NN-FDK: The NN-FDK algorithm performs one FDK reconstruction per hidden node Nh.
Therefore, the reconstruction time becomes:

TNN-FDK ≈ NhTBP. (14)

J. Imaging 2020, 6, 135 8 of 26

• SIRT+: The SIRT+ method evaluates a forward and backprojection for each iteration. For Niter

iterations, the reconstruction time becomes:

TSIRT+ ≈ 2NiterTBP. (15)

• DNN: To evaluate a DNN on a full 3D volume, an FDK reconstruction is performed and a 2D
network is applied per slice of the FDK reconstruction.

T3D
DNN ≈ TBP + NT2D

DNN, (16)

with T2D
DNN the time it takes to apply a 2D DNN and T3D

DNN the time to do a full DNN reconstruction.

On a modern Nvidia GeForce GTX 1080Ti (11 GB) GPU and with N = 1024 and Na = 360, we
found in our experiments that TBP ≈ 10 s and T2D

DNN ≈ 0.5 s.
Comparing the reconstruction times, we see that NN-FDK is similar to FDK when the number

of nodes Nh is small, which is the case since we will take Nh = 4 (see Section 4.3). For DNNs,
the computational load of applying a 2D network leads to relatively high reconstruction times
compared to the FDK algorithm. Lastly, we note that the number of iterations Niter often lies between
the 20 and 200, making SIRT+ several times slower than the (NN-)FDK algorithm.

3.4.2. Number of Trainable Parameters

The number of trainable parameters is closely related to the amount of training data required to
train a network [28]. From the definition of the NN-FDK network (5), we can compute the number of
trainable parameters |θ|:

|θ| = (Ne + 2)Nh + 1, (17)

with N � Nh, Ne > 0. Taking Nh = 4 and N = 1024 gives |θ| = 61, which is several orders
of magnitude lower than the typical numbers of parameters in a DNN (several tens of thousands
to millions).

3.4.3. Training Time

In the training step, a solution to the minimization problem (12) is computed. For the NN-FDK
algorithm, this problem has NT samples and |θ| unknowns. In a similar fashion, we can formulate
a least squares problem for training a DNN. Even assuming that we only take the same number of
training samples to train the DNNs, this least squares problem is already orders of magnitude larger
than that for NN-FDK due to the difference in the number of trainable parameters. Moreover, the LMA
(the algorithm used to train NN-FDK) approaches quadratic convergence, which means it will need
fewer iterations to converge than a first-order scheme such as ADAM [52], which is often used for
training DNNs. Considering these two observations, we expect the training time of the NN-FDK
algorithm to be lower than the training time of the DNNs.

4. Experimental Setup

We carried out a range of experiments to assess the performance of the NN-FDK algorithm with
respect to the goals formulated in Section 1 compared to several alternative methods. In this section,
we introduce the setup of these experiments. We describe the simulated data in Section 4.1 and the
experimental data in Section 4.2. In Section 4.3, we discuss the specific network structure for the
NN-FDK algorithm and the training parameters used. Finally, we give the quantitative measures we
use to compare the reconstruction in Section 4.4.

J. Imaging 2020, 6, 135 9 of 26

4.1. Simulated Data

We consider two types of phantom families for the simulated data experiments: the Fourshape
phantom family and the Random Defrise phantom family. Examples are shown in Figure 2a,b, respectively.
The Fourshape phantom family contains three random occurrences of each of four types of objects:
an ellipse, a rectangle, a Gaussian blob and a Siemens star. For evaluation and visualization of the
reconstructions, we fixed one realization that clearly shows at least one of all the four objects and we
will refer to this phantom as the Fourshape test phantom. The Random Defrise phantom family is a
slight adaptation of the phantom introduced in [53], which is a common phantom for assessing the
influence of imaging artifacts due to the cone angle. Here, we vary the intensities, orientations and
sizes of the disks making sure they do not overlap. Again, we define a test phantom for evaluation and
visualization, which is in this case, the standard Defrise phantom without alternating intensities (right in
Figure 2b). To simulate realistic settings, we scale the phantoms to fit inside a 10 cm cube, and use an
attenuation coefficient of µ = 0.22 cm−1, approximating that of various common plastics at 40 keV [54].
These phantoms are defined through geometric parameters, and can, therefore, be generated for any
desired N. For our experiments, we will take N = 1024. Details about how we generate the data are
given in Appendix A.1.

x

y

y

z

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(a)

y

z

y

z

0.00

0.05

0.10

0.15

0.20

0.25

(b)

Figure 2. Examples simulated data. (a) Slices, (Left) z = 0, (Right) x = 0, of the Fourshape test
phantom. This phantom is designed such that at least one of all objects can clearly be observed in the
slices. (b) The x = 0 slice for a Random Defrise phantom (Left) and the standard Defrise phantom
without alternating intensities from [53] (Right).

J. Imaging 2020, 6, 135 10 of 26

To compute a high-quality reconstruction xHQ that can be used as target for training (recall
Section 3.3), we consider a simulated dataset with Na = 1500 projection angles, low noise (I0 = 220

emitted photon count) and cone angle of 0.6 degrees and reconstruct this problem with the standard
FDK algorithm using a Hann filter [9].

4.2. Experimental Data

For experimental data, we consider a set of CT scans that were recorded using the custom-built
and highly flexible FleX-ray CT scanner, developed by XRE NV and located at CWI [55]. This scanner
has a flat panel detector with 972× 768 pixels and a physical size of 145.34× 114.82 mm. This set
of 42 scans was set up to create high-noise reconstruction problems and low-noise reconstruction
problems with a low number of projection angles.

We acquired high-dose (low noise) and low-dose (high noise) scans of 21 walnuts. The datasets
contain 500 equidistantly spaced projections over a full circle. The distance from the center of rotation
to the detector was set to 376 mm and the distance from the source to the center of rotation was set to
463 mm. The scans were performed with a tube voltage of 70 kV. The high-dose scan was collected
with a tube power of 45 W and an exposure time of 500 ms per projection. The low-dose scan was
collected with a tube power of 20 W and an exposure time of 100 ms per projection. To create a low
noise reconstruction problem with a low number of projection angles, we considered the high-dose
scan but only took every 16-th projection angle. As high-quality reference reconstructions, we used
SIRT+ reconstructions with 300 iterations (SIRT+

300) of the high-dose scans with all available projection
angles (Na = 500). We will refer to these reconstructions as the gold standard reconstruction and we
show such a reconstruction in Figure 3. These datasets are available at Zenodo [56].

x

y

y

z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3. The z = 0 (Left) and y = 0 (Right) slice of the gold standard reconstruction of the high-dose
dataset of the 21st walnut with full number of projection angles. The projection data are acquired using
the FleX-ray scanner located at the CWI [55]. The horizontal line artifacts visible in the right figure are
due to imperfections in the projection data and not due to the reconstruction process.

4.3. Parameter Settings NN-FDK

In our initial experiments, we found that taking more FDK-perceptrons improved the accuracy
of the networks, at the cost of increasing the training and reconstruction time. More specifically,
the reconstruction time scales linearly with the number of perceptrons, whereas the reconstruction
accuracy only shows marginal improvements for more than Nh= 4 FDK-perceptrons, which is similar
to the findings in [33]. Therefore, we fix the number of FDK-perceptrons at Nh= 4, and denote the
resulting network structure by NN-FDK4.

We found that, similar to the findings in [33], taking NT = 106 voxels for training and NV = 106

for validation is sufficient for training an NN-FDK network. As test data, we randomly generate
20 datasets for simulated data. For the experimental data, we use all datasets that were not used in the
training process.

J. Imaging 2020, 6, 135 11 of 26

The network structures and training procedure used for the U-nets and MSD-nets are discussed
in Appendix A.2.

4.4. Quantitative Measures

To quantify the accuracy of the reconstructions, we consider two measures, the test set error (TSE)
and the structural similarity index (SSIM). These measures compare the reconstructed image xr to a
high-quality reconstruction xHQ on the ROI (as discussed in Section 3.3).

The TSE is the average loss (as defined in (12) in Section 3.3) of the test set, where the test set is all
the voxels defined in the ROI of xHQ:

TSE(xr, xHQ) =
1

NROI
L(IROI(xHQ), θ), (18)

= 1
2NROI

‖IROI(xHQ − xr)‖2
2 . (19)

with IROI : RN3 → RN3
the masking function for the ROI and NROI the number of voxels in the ROI.

The SSIM [57] is implemented based on the scikit-image 0.13.1 [58] package, where all the
constants are set to default and the filter is uniform, with a width of 19 pixels.

5. Results and Discussion

5.1. Scalability

5.1.1. Memory Scaling

The required memory to store all intermediate images for a forward pass of a 2D or a 3D U-net
and MSD-net as a function of the input image size is shown in Figure 4. Considering that CT imaging
problems typically range from 256× 256× 256 up to 4096× 4096× 4096, we conclude from these
figures that full 3D networks do not fit into GPU memory for higher resolutions and that even for 2D
U-nets, not all resolutions fit into the GPU. As a forward pass of the NN-FDK algorithm requires only
one additional reconstruction volume compared to the FDK algorithm, the memory requirements of the
NN-FDK algorithm are roughly two-times the memory required by the FDK algorithm. (Technically,
a forward pass of the NN-FDK algorithm can be done for every voxel separately; however, for the sake
of comparison we assume a forward pass is for a full reconstruction volume.)

0 2000 4000 6000 8000
Number of rows/cols of the input image

0

5

10

15

20

25

30

M
em

or
y

(G
B

)

2D network requirements

0 200 400
Number of rows/cols/layers of the input image

0

5

10

15

20

25

30

M
em

or
y

(G
B

)

3D network requirements

MSD

U-net

GTX 1050Ti

GTX 1060

GTX 1080Ti

TITAN RTX

Figure 4. The required memory to store all intermediate images for applying a 2D and 3D U-net and
MSD-net as a function of the input image size.

J. Imaging 2020, 6, 135 12 of 26

5.1.2. Training Time

In Figure 5, we compare the training processes by plotting the progress of the network training
(measured by the TSE) as a function of the number of voxels that the network has seen during training.
We see that the NN-FDK has seen 1.1× 108 voxels when it converges to TSE = 1.4× 10−5, whereas,
MSD-net and U-net have seen 5.1× 108 voxels and 3.2× 109 voxels, respectively, at the point they first
achieve a similar TSE. Important to note is that both U-net and MSD-net are not yet converged when
they match the TSE of NN-FDK, and in general, the DNNs achieve lower TSEs than NN-FDK.

0.00 0.25 0.50 0.75 1.00
#voxels seen in training ×109

10−7

10−6

10−5

10−4

10−3

T
S

E

10
ep

oc
hs

N
N

-F
D

K

10
0

ep
oc

hs
N

N
-F

D
K

1
fu

ll
3D

da
ta

se
t

Linear scaling

NN-FDK

MSD-net

U-net

107 109 1011

#voxels seen in training

10−7

10−6

10−5

10−4

10−3

T
S

E

1
ep

oc
h

N
N

-F
D

K

10
ep

oc
hs

N
N

-F
D

K

10
0

ep
oc

hs
N

N
-F

D
K

1
fu

ll
3D

da
ta

se
t

1
ep

oc
h

D
N

N

5
ep

oc
hs

D
N

N

Logarithmic scaling

Figure 5. The test set error (TSE) as a function of the number of voxels the training process has seen.
We report the lowest TSE until that point. The networks are trained on randomly generated Fourshape
phantoms with size N = 1024, Na = 32 projection angles and no noise. (Left) Linear scaling in the
number of voxels ranging from 1 epoch for the NN-FDK (106 voxels), to one full 3D dataset (109 voxels).
(Right) Logarithmic scaling in the number of voxels. Ranging from 1 epoch for the NN-FDK network
(106 voxels) to 5 epochs for a DNN (5× 1010 voxels).

In Table 2, we show various timings and properties with respect to the training process.
These timings are recorded using one Nvidia GeForce GTX 1080Ti with 11GB memory. We define a
converged training process as 100 epochs without improvement on the validation set error and the
number of epochs to converge as the epoch with the lowest validation set error during a converged
training process. From these results, we see that the size of the training problem influences the time per
epoch as an NN-FDK epoch is sub-second and the time per epoch for DNNs is in the range of hours.

In practice, we observed that after 2 days of training for the DNNs, any additional training only
achieved marginal improvements. Therefore, in the following experiments, we train all DNNs for
2 days with one Nvidia GeForce GTX 1080Ti GPU, unless mentioned otherwise.

Table 2. Timings and properties of the considered training processes. We define a converged training
process as 100 epochs without improvement on the validation set error. The number of epochs to
converge is, therefore, the epochs computed of such a process minus 100. The training was performed
using one Nvidia GeForce GTX 1080Ti GPU (11 GB).

NN-FDK4 MSD-net U-net

Voxels seen in one epoch 1× 106 1.1× 1010 1.1× 1010

Time per epoch 0.1336 s 0.95 h 2.36 h
Time to converge 28 s ±10 days ±14 days
Epochs to converge 110 128 42
Epochs in 2 days - 45 18

Training process.

J. Imaging 2020, 6, 135 13 of 26

5.1.3. Reconstruction Time

We measured the average reconstruction times and corresponding standard deviation over
120 reconstructions with resolution N3 = 10243 and Na = 360 projection angles. These reconstructions
are computed using one Nvidia GeForce GTX 1080Ti with 11 GB memory. The results are shown
in Table 3. The subscript 200 for SIRT+ denotes the number of iterations that were used for the
reconstruction. We define the reconstruction time as the time it takes to compute the full 3D volume.
This means for U-net and MSD-net, an FDK reconstruction needs to be computed and the network
needs to be applied N = 1024 times to a 2D slice. Although every application can be done within a
second (U-net ≈ 0.3 s, MSD-net ≈ 0.7 s) this leads to long reconstruction times.

Table 3. Average and standard deviation of the reconstruction times (in seconds) computed over
120 reconstruction problems with N = 1024 and Na = 360 projection angles. These reconstructions are
computed using one Nvidia GeForce GTX 1080Ti GPU (11 GB).

FDK SIRT+
200 NN-FDK4 U-net MSD-net

28 ± 8 3225 ± 916 76 ± 8 382 ± 69 809 ± 86

Reconstruction times.

5.2. Reconstruction Accuracy for Simulated Data

For evaluating the reconstruction accuracy using simulated data, we consider 16 cases: 6 different
noise levels, 5 different numbers of projection angles and 5 different cone angles. For each case,
an NN-FDK, MSD-net and U-net network was trained. For the training process of NN-FDK, we
used NT = 106 training voxels and NV = 106 validation voxels from NTD = 10 and NVD = 5
datasets, respectively. For U-net and MSD-net, we took the same datasets for training and validation
(10 for training and 5 for validation), and used all voxels in these datasets for the training process.
The NN-FDK networks were trained till convergence and the DNNs were trained for 48 h. Note that
in a few cases, we had to retrain the DNNs because of inconsistent results (i.e., cases with more
information achieving a lower reconstruction accuracy), possibly because they got stuck in local
minima of the loss function.

In Figure 6, we show the average and standard deviation of the TSE and the SSIM for the
considered cases. The subscript HN for the FDK algorithm indicates that the Hann filter was used
to compute the reconstruction. We observe that U-net and MSD-net achieve the most accurate
results and that NN-FDK and SIRT+ closely follow. The FDK algorithm is lowest in all categories.
Between NN-FDK and SIRT+, we see that NN-FDK performs best for the noisy reconstruction problems
and SIRT+ achieves better results for the reconstruction problems without noise. We visualize the
noise for the lowest and highest I0 in Figure 7 by showing a line profile through the center of the z = 0
slice. Here, we see that for the noisiest problems, the amplitude of the noise can be as high as the
maximum value of the phantom. In Figure 8, we show 2D slices of reconstructions of the test phantoms
for the three types of reconstruction problems. In all cases, we still observe reconstruction artifacts,
but comparing these to the baseline FDK reconstructions, the majority is removed or suppressed.

J. Imaging 2020, 6, 135 14 of 26

20 40 60 80 100 120

Na

10−5

10−4

10−3

T
S

E

Test Set Error

20 40 60 80 100 120

Na

0.2

0.4

0.6

0.8

1.0

S
S

IM

Structural Similarity

FDKHN

NN-FDK4

MSD-net

U-net

SIRT+
200

(a)

103

I0

10−5

10−4

10−3

10−2

T
S

E

Test Set Error

103 104

I0

0.0

0.2

0.4

0.6

0.8

1.0

S
S

IM

Structural Similarity

FDKHN

NN-FDK4

MSD-net

U-net

SIRT+
200

(b)

5 10 15 20 25 30

Cone-angle (degrees)

10−4

10−3

T
S

E

Test Set Error

10 20 30

Cone-angle (degrees)

0.4

0.6

0.8

1.0

S
S

IM

Structural Similarity

FDKHN

NN-FDK4

MSD-net

U-net

SIRT+
200

(c)

Figure 6. The average and standard deviation of the TSE andstructural similarity index (SSIM).
These results are discussed in Section 5.2. For each number of projection angles, the noise level,
cone angle and training scenario of one specific network are trained and used to evaluate the 20
reconstruction problems. The NN-FDK reconstruction time is 4-10 times lower than U-net, MSD-net
and approximately 40 times lower than SIRT+

200. (a) The average and standard deviation of the TSE and
SSIM as a function of number of projection angles Na computed over 20 randomly generated phantoms
Fourshape family. (b) The average and standard deviation of the TSE and SSIM as a function of the
emitted photon count I0 computed over 20 randomly generated phantoms of the Fourshape family.
(c) The average and standard deviation of the average TSE and SSIM as a function of the cone angle
computed over 20 randomly generated phantoms of the Defrise family.

J. Imaging 2020, 6, 135 15 of 26

0 200 400 600 800 1000
voxel position

−0.4

−0.2

0.0

0.2

0.4

vo
xe

l
va

lu
e

Line profile of the Fourshape test phantom

FDKHN , I0 = 256

FDKHN , I0 = 8192

Ground truth

Figure 7. Line profile through the center of the z = 0 slice of the Fourshape test phantom. We show the
ground truth profile, the profile of the FDK reconstruction with lowest emitted photon count I0 = 256,
and the profile of the FDK reconstruction with the highest emitted photon count I0 = 8196.

I 0
=

10
24

FDKHN SIRT+
200 NN-FDK4 MSD-net U-net

N
a

=
32

co
ne

an
gl

e=
11
.5
◦

Figure 8. Two-dimensional slices of the reconstructions for the considered reconstruction methods.
(Top) Slice x = 0 of the Fourshape test phantom reconstruction problem with Na = 360 projection angles
and I0 = 1024 emitted photon count. (Middle) Slice z = 0 of the Fourshape test phantom reconstruction
problem with Na = 32 projection angles. (Bottom) Slice x = 0 of the Defrise reconstruction problem
with Na = 360 projection angles and a cone angle of 11.5 degrees.

5.3. Reconstruction Accuracy for Experimental Data

In this section, we use the datasets discussed in Section 4.2 to assess the reconstruction accuracy
of experimental data. In a similar fashion as for the simulated data, we trained a network for the
low-dose reconstruction problem and a network for the high-dose reconstruction problem with Na = 32
projection angles with the notable exception that U-net and MSD-net were trained till convergence.
The results are presented in Table 4.

J. Imaging 2020, 6, 135 16 of 26

Comparing the results to the simulated data experiments, we see that SIRT+ performs worse
on the experimental data, even with the additional regularization of early stopping. This is most
likely due to the high-dose datasets still containing noise, whereas this was completely absent in
the simulated data experiments. These differences are illustrated in Figure 9, where 2D slices of the
reconstructions for the high-dose reconstruction problem with Na = 32 projection angles are shown.

Table 4. Average and standard deviation of the quantitative measures computed over 6 walnut datasets.
The high-dose low projection angle reconstruction problem has Na = 32 projection angles, the low-dose
reconstruction problem has Na = 500 projection angles. For the high-dose data, we used 200 iterations
of SIRT, and for the low-dose data, we used 20 iterations of SIRT. The NN-FDK reconstruction time is
4-10 times lower than U-net, MSD-net and SIRT+

20, and approximately 40 times lower than SIRT+
200.

High-Dose, Low Number
of Projection Angles Low-Dose

Method TSE SSIM TSE SSIM

FDKHN 5.54 ± 3.43 × 10−3 0.224 ± 0.076 1.40 ± 0.05 × 10−3 0.334 ± 0.104
SIRT+

200/20 9.94 ± 0.15 × 10−4 0.603 ± 0.087 1.92 ± 0.08 × 10−3 0.584 ± 0.083
NN-FDK4 8.03 ± 1.39 × 10−4 0.946 ± 0.010 1.14 ± 0.23 × 10−4 0.965 ± 0.012
U-net 4.10 ± 1.06 × 10−4 0.964 ± 0.009 1.02 ± 0.45 × 10−4 0.980 ± 0.006
MSD-net 4.23 ± 0.97 × 10−4 0.964 ± 0.009 7.82 ± 2.86 × 10−5 0.980 ± 0.007

Experimental data.

x

y

y

z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

x

y

y

z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

x

y

y

z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c)

x

y

y

z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d)

Figure 9. Slices z = 0 and x = 0 of several reconstruction methods of the high-dose dataset of the 21 st
walnut with 32 projection angles. (a) FDKHN. (b) SIRT+

200 reconstruction. (c) NN-FDK4 reconstruction.
(d) MSD-net reconstruction.

5.4. Segmentation Experiment for Experimental Data

To assess the performance of the different reconstruction approaches in a segmentation task,
we focus here on the segmentation of the shell and kernel of walnuts, based on our experimental
CT data. The review [59] provides an overview of segmentation problems in walnut imaging,
and their relevance. For segmenting the 3D volume after the reconstruction, we used a deterministic
segmentation algorithm that combines thresholding, the watershed algorithm and prior knowledge

J. Imaging 2020, 6, 135 17 of 26

of the scanned objects. Details of this method are discussed in Appendix A.4. For the reference
segmentation, we apply this algorithm to the gold standard reconstruction.

For determining the accuracy of the segmentation of an object—i.e., shell, empty space and kernel
of the walnut—we consider three metrics: volume error, mislabeled voxels and the Dice coefficient [60].
We define a segmentation S as a reconstruction volume with value 1 if the voxel is in the object (shell,
kernel or empty space) and 0 if outside the object. Furthermore, we define the norm of a segmentation
as the sum: |S| = ∑N3

i (S)i. Using this notation, we can compute the measures in the following manner:

Verr =
|Srec|−|SGS|
|SGS| , MLerr =

|Srec−SGS|
|SGS| , DC = 2|Srec∩SGS|

|Srec|+|SGS| , (20)

with GS denoting the gold standard reconstruction.
In Table 5, we show the results for computing these metrics on the 6 walnuts not considered in the

training process. We observe that MSD-net performs best in segmenting the shell and U-net performs
best at segmenting the empty space and kernel and NN-FDK is close to both DNNs and in some
cases even better than MSD-net for segmenting the empty space and kernel. Comparing NN-FDK to
standard FDK, we observe a significant improvement.

Table 5. The average and standard deviation of the three metrics computed over the 6 low-dose
walnut datasets with Na = 500 projection angles. The metrics are computed using (20). The NN-FDK
reconstruction time is 4-10 times lower than U-net, MSD-net and approximately 40 times lower
than SIRT+

200.

Method Shell Empty Space Kernel

Volume errors

FDKHN 0.127 ± 0.078 0.146 ± 0.091 0.128 ± 0.092
SIRT+

200 0.082 ± 0.047 0.104 ± 0.078 0.050 ± 0.074
NN-FDK4 0.068 ± 0.035 0.045 ± 0.035 0.029 ± 0.032
U-net 0.055 ± 0.019 0.029 ± 0.017 0.012 ± 0.016
MSD-net 0.028 ± 0.010 0.059 ± 0.075 0.035 ± 0.050

Mislabeled voxels

FDKHN 0.168 ± 0.087 0.190 ± 0.98 0.144 ± 0.081
SIRT+

200 0.133 ± 0.026 0.182 ± 0.118 0.101 ± 0.048
NN-FDK4 0.103 ± 0.026 0.087 ± 0.023 0.072 ± 0.018
U-net 0.092 ± 0.028 0.073 ± 0.024 0.059 ± 0.019
MSD-net 0.086 ± 0.038 0.116 ± 0.094 0.061 ± 0.039

Dice coefficient

FDKHN 0.922 ± 0.036 0.895 ± 0.061 0.934 ± 0.033
SIRT+

200 0.934 ± 0.016 0.908 ± 0.061 0.947 ± 0.028
NN-FDK4 0.951 ± 0.012 0.955 ± 0.013 0.964 ± 0.008
U-net 0.955 ± 0.013 0.963 ± 0.012 0.971 ± 0.010
MSD-net 0.957 ± 0.018 0.939 ± 0.055 0.971 ± 0.018

Segmentation errors.

5.5. Data Requirements

To test the influence of the amount of training data on the reconstruction quality, we performed
an experiment with three different training scenarios:

• Scenario 1. One dataset available. Here, we take the training and validation data from the same
dataset.

• Scenario 2. Two datasets available. Here, we take the training and validation data from the
separate datasets.

J. Imaging 2020, 6, 135 18 of 26

• Scenario 3. Fifteen datasets available. Again, the training and validation data are picked
from separate datasets, but now the training and validation pairs come from several datasets,
specifically 10 training datasets (NTD = 10) and 5 validation datasets (NVD = 5). This is the
scenario used in the previous experiments.

We fix the number of voxels used for training and validation at NT = 106 and NV = 106 for
all scenarios. For comparison, we trained a U-net and a MSD-net network with the same training
scenarios, with the exception that all voxels from the datasets are used. For training scenario 1,
the slices are divided into a training and a validation set. More specifically, every fourth slice is used
for validation.

We performed this experiment for two simulated data problems, a high noise level (emitted
photon count I0 = 256) and a large cone angle (29.3 degrees), and the two experimental data problems.
For the sake of brevity, we show only the results for the high-noise simulated data reconstruction
problem (Table 6) and the high-noise experimental data reconstruction problem (Table 7). The results
for the other reconstruction problems are given in Appendix C. Comparing quantitative measures
between the different scenarios, we see that the reconstruction accuracy improves as more data is used
for the simulated data experiment, but remains about the same for the experimental data experiment.
This can be explained by the variation in the objects used in the reconstruction problems. Recall that
the Fourshape phantom family has a large variety in its phantoms, i.e., three instances of four randomly
generated objects, and the variety within the walnut datasets is small, i.e., similar shapes, sizes and
structures. This indicates that if objects are similar, one training dataset may already be sufficient to
train networks that achieve a high reconstruction accuracy.

Note that although the training scenarios for NN-FDK and the DNNs use the same number of
datasets, the number of voxels considered for training the NN-FDK network is constant over all three
scenarios and is several orders of magnitude lower than the number of voxels considered for training
the DNNs. This opens up future possibilities for reducing the training data requirements to only need
a high-quality reconstruction of a certain region of interest.

Table 6. Average and standard deviation of the quantitative measures computed over 20 Fourshape
phantoms for varying training scenarios. The reconstruction problems have an emitted photon count
of I0 = 256 and Na = 360 projection angles. The NN-FDK reconstruction time is 4-10 times lower than
U-net and MSD-net.

TSE

Method 1 Dataset 2 Datasets 15 Datasets

NN-FDK4 4.97 ± 4.68 × 10−5 4.19 ± 3.60 × 10−5 2.51 ± 1.14 × 10−5

U-net 1.06 ± 1.36 × 10−5 2.45 ± 2.87 × 10−5 8.06 ± 3.63 × 10−6

MSD-net 1.12 ± 0.41 × 10−5 1.12 ± 0.40 × 10−5 7.94 ± 3.16 × 10−6

SSIM

NN-FDK4 0.831 ± 0.065 0.844 ± 0.065 0.884 ± 0.030

U-net 0.884 ± 0.075 0.932 ± 0.050 0.979 ± 0.009

MSD-net 0.961 ± 0.013 0.962 ± 0.013 0.974 ± 0.008

Simulated data, high noise.

J. Imaging 2020, 6, 135 19 of 26

Table 7. Average and standard deviation of the quantitative measures computed over 6 walnuts
for various training scenarios. The datasets are low-dose and have Na = 500 projection angles.
The NN-FDK reconstruction time is 4-10 times lower than U-net and MSD-net.

TSE

Method 1 Dataset 2 Datasets 15 Datasets

NN-FDK4 1.16 ± 0.25 × 10−4 1.23 ± 0.25× 10−4 1.14 ± 0.23× 10−4

U-net 1.27 ± 0.38× 10−4 1.23 ± 0.35× 10−4 1.02 ± 0.45× 10−4

MSD-net 1.28 ± 0.41× 10−4 1.16 ± 0.35× 10−4 7.82 ± 2.86× 10−5

SSIM

NN-FDK4 0.973 ± 0.009 0.968 ± 0.011 0.965 ± 0.012

U-net 0.979 ± 0.008 0.978 ± 0.008 0.980 ± 0.006

MSD-net 0.979 ± 0.008 0.979 ± 0.008 0.980 ± 0.007

Experimental data, low-dose.

6. Summary and Conclusions

We have proposed the Neural Network FDK (NN-FDK) algorithm, a reconstruction algorithm
for the circular cone-beam (CCB) Computed Tomography (CT) geometry with a machine learning
component. The machine learning component of the algorithm is designed to learn a set of FDK filters
and to combine the FDK reconstructions done with these filters. This leads to a computationally efficient
reconstruction algorithm, since one only needs to compute and combine the FDK reconstructions for
this learned set of filters. Due to parametrization of the learned filters, the NN-FDK network has a low
number of trainable parameters (<100) and can be trained efficiently with the Levenberg–Marquardt
algorithm with approximate quadratic convergence rate.

We compared the NN-FDK algorithm to SIRT with a nonnegativity constraint (SIRT+),
the standard FDK algorithm and two deep neural networks (DNNs), namely a 2D U-net and a
2D MSD-net applied in a slice-by-slice fashion to a 3D volume. We have shown that the NN-FDK
algorithm has the lowest reconstruction time after the standard FDK algorithm. We have also shown
that the NN-FDK algorithm achieves a reconstruction accuracy that is similar to that of SIRT+ for
simulated data and a higher accuracy than that of SIRT+ for experimental data. The DNNs achieved
the highest reconstruction accuracy, but training those networks took between 2 days (1 training
and validation dataset) and 2 weeks (15 training and validation datasets), whereas all the NN-FDK
networks were trained within 1 minute.

To conclude, the NN-FDK algorithm is a computationally efficient reconstruction algorithm that
can reconstruct CCB CT reconstruction problems with high-noise, low projection angles or large
cone angles accurately. The training process is efficient and requires a low amount of training data,
making it suitable for application to a broad spectrum of large scale (up to 4096 × 4096 × 4096)
reconstruction problems. Specifically, the NN-FDK algorithm can be used to improve image quality in
high-throughput CT scanning settings, where FDK is currently used to keep pace with the acquisition
speed using readily available computational resources.

Author Contributions: Conceptualization, M.J.L., D.M.P., W.J.P. and K.J.B.; methodology, M.J.L. and D.M.P.;
software, M.J.L. and W.J.P.; validation, M.J.L.; formal analysis, M.J.L.; investigation, M.J.L.; data curation,
M.J.L.; writing—original draft preparation, M.J.L.; writing—review and editing, M.J.L., D.M.P., W.J.P., and K.J.B.;
visualization, M.J.L.; supervision, D.M.P., W.J.P., and K.J.B.; funding acquisition, D.M.P. and K.J.B. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge financial support from the Netherlands Organisation for Scientific Research
(NWO), project numbers 639.073.506 and 016.Veni.192.235.

Acknowledgments: The authors acknowledge XRE NV for their role in the FleX-ray collaboration. We thank
Sophia Bethany Coban for her support in acquiring the experimental data.

J. Imaging 2020, 6, 135 20 of 26

Conflicts of Interest: The authors declare no conflict of interest.The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

Abbreviations

The following abbreviations are used in this manuscript:

CCB Circular cone-beam
CT Computed Tomography
FDK Feldkamp–Davis–Kress
NN-FDK Neural Network Feldkamp–Davis–Kress
FBP Filtered backprojection
DNN Deep neural network
SIRT Simultaneous Iterative Reconstruction Technique
MSD-net Mixed-scale dense network
U-net U-network
LMA Levenberg–Marquardt algorithm

Appendix A. Implementation

Appendix A.1. Data Generation

For our simulated data experiments, we take N = 1024, which means that reconstructions
and reference images are defined on a 10243 equidistant voxel grid, and the projection data on a
10242 equidistant detector grid per projection angle. However, to avoid using the same operator
for reconstructions as for the data generation, we generate the input data at a higher resolution.
More specifically, we generate a phantom at N = 1536, forward project this phantom to the data
space with size Na × 15362 and apply a bilinear interpolation per projection angle to arrive at a 10242

detector grid, resulting in input data with the desired resolution Na × 10242. We set the source radius
to 10 times the physical size of the phantom, resulting in a cone angle of 5.7 degrees. To generate
noise, we compute a noise-free photon count I from clean projection data yc and use that to generate a
Poisson distributed photon count from which we compute y:

I = I0e−yc , Inoise ∼ Pois(I), y = − log
(

Inoise

I0

)
, (A1)

with I0 the emitted photon count. Higher I0 implies a higher dose and, therefore, less noise in the data.

Appendix A.2. Deep Neural Networks

Application strategy: We train 2D DNNs to remove artifacts from 2D slices of an FDK
reconstruction. We train one network that handles all slices in the reconstructions.

Training DNNs: We train the DNNs with ADAM [52] and stop training after 48 h of training
on an Nvidia GeForce GTX 1080Ti GPU, the network with the lowest validation set error during this
training process will be used for the reconstructions.

U-net and MSD-net structures: For U-net, we will take four up and down layers with 3 × 3
convolutions, 2 × 2 max-pooling and 2 × 2 up-convolutions as presented in [31]. For the MSD-nets,
we take 100 layers with one input and one output layer and the dilations, as suggested in [28].

Appendix A.3. Code-Base

We implemented the NN-FDK framework using Python 3.6.5 and Numpy 1.14.5 [61]. For the
parameter learning, we used the Levenberg–Marquardt algorithm implementation from [33].
The reconstruction algorithm is implemented using ODL [62], the ASTRA-toolbox [63], PyFFTW [64]

J. Imaging 2020, 6, 135 21 of 26

and the exponential binning framework for filters from [23]. For performance reasons, the simulated
phantoms are generated through C++ using Cython [65].

For the evaluation of U-nets, we took the PyTorch [66] implementation used in [67]. The MSD-nets
are implemented using the package published with [26].

All the code related to this paper can be found on Github [68].

Appendix A.4. Segmentation Algorithm

This algorithm consists of several steps:

1. Apply a Gaussian filter to the reconstruction.
2. Compute a histogram of the filtered reconstruction and determine the peaks relating to the

background, kernel and shell.
3. Determine the shell and kernel segmentations using a threshold based on the found peaks.
4. Apply the watershed algorithm on the shell segmentation. This gives the total volume inside

the walnut.
5. Remove the kernel from the total volume inside the walnut to attain the empty space segmentation.

Further details about this implementation can be found on our Github [68].

Appendix B. Levenberg–Marquardt Algorithm

Given the learning problem (12), the update rule for the Levenberg–Marquardt algorithm
(LMA) ([50,51]) is given by:

θi+1 = θi + ti, (A2)

with ti the update vector. This is computed by solving the following equation for ti

(
JT
i Ji + λi I

)
ti = −∂L

∂θ
(θi, T) = −JT

i

NT

∑
j=1

(
Oj −Nθ(Zj)

)
(A3)

where λi > 0 is the step parameter and Ji the m × n Jacobian matrix of Nθi (Z) with respect to θi,
with Z the vector containing all inputs from the training set T. We can solve (A3) using a Cholesky
decomposition. (JT

i Ji is positive semi-definite and λi > 0; therefore, the left-hand side of (A3) is
positive definite.)

To ensure convergence, only updates that improve the training error are accepted, i.e., if the
following is true:

L(θi, T) > L(θi + ti, T), (A4)

If this is not the case, we change the step parameter λi to aλi with a > 1 and compute a new
update vector ti. When an update is accepted, we change the step parameter to λi+1 = λi/a.

We use two stopping criteria for the LMA. Firstly, we stop if we cannot find a suitable θi+1, using
several indicators for this:

• The norm of the gradient ∂L
∂θ (θ

i) is too small
• The step size λi is too big
• After Nup rejected updates.

The second stopping criterion checks whether the parameters θi improve the validation set
error. More specifically, we terminate the LMA when the validation set error has not improved for
Nval iterations.

J. Imaging 2020, 6, 135 22 of 26

In Algorithm A1, the LMA is summarized. The random initialization is done with the
Nguyen–Widrow initialization method [69]. For our experiments, we take Nup = 100, λ0 = 105,
a = 10 and Nval = 100.

Algorithm A1 Levenberg–Marquardt algorithm

1: Compute random initialization θ0 using [69]
2: repeat

3: Compute ti until we accept an update θi+1.
4: until Nup updates were rejected or

L(θi, V) did not improve Nval times or

‖ ∂L
∂θ (θ

i+1)‖ is too small or λi+1 is too big.
5: Set θ? equal to the θi with the lowest validation error.

Appendix C. Results Data Requirement Experiment

Results for simulated data with a large cone angle are shown in Table A1. Results for experimental
data with high-dose adn 32 projection angles are shown in Table A2.

Table A1. Average and standard deviation of the quantitative measures computed over 20 different
Defrise phantoms for various training scenarios. The reconstruction problems have a cone angle of
29.2 degrees and Na = 360 projection angles.

TSE

Method 1 Dataset 2 Datasets 15 Datasets

NN-FDK4 6.47 ± 1.19 × 10−4 4.70 ± 1.16× 10−4 4.82 ± 1.13 × 10−4

U-net 1.04 ± 0.27 × 10−4 1.02 ± 0.17 × 10−4 8.23 ± 0.85 × 10−5

MSD-net 2.44 ± 1.43 × 10−4 1.53 ± 0.17 × 10−44 6.52 ± 0.43 × 10−5

SSIM

NN-FDK4 0.825 ± 0.018 0.904 ± 0.011 0.910 ± 0.007

U-net 0.974 ± 0.015 0.971 ± 0.021 0.973 ± 0.010

MSD-net 0.954 ± 0.006 0.937 ± 0.004 0.966 ± 0.002

Simulated data, large cone angle.

Table A2. Average and standard deviation of the quantitative measures computed over the 6 datasets
for various training scenarios. These are the high-dose datasets from [56] with Na = 32 projection
angles. The best results are highlighted.

TSE

Method 1 Dataset 2 Datasets 15 Datasets

NN-FDK4 8.14 ± 1.45 × 10−4 8.68 ± 1.43 × 10−4 8.03 ± 1.39 × 10−4

U-net 7.56 ± 1.52 × 10−4 6.85 ± 1.56 × 10−4 4.10 ± 1.06 × 10−4

MSD-net 7.82 ± 0.41 × 10−4 6.51 ± 0.35 × 10−4 4.23 ± 0.97 × 10−4

SSIM

NN-FDK4 0.950 ± 0.010 0.948 ± 0.010 0.946 ± 0.011

U-net 0.955 ± 0.011 0.930 ± 0.023 0.964 ± 0.009

MSD-net 0.955 ± 0.010 0.947 ± 0.014 0.964 ± 0.009

Experimental data, high-dose, 32 projection angles.

J. Imaging 2020, 6, 135 23 of 26

References

1. Giudiceandrea, F.; Ursella, E.; Vicario, E. A high speed CT scanner for the sawmill industry. In Proceedings
of the 17th International Non Destructive Testing and Evaluation of Wood Symposium, Sopron, Hungary,
14–16 September 2011.

2. Dierick, M.; Van Loo, D.; Masschaele, B.; Van den Bulcke, J.; Van Acker, J.; Cnudde, V.; Van Hoorebeke, L.
Recent micro-CT scanner developments at UGCT. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact.
Mater. Atoms 2014, 324, 35–40. [CrossRef]

3. Bultreys, T.; Boone, M.A.; Boone, M.N.; De Schryver, T.; Masschaele, B.; Van Hoorebeke, L.; Cnudde, V.
Fast laboratory-based micro-computed tomography for pore-scale research: Illustrative experiments and
perspectives on the future. Adv. Water Resour. 2016, 95, 341–351. [CrossRef]

4. Ford, E.; Chang, J.; Mueller, K.; Sidhu, K.; Todor, D.; Mageras, G.; Yorke, E.; Ling, C.; Amols, H. Cone-beam
CT with megavoltage beams and an amorphous silicon electronic portal imaging device: Potential for
verification of radiotherapy of lung cancer. Med. Phys. 2002, 29, 2913–2924. [CrossRef]

5. Galicia, J.C.; Kawilarang, J.; Tawil, P.Z. Clinical Endodontic Applications of Cone Beam-Computed
Tomography in Modern Dental Practice. Open J. Stomatol. 2017, 7, 314. [CrossRef]

6. TESCAN. TESCAN UniTOM XL, Modular and Versatile High Resolution 3D X-ray Imaging.
Available online: https://www.tescan.com/product/micro-ct-for-materials-science-tescan-unitom-xl/
(accessed on 17 November 2020).

7. TESCAN. TESCAN DynaTOM, High Temporal Resolution 4D X-ray Imaging. Available online: https://www.
tescan.com/product/micro-ct-for-materials-science-tescan-dynatom/ (accessed on 17 November 2020).

8. Canon Medical Systems USA, Inc. Aquilon™ Precision, ULTRA High Resolution CT. Available online: https:
//us.medical.canon/products/computed-tomography/aquilion-precision/ (accessed on 17 November 2020).

9. Natterer, F. The Mathematics of Computerized Tomography; SIAM: Philadelphia, PA, USA, 2001. [CrossRef]
10. Feldkamp, L.; Davis, L.; Kress, J. Practical cone-beam algorithm. JOSA A 1984, 1, 612–619. [CrossRef]
11. Katsevich, A. A general scheme for constructing inversion algorithms for cone beam CT. Int. J. Math.

Math. Sci. 2003, 2003, 1305–1321. [CrossRef]
12. Pan, X.; Sidky, E.Y.; Vannier, M. Why do commercial CT scanners still employ traditional, filtered

back-projection for image reconstruction? Inverse Probl. 2009, 25, 123009. [CrossRef]
13. Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D

Nonlinear Phenom. 1992, 60, 259–268. [CrossRef]
14. Bredies, K.; Kunisch, K.; Pock, T. Total generalized variation. SIAM J. Imaging Sci. 2010, 3, 492–526.

[CrossRef]
15. Sidky, E.Y.; Pan, X. Image reconstruction in circular cone-beam computed tomography by constrained,

total-variation minimization. Phys. Med. Biol. 2008, 53, 4777. [CrossRef]
16. Jia, X.; Lou, Y.; Li, R.; Song, W.Y.; Jiang, S.B. GPU-based fast cone beam CT reconstruction from undersampled

and noisy projection data via total variation. Med. Phys. 2010, 37, 1757–1760. [CrossRef] [PubMed]
17. Niu, S.; Gao, Y.; Bian, Z.; Huang, J.; Chen, W.; Yu, G.; Liang, Z.; Ma, J. Sparse-view X-ray CT reconstruction

via total generalized variation regularization. Phys. Med. Biol. 2014, 59, 2997. [CrossRef] [PubMed]
18. Elbakri, I.A.; Fessler, J.A. Efficient and accurate likelihood for iterative image reconstruction in X-ray

computed tomography. In Proceedings of the Medical Imaging 2003: Image Processing, International Society
for Optics and Photonics, San Diego, CA, USA, 17–20 February 2003; Volume 5032, pp. 1839–1850.

19. Zeng, G.L. A filtered backprojection algorithm with characteristics of the iterative Landweber algorithm.
Med. Phys. 2012, 39, 603–607. [CrossRef] [PubMed]

20. Nielsen, T.; Hitziger, S.; Grass, M.; Iske, A. Filter calculation for X-ray tomosynthesis reconstruction.
Phys. Med. Biol. 2012, 57, 3915. [CrossRef] [PubMed]

21. Batenburg, K.J.; Plantagie, L. Fast approximation of algebraic reconstruction methods for tomography.
IEEE Trans. Image Process. 2012, 21, 3648–3658. [CrossRef] [PubMed]

22. Pelt, D.M.; Batenburg, K.J. Improving filtered backprojection reconstruction by data-dependent filtering.
IEEE Trans. Image Process. 2014, 23, 4750–4762. [CrossRef] [PubMed]

23. Lagerwerf, M.J.; Palenstijn, W.J.; Kohr, H.; Batenburg, K.J. Automated FDK-filter selection for Cone-beam
CT in research environments. IEEE Trans. Comput. Imaging 2020. [CrossRef]

http://dx.doi.org/10.1016/j.nimb.2013.10.051
http://dx.doi.org/10.1016/j.advwatres.2015.05.012
http://dx.doi.org/10.1118/1.1517614
http://dx.doi.org/10.4236/ojst.2017.77026
https://www.tescan.com/product/micro-ct-for-materials-science-tescan-unitom-xl/
https://www.tescan.com/product/micro-ct-for-materials-science-tescan-dynatom/
https://www.tescan.com/product/micro-ct-for-materials-science-tescan-dynatom/
https://us.medical.canon/products/computed-tomography/aquilion-precision/
https://us.medical.canon/products/computed-tomography/aquilion-precision/
http://dx.doi.org/10.1137/1.9780898719284
http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1155/S0161171203209315
http://dx.doi.org/10.1088/0266-5611/25/12/123009
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1137/090769521
http://dx.doi.org/10.1088/0031-9155/53/17/021
http://dx.doi.org/10.1118/1.3371691
http://www.ncbi.nlm.nih.gov/pubmed/20443497
http://dx.doi.org/10.1088/0031-9155/59/12/2997
http://www.ncbi.nlm.nih.gov/pubmed/24842150
http://dx.doi.org/10.1118/1.3673956
http://www.ncbi.nlm.nih.gov/pubmed/22320769
http://dx.doi.org/10.1088/0031-9155/57/12/3915
http://www.ncbi.nlm.nih.gov/pubmed/22643063
http://dx.doi.org/10.1109/TIP.2012.2197012
http://www.ncbi.nlm.nih.gov/pubmed/22562760
http://dx.doi.org/10.1109/TIP.2014.2341971
http://www.ncbi.nlm.nih.gov/pubmed/25069117
http://dx.doi.org/10.1109/TCI.2020.2971136

J. Imaging 2020, 6, 135 24 of 26

24. Kunze, H.; Haerer, W.; Orman, J.; Mertelmeier, T.; Stierstorfer, K. Filter determination for tomosynthesis
aided by iterative reconstruction techniques. In Proceedings of the 9th International Meeting on
Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Lindau, Germany,
9–13 July 2007; pp. 309–312.

25. Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep convolutional neural network for inverse problems in
imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [CrossRef]

26. Pelt, D.M.; Batenburg, K.J.; Sethian, J. Improving tomographic reconstruction from limited data using
mixed-scale dense convolutional neural networks. J. Imaging 2018, 4, 128. [CrossRef]

27. Kida, S.; Nakamoto, T.; Nakano, M.; Nawa, K.; Haga, A.; Kotoku, J.; Yamashita, H.; Nakagawa, K. Cone beam
computed tomography image quality improvement using a deep convolutional neural network. Cureus
2018, 10, e2548. [CrossRef] [PubMed]

28. Pelt, D.M.; Sethian, J.A. A mixed-scale dense convolutional neural network for image analysis. Proc. Natl.
Acad. Sci. USA 2018, 115, 254–259. [CrossRef] [PubMed]

29. Wang, G.; Ye, J.C.; Mueller, K.; Fessler, J.A. Image reconstruction is a new frontier of machine learning.
IEEE Trans. Med. Imaging 2018, 37, 1289–1296. [CrossRef] [PubMed]

30. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric
segmentation from sparse annotation. In Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; pp. 424–432.

31. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241.

32. Bishop, C.M. Pattern Recognition and Machine Learning; Springer Science+ Business Media: Berlin/Heidelberg,
Germany, 2006.

33. Pelt, D.M.; Batenburg, K.J. Fast tomographic reconstruction from limited data using artificial neural networks.
IEEE Trans. Image Process. 2013, 22, 5238–5251. [CrossRef] [PubMed]

34. Van der Sluis, A.; van der Vorst, H.A. SIRT-and CG-type methods for the iterative solution of sparse linear
least-squares problems. Linear Algebra Appl. 1990, 130, 257–303. [CrossRef]

35. Kang, E.; Min, J.; Ye, J.C. A Deep Convolutional Neural Network Using Directional Wavelets for Low-Dose
X-Ray CT Reconstruction. Med. Phys. 2017, 44, e360–e375. [CrossRef] [PubMed]

36. Adler, J.; Öktem, O. Solving ill-posed inverse problems using iterative deep neural networks. Inverse Probl.
2017, 33, 124007. [CrossRef]

37. Adler, J.; Öktem, O. Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 2018, 37, 1322–1332.
[CrossRef]

38. Kobler, E.; Klatzer, T.; Hammernik, K.; Pock, T. Variational networks: Connecting variational methods
and deep learning. In Proceedings of the German Conference on Pattern Recognition, Stuttgart, Germany,
9–12 October 2017; pp. 281–293.

39. Hammernik, K.; Klatzer, T.; Kobler, E.; Recht, M.P.; Sodickson, D.K.; Pock, T.; Knoll, F. Learning a variational
network for reconstruction of accelerated MRI data. Magn. Reson. Med. 2018, 79, 3055–3071. [CrossRef]

40. Venkatakrishnan, S.V.; Bouman, C.A.; Wohlberg, B. Plug-And-Play Priors for Model Based Reconstruction.
In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing, Austin, TX, USA,
3–5 December 2013. [CrossRef]

41. Romano, Y.; Elad, M.; Milanfar, P. The Little Engine That Could: Regularization By Denoising (RED). SIAM J.
Imaging Sci. 2017, 10, 1804–1844. [CrossRef]

42. Reehorst, E.T.; Schniter, P. Regularization By Denoising: Clarifications and New Interpretations. arXiv 2018,
arXiv:cs.CV/1806.02296.

43. Lunz, S.; Öktem, O.; Schönlieb, C.B. Adversarial regularizers in inverse problems. Adv. Neural Inf.
Process. Syst. 2018, 31, 8507–8516.

44. Mukherjee, S.; Dittmer, S.; Shumaylov, Z.; Lunz, S.; Öktem, O.; Schönlieb, C.B. Learned convex regularizers
for inverse problems. arXiv 2020, arXiv:2008.02839.

45. Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 640–651. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TIP.2017.2713099
http://dx.doi.org/10.3390/jimaging4110128
http://dx.doi.org/10.7759/cureus.2548
http://www.ncbi.nlm.nih.gov/pubmed/29963342
http://dx.doi.org/10.1073/pnas.1715832114
http://www.ncbi.nlm.nih.gov/pubmed/29279403
http://dx.doi.org/10.1109/TMI.2018.2833635
http://www.ncbi.nlm.nih.gov/pubmed/29870359
http://dx.doi.org/10.1109/TIP.2013.2283142
http://www.ncbi.nlm.nih.gov/pubmed/24108463
http://dx.doi.org/10.1016/0024-3795(90)90215-X
http://dx.doi.org/10.1002/mp.12344
http://www.ncbi.nlm.nih.gov/pubmed/29027238
http://dx.doi.org/10.1088/1361-6420/aa9581
http://dx.doi.org/10.1109/TMI.2018.2799231
http://dx.doi.org/10.1002/mrm.26977
http://dx.doi.org/10.1109/globalsip.2013.6737048
http://dx.doi.org/10.1137/16M1102884
http://dx.doi.org/10.1109/TPAMI.2016.2572683
http://www.ncbi.nlm.nih.gov/pubmed/27244717

J. Imaging 2020, 6, 135 25 of 26

46. Perone, C.S.; Calabrese, E.; Cohen-Adad, J. Spinal Cord Gray Matter Segmentation Using Deep Dilated
Convolutions. Sci. Rep. 2018, 8. [CrossRef] [PubMed]

47. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep
CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef]

48. Ye, J.C.; Han, Y.; Cha, E. Deep convolutional framelets: A general deep learning framework for inverse
problems. SIAM J. Imaging Sci. 2018, 11, 991–1048. [CrossRef]

49. Anthony, M.; Bartlett, P.L. Neural Network Learning: Theoretical Foundations; Cambridge University Press:
Cambridge, UK, 2009.

50. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math.
1944, 2, 164–168. [CrossRef]

51. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math.
1963, 11, 431–441. [CrossRef]

52. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
53. Kudo, H.; Noo, F.; Defrise, M. Cone-beam filtered-backprojection algorithm for truncated helical data.

Phys. Med. Biol. 1998, 43, 2885. [CrossRef]
54. Hubbell, J.H.; Seltzer, S.M. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients

1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest; Technical Report;
Ionizing Radiation Div., National Institution of Standards and Technology-PL: Gaithersburg, MD, USA, 1995.
[CrossRef]

55. Coban, S.B.; Lucka, F.; Palenstijn, W.J.; Van Loo, D.; Batenburg, K.J. Explorative Imaging and Its
Implementation at the FleX-ray Laboratory. J. Imaging 2020, 6, 18. [CrossRef]

56. Lagerwerf, M.J.; Coban, S.B.; Batenburg, K.J. High-resolution cone-beam scan of twenty-one walnuts with
two dosage levels. arXiv 2020, arXiv:2010.00421. [CrossRef]

57. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to
structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

58. van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.;
Yu, T.; The Scikit-Image Contributors. Scikit-image: Image processing in Python. PeerJ 2014, 2, e453.
[CrossRef]

59. Bernard, A.; Hamdy, S.; Le Corre, L.; Dirlewanger, E.; Lheureux, F. 3D characterization of walnut
morphological traits using X-ray computed tomography. Plant Methods 2020, 115, 16. [CrossRef]

60. Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302.
[CrossRef]

61. Walt, S.v.d.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation.
Comput. Sci. Eng. 2011, 13, 22–30. [CrossRef]

62. Adler, J.; Kohr, H.; Öktem, O. ODL 0.6.0; ODL, Inc.: Zeeland, MI, USA, 2017. [CrossRef]
63. Van Aarle, W.; Palenstijn, W.J.; Cant, J.; Janssens, E.; Bleichrodt, F.; Dabravolski, A.; De Beenhouwer, J.;

Batenburg, K.J.; Sijbers, J. Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express 2016,
24, 25129–25147. [CrossRef]

64. Frigo, M.; Johnson, S.G. The design and implementation of FFTW3. Proc. IEEE 2005, 93, 216–231. [CrossRef]
65. Behnel, S.; Bradshaw, R.; Citro, C.; Dalcin, L.; Seljebotn, D.; Smith, K. Cython: The Best of Both Worlds.

Comput. Sci. Eng. 2011, 13, 31–39. [CrossRef]
66. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;

Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in
Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E.,
Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035.

67. Hendriksen, A.A.; Pelt, D.M.; Palenstijn, W.J.; Coban, S.B.; Batenburg, K.J. On-the-Fly Machine Learning for
Improving Image Resolution in Tomography. Appl. Sci. 2019, 9, 2445. [CrossRef]

http://dx.doi.org/10.1038/s41598-018-24304-3
http://www.ncbi.nlm.nih.gov/pubmed/29654236
http://dx.doi.org/10.1109/TIP.2017.2662206
http://dx.doi.org/10.1137/17M1141771
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1088/0031-9155/43/10/016
http://dx.doi.org/10.6028/nist.ir.5632
http://dx.doi.org/10.3390/jimaging6040018
http://dx.doi.org/10.5281/zenodo.3763412
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.1186/s13007-020-00657-7
http://dx.doi.org/10.2307/1932409
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.5281/zenodo.556409.
http://dx.doi.org/10.1364/OE.24.025129
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.3390/app9122445

J. Imaging 2020, 6, 135 26 of 26

68. Lagerwerf, M.J. Neural Network FDK Algorithm. Available online: https://github.com/MJLagerwerf/nn_
fdk (accessed on 17 November 2020).

69. Nguyen, D.; Widrow, B. The truck backer-upper: An example of self-learning in neural networks. In Advanced
Neural Computers; Elsevier: Amsterdam, The Netherlands, 1990; pp. 11–19.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/MJLagerwerf/nn_fdk
https://github.com/MJLagerwerf/nn_fdk
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Method
	Preliminaries
	Reconstruction Problem
	FDK Algorithm & Filter Approximation
	Perceptron

	Reconstruction Algorithm & Network Design
	Training Process
	Training and Validation Data
	Learning Problem

	Method Characteristics & Comparison
	Computational Efficiency
	Number of Trainable Parameters
	Training Time

	Experimental Setup
	Simulated Data
	Experimental Data
	Parameter Settings NN-FDK
	Quantitative Measures

	Results and Discussion
	Scalability
	Memory Scaling
	Training Time
	Reconstruction Time

	Reconstruction Accuracy for Simulated Data
	Reconstruction Accuracy for Experimental Data
	Segmentation Experiment for Experimental Data
	Data Requirements

	Summary and Conclusions
	Implementation
	Data Generation
	Deep Neural Networks
	Code-Base
	Segmentation Algorithm

	Levenberg–Marquardt Algorithm
	Results Data Requirement Experiment
	References

