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Distinct kinetics of antibodies to 111 Plasmodium
falciparum proteins identifies markers of recent
malaria exposure
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Strengthening malaria surveillance is a key intervention needed to reduce the global disease

burden. Reliable serological markers of recent malaria exposure could improve current sur-

veillance methods by allowing for accurate estimates of infection incidence from limited data.

We studied the IgG antibody response to 111 Plasmodium falciparum proteins in 65 adult

travellers followed longitudinally after a natural malaria infection in complete absence of re-

exposure. We identified a combination of five serological markers that detect exposure within

the previous three months with >80% sensitivity and specificity. Using mathematical mod-

elling, we examined the antibody kinetics and determined that responses informative of

recent exposure display several distinct characteristics: rapid initial boosting and decay, less

inter-individual variation in response kinetics, and minimal persistence over time. Such ser-

ological exposure markers could be incorporated into routine malaria surveillance to guide

efforts for malaria control and elimination.
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Reducing the global burden of malaria with the aim of
achieving local or regional elimination will require sustained
efforts for malaria control1. This includes the implementa-

tion and the maintenance of high-quality malaria surveillance
systems that allow control programs to effectively allocate limited
resources in their efforts to reduce disease transmission2,3.

Serology has been highlighted as a useful complement to tra-
ditional methods of surveillance for a wide range of infectious
diseases, e.g. dengue fever, trachoma, onchocerciasis, malaria and
more recently COVID-19 where it has been evaluated by public
health agencies worldwide4–7. For malaria, serological surveil-
lance has proven particularly useful in low transmission settings
and antibody responses to a number of Plasmodium falciparum
antigens, from both pre-erythrocytic and blood-stages, have been
evaluated as markers of exposure8–11. In particular, the responses
to merozoite surface protein (MSP) 1 and apical membrane
antigen 1 (AMA1) have been found to provide reliable
population-level estimates of medium and long-term transmis-
sion trends9,12–14. However, a serological tool that provides
information on the magnitude of the individual-level exposure as
well as the time frame within which the individual was last
exposed is currently lacking and could improve surveillance by
allowing for estimation of infection incidence from single time-
point cross-sectional data15. Such information could be used to
monitor transmission intensity and dynamics, trigger intensified
surveillance with focused malaria testing and treatment, guide
targeted interventions (e.g. using long-lasting insecticidal nets or
other vector control measures) and subsequently evaluate their
impact, or even to demonstrate the absence of transmission
(reviewed in Greenhouse et al. 2018 and 2019)16,17.

On the individual level, the magnitude of the malaria-specific
antibody response is highly affected by both the time since last
infection and the level of prior exposure18,19. Although the
response is generally considered to be short-lived, accumulating
data suggest that the kinetics and the longevity of the response
may vary between antigens18,20–22. These observations provide a
rationale for attempting to identify a combination of antigens to
which the antibody responses display distinct kinetics following
infection (i.e. some that are short-lived and others that are more
long-lived) and allow for accurate estimation of the timing of the
individuals last exposure. Ideally, an effective tool for serological
surveillance would include only a few antigens in order to be cost-
effective and feasible to implement at scale. Identifying the
optimal combination of antigens will require a thorough under-
standing of the kinetics of each candidate antibody response.
Given the scarcity of available data on antimalarial antibody
kinetics, efforts should preferably start from screening a large
number of candidate antigenic targets for suitability21,23,24.

To date, only a few studies have attempted to identify markers
for individual-level exposure, either by analysing cross-sectional
data on antibody reactivity in longitudinally monitored indivi-
duals in endemic areas21,25–30 or by analysing longitudinal data on
antibody responses obtained from infected individuals partici-
pating in controlled human malaria infection (CHMI) trials31.
Helb et al. used a machine learning approach to identify candidate
serological markers of recent infection by analysing cross-sectional
data on antibody responses to 655 P. falciparum antigens collected
at the end of a one-year follow-up of children monitored actively
(monthly or three-monthly) and passively for parasitaemia and
symptomatic infections, respectively, using microscopic exam-
ination of blood slides in an attempt to determine the timing of
the last exposure prior to sampling21. However, in an endemic
setting this approach is notoriously difficult due to undetected
exposure and a high frequency of asymptomatic carriage of low-
density sub-microscopic infections32. Although the timing of
exposure can be carefully controlled using CHMI, participants in

such trials are typically treated at microscopic or PCR patency of
blood-stage infection, i.e. often before symptoms appear33,34, and
the immune response observed may not reflect the response fol-
lowing a symptomatic natural infection35. Furthermore, CHMI
studies of only primary infections31 will not capture the effect that
repeated parasite exposure may have on antibody profiles and
kinetics19. It is possible that these uncontrolled factors may have
impacted which candidate serological markers have previously
been suggested21,25,26,31.

With the purpose of studying the acquisition and maintenance
of both humoral and cell-mediated immunity to malaria, we have
established a well-characterised cohort of returning travellers
(with different levels of prior malaria exposure) who are followed
longitudinally in a malaria free country after successful treatment
of a naturally acquired P. falciparum infection19,36–38. In contrast
to the design of the study by Helb et al.21, samples are collected
longitudinally after a known time-point of symptomatic infection.
This study design offers a unique opportunity to examine the
kinetics of antimalarial immune responses in complete absence of
re-exposure. With this near-experimental set-up, we use a
recently developed protein microarray (KILchip v1.039) including
111 P. falciparum blood-stage antigens to determine the antigen-
specificity and kinetics of the antibody response. We identify
candidate serological markers of recent malaria exposure and
describe how their ability to detect recent exposure depends on
the underlying kinetics of each antibody response. We demon-
strate that these serological markers are informative also in a
moderate transmission setting in Kenya by studying naturally
exposed children monitored closely for clinical malaria.

Results
Sixty-five adults diagnosed with P. falciparum malaria at Kar-
olinska University Hospital in Sweden were enroled at the time of
diagnosis and followed prospectively with repeated blood sam-
pling (i.e. at enrolment, after approximately ten days, and after
one, three, six, and twelve months) for up to one year in complete
absence of re-exposure. Out of the 65 participants, 21 were Eur-
opean natives with no prior history of malaria infection who
reported a limited time spent in malaria endemic areas and were
considered primary infected. The remaining 44 participants (39
born in Sub-Saharan Africa) reported prior malaria episodes, and
prolonged residency in malaria endemic areas, and were con-
sidered previously exposed (Table 1). Antibody responses to
111 P. falciparum blood-stage antigens were quantified in all col-
lected sample series using the KILchip protein microarray. Anti-
body responses were largely positively correlated (Supplementary
Fig. 1) and while many proteins appeared to be highly antigenic
only low-level responses were observed towards others (Fig. 1). As
expected, the kinetics of the antibody response was antigen-
specific but on average the magnitude of the antibody response
increased following the acute infection until approximately day 10
(Fig. 2a). After day 10, there was a gradual reduction in the
magnitude of the response over time throughout the remainder of
the follow-up period. On average, individuals with prior malaria
exposure displayed a greater magnitude of the response (Fig. 2a).
A similar pattern was observed for the breadth of the response (i.e.
the number of antigens to which an individual is seropositive),
with the peak in breadth occurring approximately 10 days after the
acute infection (primary infected: median= 17, range 7–71; pre-
viously exposed: median= 26, range 11–77) (Fig. 2b). Although
none of the participants were seropositive for all antigens at any
time-point, a majority of previously exposed individuals acquired
and maintained a substantially greater breadth of the response at
the end of follow-up (primary infected: median= 2, range 0–10;
previously exposed: median 3, range 0–42) (Fig. 2b).
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Table 1 Descriptive statistics of the study participants.

Primary infected Previously exposed

Number of participants 21 44
Female sex (%) 4 (19) 7 (23)
Median age, years (range) 34 (21–59) 40 (27–70)
Median cumulative time of residency in endemic area, years (range) 0 (0–3) 25 (13–39)
Median time since residency in endemic area, years (range) – 14 (0–46)
Median time from symptom onset to diagnosis, days (range) 3 (0–11) 3 (1–13)
Median parasitaemia, % infected RBCs (range) 0.45 (<0.1–8.0) 0.3 (<0.1–7.6)
Late treatment failurea (%) 5 (25) 0 (0)
Severe malariab (%) 1 (5) 4 (9.7)
Treated in intensive care unit (%) 1 (5) 2 (4.9)
Initial intraveneous artesunate treatment (%) 6 (30) 10 (24.4)

aPresented with recrudescent parasitaemia and fever 20–28 days following initial treatment.
bSevere malaria was defined according to the WHO criteria which include impaired consciousness, acidosis, hypoglycaemia, severe anaemia, renal impairment, jaundice, pulmonary oedema, bleeding,
circulatory shock and hyperparasitemia (Management of Severe Malaria: A Practical Handbook, 3rd edn, 1–83, World Health Organization, 2012)
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PF3D7_1252300
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MSP1_Block2_3D7_full
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SERA3
PFA0445W
RAMA
MSP1_Block2_K1_flank
PF3D7_0629500_SEG2
MSP7
MSP1_Block2_Wellcome_full
MSPDBL2_C_terminal
MSP1_Block2_3D7_repeat
MSPDBL1_C_terminal
PF113
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PF3D7_0206200
PF10_0166
PFD1160W18
SERA5
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MSP5
MSP3
MSP11
MSP2_CH15019DBL2
MSP8
PF3D7_1136200
MSPDBL2_N_terminal
ASP
MSP1
MSP2
GAMA
MSRP4
AMA1
MSP2_DD2
MSP4
PTEX150
PfSEA1
MSP2_CHO
MSRP1
MSRP2
MSP1_19
PF3D7_0730800_2
MSP10
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Fig. 1 A heat map of the normalised median fluorescent intensity (MFI) of the antibody response to each of the 111 antigens included on the KILChip
V1.0 Microarray. Rows correspond to individual antigens while columns correspond to individual samples. Antigens are sorted from top to bottom by
decreasing average normalised MFI across all samples. Samples are sorted first by exposure status, second by sampling time-point and third by average
normalised MFI across all antigens.
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Linear mixed-effect regression models were used to examine
differences in the magnitude of the antigen-specific responses
between the primary infected and the previously exposed indi-
viduals. The previously exposed individuals displayed sig-
nificantly greater reactivity than the primary infected individuals
toward 56 of the 111 antigens at the time of diagnosis, 54 at day
10, 32 at 1 month, 37 at three months, and 44 antigens at both 6
and 12 months of follow-up (Fig. 2c, Supplementary Data 1).

Individual antibody responses most informative of recent
exposure. What is considered a recent exposure to infection may
vary depending on the epidemiological setting and the purpose of

a particular investigation but, in the context of P. falciparum, this
is often defined as exposure having occurred within the past
3–6 months17,40. For the main analysis, samples were treated as
independent and a recent exposure was defined as the infection
having occurred within 3 months (i.e. 90 days) of sample col-
lection. Consequently, samples collected within 3 months of the
acute infection were categorised as obtained from individuals
recently exposed to infection whereas the remaining samples were
not. This enabled the analysis of a balanced number of samples
collected both before (52.5%) and after (47.5%) this temporal
threshold within the one-year follow-up (Supplementary Fig. 2).
Because a useful serological marker of recent exposure will need
to accurately identify recently infected individuals regardless of

Fig. 2 Differences in average antibody reactivity related to prior exposure. a Box-plot of the overall magnitude of the antibody response to P. falciparum
over time (averaging signal intensities over all antigens for each individual) in individuals with prior malaria exposure (grey; 111 antibody responses (a)
measured in 149 samples (s) from 41 unique individuals (n)) or without prior malaria exposure (magenta, a= 111, s= 91, n= 24) and in negative controls
(light grey, a= 111, s= 42, n= 42). b Box-plot of the breadth of the response over time in individuals with (grey, a= 111, s= 149, n= 61) or without
(magenta, a= 111, s= 91, n= 24) prior malaria exposure and in negative controls (light grey, a= 111, s= 42, n= 42). The breadth is expressed as the total
number of antigens to which the individual responds. The centres of boxes correspond to the median. The lower and upper hinges of boxes correspond to
the first and third quartiles of the data. The upper and lower whiskers extend from the hinges to the largest and smallest values, respectively, no further
than 1.5 * the interquartile range from the hinges. Data beyond the end of the whiskers are plotted individually. c Volcano plot of the fold-difference in
geometric mean antibody reactivity between individuals with or without prior malaria exposure vs. the false discovery rate (FDR)-adjusted p-value at each
of the sampling time-points. Linear mixed-effect regression models fitted to the Log-transformed antibody data were used to estimate the mean fold-
difference of the response for each antigen between primary infected and previously exposed participants. P-values were FDR-adjusted for multiple
comparisons using the procedure described by Benjamini and Hochberg. A log2 (fold-difference) of greater than 0 indicates antigens to which the
geometric mean response is greater among previously exposed individuals and conversely a log2 (fold-difference) of less than 0 indicates antigens to
which the geometric mean response is greater among primary infected individuals. Antibody responses that differ significantly between exposure groups
are highlighted in red and the 20 antigens for which the difference is greatest are named in the figure. Further details are included within the supplementary
information (Supplementary Data 1).
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their prior level of exposure, data from both exposure groups
were analysed jointly. Receiver operating characteristics (ROC)
analysis was applied to evaluate whether a threshold level of the
antibody response towards a single antigen could be used to
accurately classify if a given sample was obtained from a recently
exposed individual. The analysis was performed separately for
each antibody response and the performance of the classifiers was
compared based on the classifier area under the ROC curve
(AUC) (Fig. 3). Data on antibody levels towards several indivi-
dual antigens were able to classify samples as obtained from
individuals exposed within the past 3 months with comparable
degrees of accuracy (Fig. 3). The best classification performance
was obtained using the antibody response towards GPI-anchored
micronemal antigen (GAMA) for which the AUC was 0.84 (95%
CI: 0.79–0.89) reaching a sensitivity and specificity of 77%.
Within this particular cohort this corresponded to an accuracy of
76% and a positive predictive value of 78% and a negative pre-
dictive value of 74%. Similar results were obtained using antibody
responses towards Plasmodium translocon for exported proteins
(PTEX) 150, PF3D7_1136200, schizont egress antigen (PfSEA-1),
and MSP8 for which the AUCs all exceeded 0.8 (Fig. 3, Supple-
mentary Data 2). In addition, the response towards apical sushi
protein (ASP), PF3D7_0206200, MSP7-related protein (MSRP) 4,
the 3D7 allelic variant of MSP3, and the 19 kDa fragment of
MSP1 (MSP119) were among the top 10 most informative.
However, for a majority of responses the classification perfor-
mance was relatively poor (Fig. 3, Supplementary Data 2).

A sensitivity analysis was performed to examine whether other
antibody responses would have been more informative if an
alternative definition of recent exposure had been used. The
analysis was repeated using several definitions of a recent
exposure (i.e. exposure having occurred within 1 month, 2, 3, 4,
6, and 8 months of sample collection). Although, the classifier
AUCs varied depending on the definition, the same antibody
responses (i.e. GAMA, PTEX150, MSRP4, PfSEA-1, ASP,
PF3D7_1136200 and MSP119) were consistently identified among
the top 10 responses providing the most accurate identification of
recent exposure (Supplementary Fig. 3).

Combining data on multiple antibody responses. Combining
data on antibody responses towards multiple antigens could
theoretically improve the ability to accurately identify recently
exposed individuals. Feature selection using a Boruta algorithm
was performed to reduce the number of potential combinations to
evaluate by selecting only those antibody responses contributing
significant information on recent exposure when analysed toge-
ther for further analysis. It identified 28 antibody responses
contributing significant information to the classification of recent
exposure (Fig. 4a). Similar to the results based on the threshold
antibody level towards a single antigen, the Boruta algorithm
identified that the greatest relative importance for classification
was contributed by the response towards GAMA, PfSEA1,
PF3D7_1136200, PTEX150, and MSP8 (Fig. 4b).

Random forest classifiers were applied to identify a panel of up
to five antibody responses informative in identifying recent
exposure. The classification performance of all possible two- to
five-way combinations of the 28 selected responses was
exhaustively evaluated. There was a gradual improvement in
classifier performance, i.e. increasing cross-validated AUC, with
the sequential increase in panel size from two to five antibody
responses. However, each increase in panel size lead to a smaller
improvement in classifier performance (Supplementary Fig. 4).
The antibody response to GAMA was included in all of the best
combinations of two to four antibody responses (Supplementary
Fig. 4). The overall best classification performance, with a cross-
validated AUC of 0.89 (95% CI: 0.85–0.94) and reaching a
sensitivity and specificity of 83%, was obtained for a panel of five
antibody responses that included the response to GAMA, MSP1
(full length), both the C- and N-terminal of MSPDBL1, and
PfSEA1 (Fig. 4b). This corresponded to an accuracy of 83%
and positive and negative predictive values of 84 and 82%,
respectively. The responses to GAMA, MSP1 and the N-terminal
of MSPDBL1 were included in all of the top 10 most informative
panels of size five, and PfSEA1 was included in 8 of the top 10
panels. The classification performance of the top 10 antibody
panels was highly comparable with AUCs ranging from 0.88 (95%
CI: 0.83–0.94) to 0.89 (95% CI: 0.85–0.94). The random forest
classifier based on a combination of five antibody responses
provided a substantial improvement in classification accuracy
compared to a simple classifier based on a threshold antibody
level to GAMA alone. However, no improvement was obtained
using a random forest classifier fitted jointly to data on all
antibody responses (Cross-validated AUC: 0.83; 95% CI:
0.74–0.89). As an additional evaluation of the robustness of the
results obtained using random forest classifiers, the analysis was
repeated using logistic regression and yielded results comparable
to those obtained using random forests (Supplementary Fig. 5).
An alternative approach for cross-validation, which ensures that
the same individual is not represented in both the training and
the test set, was also evaluated but did not impact the classifier
performance (Supplementary Fig. 6).

Identifying the antibody kinetic properties of a useful ser-
ological marker of recent exposure. Certain antibody responses
(e.g. to GAMA and PfSEA-1) were clearly more informative and
more useful as serological markers of recent exposure than others,
both independently and in combinations including multiple
responses. A previously validated antibody kinetic model was
applied to quantitatively describe the kinetics of each antibody
response to determine if there were underlying kinetic properties
shared among informative and non-informative responses. The
model, which captures the inter-individual variation in boosting
and decay in antibody levels following infection while estimating
the average value and variance in the kinetics across the entire

ROC curve for classifying recent infection: within 90 days
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MSP1_19; AUC = 0.783 (95% CI:0.729 − 0.837)

Fig. 3 Receiver operating characteristic (ROC) curve for classifying
individuals as infected within 90 days using a threshold antibody level to
a single antigen. Coloured curves correspond to the top 10 antibody
responses that were most accurate in detecting recent infection as
determined by the classifier area under the ROC curve (AUC).
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cohort, was fitted separately to data for each antibody response in
a Bayesian framework using mixed-effect methods. The model
parameters are presented for all antibody responses within
the supplementary information (Supplementary Data 3–5). An
overview of the different kinetic patterns observed is presented in
Fig. 5. The figure includes data and model fits for two repre-
sentative individuals as well as the model-estimated population-
averaged kinetics of the responses towards three antigens,
GAMA, EBA175, and PF3D7_1252300, which were identified as
highly, moderately, and minimally informative of recent expo-
sure, respectively. The major antibody kinetic patterns observed
were: (i) a rapid increase and decay following infection with
limited differences between individuals with and without prior
exposure (Fig. 5a) (ii) a rapid increase and decay following
infection but with substantial differences between individuals
with and without prior exposure (Fig. 5b) (iii) a limited boosting
and decay following infection with or without differences between
individuals with and without prior exposure (Fig. 5c).

To present a meaningful comparison of the different kinetics (i.e.
the specific boosting and decay patterns) across all antibody
responses, a summary metric of the individual-level antibody
kinetics for each participant and antibody response was generated
by calculating the relative reduction (%) in antibody levels over the
1-year follow-up. The median relative reduction, as well as the inter-
individual variation, differed substantially between antibody
responses (Fig. 6, Supplementary Data 6). The greatest relative
reductions were estimated for the highly antigenic proteins,
e.g. GAMA and PF3D7_1136200, while the smallest relative

reductions were estimated for poorly antigenic proteins, e.g.
PF3D7_1343700.KELCH and MSRP5 (Fig. 6). All of the antibody
responses that had individually been identified among the top 10
most informative in identifying recent exposure (i.e. GAMA,
PTEX150, PF3D7_1136200, PfSEA-1, MSP8, ASP, PF3D7_0206200,
MSRP4, MSP3_3D7, MSP119) exhibited a substantial relative
reduction in antibody levels during follow-up (Fig. 6). Furthermore,
these responses exhibited limited inter-individual variation and
limited differences between individuals with different levels of prior
malaria exposure and thus a consistent boosting and decay of the
response across individuals (Supplementary Fig. 7a, b and
Supplementary Fig. 8). For a given antibody response, there was a
close association between the estimated relative reduction in
antibody levels over time and the performance (AUC) of the
corresponding classifier of recent infection (Fig. 7). Multivariable
beta-regression models were applied to evaluate the relationship
between the relative reduction in antibody levels and the peak
antibody level, previous exposure and the number of years the
individual had spent in an endemic area. For the majority of
antibody responses (81 of 111) the relative reduction in antibody
levels was greater if peak antibody reactivity was higher. When
accounting for differences in peak antibody levels, the relative
reduction in antibody levels was lower in previously exposed
individuals for 17 out of 111 antibody responses (Supplementary
Data 7). These 17 responses did not include any of the top 10
individually most informative responses. When accounting for
differences in both peak antibody levels and previous exposure
status there was no significant association between the relative
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a b

Fig. 4 Feature selection of antibody responses and evaluation of most informative antibody combinations. a Variable importance plot for classification
performance determined using a Boruta feature selection algorithm as described by Kursa and Rudnicki. The Boruta algorithm was fitted jointly to data for
all antibody responses in all samples (s= 282) from study participants and controls (n= 107). Antibody responses are ordered from left to right by their
importance for classification. The importance measure is defined as the Z-score of the mean decrease accuracy (normalised permutation importance). Blue
boxes correspond to the minimal, average, and maximum Z-scores of shadow features. Red boxes indicate variables not contributing significantly to
accurate classification. Green boxes indicate the 28 antibody responses contributing significantly to classification that were selected for further evaluation.
The centres of boxes correspond to the median. The lower and upper hinges of boxes correspond to the first and third quartiles of the data. The upper and
lower whiskers extend from the hinges to the largest and smallest values, respectively, no further than 1.5 * the interquartile range from the hinges. Data
beyond the end of the whiskers are plotted individually. b Cross-validated receiver operating characteristic (ROC) curves. Random forest classifiers fitted to
data on antibody responses to the top 10 combinations of 5 out of the 98280 possible combinations of the 28 selected antigens as determined by the
classifier area under the ROC curve (AUC). An AUC of 0.5 indicates a classifier that performs no better than random, while an AUC of 1 indicates a perfect
classifier. Rainbow coloured lines correspond to the ten classifiers with the highest cross-validated AUCs.
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reduction in antibody levels and the number of years the study
participants had spent in an endemic area for any of the measured
antibody responses within the travellers cohort (Supplementary
Data 7).

Comparative analysis of antibody response patterns in Kenyan
children. To evaluate the candidate serological markers of recent
exposure in an endemic setting, samples from 280 children, age
1–12 years (male: n= 142, female n= 146), living in a moderate
transmission area in Kenya were analysed using the KILchip
microarray. Study participants had been monitored continuously
for clinical malaria using both passive and weekly active sur-
veillance for 1 year prior to sample collection (Fig. 8a). For the
purpose of the analysis, individuals were stratified based on both
current infection status and time since last detected clinical epi-
sode of malaria (currently infected: n= 78, clinical episode within

<3 months: n= 62, clinical episode within 3–12 months: n= 45,
no clinical episode during follow-up: n= 95) and by age (<5
years: n= 114, 5–12 years: n= 166).

Among the Kenyan children, the overall magnitude and the
breadth of the response were greatest among individuals who
were either currently infected or who had recently had clinical
malaria (within 3 months) (Fig. 8b, c). The Kenyan children
displayed substantial reactivity to all candidate serological
markers of recent exposure identified as individually most
informative in adult travellers (Fig. 8d). ROC analysis was
applied to evaluate whether a threshold level of the antibody
response towards a single antigen could be used to accurately
classify if a given sample was obtained from a child who was
either currently infected or who had recently had clinical malaria.
The best classification performance was obtained for the response
towards MSP11 (AUC= 0.81, 95% CI: 0.77–0.86). Similar results
were obtained for the responses towards different allelic variants
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Fig. 5 Individual- and population-level antibody kinetics for the responses to three representative antigens (GAMA, EBA175, and PF3D7_1252300) in
primary infected and previously exposed individuals. The antibody kinetic model was fitted separately to data on each antibody response measured in
240 longitudinally collected samples from 65 unique study participants. The major antibody kinetic patterns observed were: a a rapid increase and decay
following infection with limited differences between individuals with and without prior exposure, b a rapid increase and decay following infection but with
substantial differences between individuals with and without prior exposure, and c a limited boosting and decay following infection with or without
differences between individuals with or without prior exposure. The top row displays the antibody kinetics for two representative study subjects who were
either primary infected or previously exposed. The dots denote the individual sample antibody reactivity, i.e. median fluorescent intensity (MFI). The solid
lines denote the model predicted antibody boost and decay patterns relative to the collection of the first sample at time t= 0 and the shaded area the 95%
credible interval of the prediction. The bottom row displays the geometric mean MFI over time in each exposure group relative to the collection of the first
sample at time t= 0. The grey and magenta dots denote the average reactivity in previously exposed and primary infected individuals, respectively, at each
sampling time point. The red dots denote average reactivity in negative control samples. The error bars of each point denote the corresponding 95%
confidence interval (CI). The solid lines denote the model predicted mean boosting and decay in each exposure group and the shaded area the 95% CI.
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of MSP2, and towards SERA5, MSP10, MSP4, AMA1, and
MSP3.5 for which AUCs ranged from 0.77 (95% CI: 0.72–0.82) to
0.79 (95% CI: 0.75–0.84) (Fig. 9a). Several of these responses, in
particular the response towards MSP11 and MSP10, were also
identified as highly informative in detecting recent exposure in
adult travellers (Supplementary Data 2). The performance of
responses identified as individually most informative in
adult travellers (i.e. GAMA, PTEX150, PF3D7_1136200, PfSEA1,
MSP8, ASP, MSRP4, PF3D7_0206200, MSP3_3D7, and MSP119)
was slightly lower with AUCs ranging from 0.72 (95% CI:
0.68–0.79) to 0.76 (95% CI: 0.71–0.81) (Fig. 9a, Supplementary
Data 8). Compared to the travellers, Kenyan children exhibited
similar antibody response patterns where levels of antibodies to
all candidate serological markers of recent exposure decreased
significantly with time since last clinical episode of malaria
(Fig. 9b, linear regression model results: Supplementary Data 9).
This pattern was consistent in both age groups for all responses
except towards PfSEA1 where antibody levels in older children
(5–12 years) were stable (Fig. 9b).

Discussion
Novel and improved tools for malaria transmission surveillance
are urgently needed to assist the effective allocation of limited
resources for malaria control and assure continued progress

towards malaria elimination3. There is a particular need for
methods that can detect recent exposure to infection on the
individual level which can be used to generate accurate estimates
of infection incidence using limited samples and data15–17. Here,
we screened plasma samples from 65 travellers followed pro-
spectively for up to one year after a naturally acquired P. falci-
parum infection for IgG antibody responses towards 111 blood-
stage antigens. Using a data driven approach, we identified can-
didate serological exposure markers individually informative of
recent exposure and demonstrate that combining data on five
responses allow for accurate detection of recent exposure to P.
falciparum within the prior 3-month period. Based on a model-
ling approach, we then quantitatively examined the kinetics of
each individual antibody response and were able to characterise
the kinetic properties that make a particular antibody response
useful as a serological marker of recent P. falciparum exposure.
Finally, we demonstrate that the individually informative ser-
ological markers of recent exposure can provide information on
current infection or recent clinical malaria in naturally exposed
children living in a moderate transmission area in Kenya.

When examining each of the 111 antibody responses in tra-
vellers individually, we found that the level of the response to
several antigens, in particular GAMA, PTEX150, PF3D7_1136200,
and PfSEA1, were informative and could be used to identify a

Fig. 6 Box-plot of individual antigen-specific antibody kinetic model-estimated relative reduction (%) in antibody levels after one year of follow-up.
The antibody kinetic model was fitted separately to data on each antibody response measured in 240 longitudinally collected samples from 65 unique
study participants. Responses are ordered from left to right by smallest to largest relative reduction in antibody levels. The individual responses identified
as top 10 most informative in detecting recent infection based on a threshold antibody level to a single antigen are highlighted in red. The colour of the box
indicates whether the median relative reduction in antibody levels over one year for a particular response is <25% (purple), 25–50% (petrol), 50–75%
(green), or >75% (yellow). The centres of boxes correspond to the median. The lower and upper hinges of boxes correspond to the first and third quartiles
of the data. The upper and lower whiskers extend from the hinges to the largest and smallest values, respectively, no further than 1.5 * the interquartile
range from the hinges. Data beyond the end of the whiskers are plotted individually.
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recent exposure with comparable accuracy (Classifier AUCs all
exceeding 0.8). The response to GAMA was most informative and
it was possible to identify a threshold antibody level such that
recently exposed individuals could be identified with a sensitivity
and specificity of 77%. The required sensitivity and specificity of a
particular surveillance system, and the optimal trade-off between
them, should be dictated by the objective of the system, the activity
the system is supposed to trigger, the availability of resources and
cost of possible interventions17,41,42. The level of accuracy in
detection of recent exposure achievable using a single antibody
response could be acceptable for effective serosurveillance of
population-level transmission trends where e.g. a lower sensitivity
can be acceptable43,44.

We demonstrated that the ability to accurately detect recent
exposure could be substantially improved if data on up to five
antibody responses were analysed simultaneously using a random
forest algorithm. We found that the best performance was obtained
based on a panel of five antibody responses (AUC= 0.89), reaching
a sensitivity and specificity of 83%. There was no single best anti-
body combination, instead many panels composed of five antibody
responses provided comparable results. The existence of many
combinations of antibody responses with comparably high accuracy
indicates that the superior classification performance of antigen
combinations over single antigens is a general phenomenon rather
than a chance occurrence. All of the top 10 panels included
responses that had individually been identified as highly informative
(e.g. to GAMA and PfSEA-1), suggesting that proteins that can

identify recent infections when used individually also do well in
combinations. Interestingly, however, they also included responses
that were individually not among the more informative (i.e. to MSP1
and either one or both of the N- and C-terminal of MSPDBL1)
suggesting that these responses contribute additional information
when used in combination with individually informative responses.

The antibody responses to most of the proteins that we iden-
tified as informative of recent exposure have to date not been
extensively studied. GAMA (85 kDa, 738 amino acids) is a rela-
tively conserved micronemal protein involved in erythrocyte
binding and invasion after which the bulk of the protein is shed in
soluble form45. In addition to expression in blood-stage mer-
ozoites GAMA has been reported to be expressed in the micro-
nemes of both salivary gland sporozoites and ookinetes46,47.
PTEX150 (150 kDa, 993 amino acids) is a conserved protein and
one of the core components of the Plasmodium translocon for
exported proteins responsible for protein trafficking across the
parasitophorous vacuole membrane48. PF3D7_1136200 (76 kDa,
639 amino acids) is a conserved protein of unknown function to
which the antibody response has been associated with protection
from clinical disease in cohort studies49. PfSEA1 (244 kDa, 2074
amino acids) is a highly invariant vaccine candidate antigen,
expressed in late stage schizonts and involved in the egress of the
merozoite from the infected erythrocyte, and has been located to
the inner leaflet of the red blood cell membrane, the para-
sitophouros vacuole membrane and maurers clefts50. MSP8
(synthesised as an 80 kDa protein, rapidly processed to a 17 kDa
fragment, 597 amino acids) is a GPI-anchored protein with
limited diversity, predominantly expressed during the trophozoite
stage and localised to the parasitophorous vacuole51. Among our
top 28 candidates, which were informative either individually or
in combination, only the responses to PfSEA-1, PTEX150, MSP1
(19 kDa fragment and full length), MSP2 and MSP10 have to our
knowledge previously been suggested as markers of recent or
concurrent infection21,22,25,27,31,52. The response to MSP4 and
SERA4 have recently been suggested as markers of recent expo-
sure based on data from primary infections in CHMI trials31,53.
However, in our study we did not find the response to MSP4 or
SERA4 informative in detecting recent exposure in travellers.

It has been suggested that what determines the usefulness of
any particular response as a marker of recent exposure is not just
the average of its boosting or decay following infection but also
the variation in these qualities across individuals17. When studied
individually, several antibody responses (e.g. to GAMA,
PTEX150, PF3D7_1136200, PfSEA-1, and MSP8) were con-
sistently identified as the most informative in detecting recent
exposure, suggesting they may share common properties with
regards to their kinetics. Because of the longitudinal design of the
study, we were able to examine the kinetics of each antibody
response in detail using a previously validated mathematical
model18,19. This allowed us to quantitatively characterise both the
antibody boosting and decay, its inter-individual variation as well
as its dependency on prior malaria exposure and to identify three
key aspects that make a particular antibody response a useful
serological marker of recent exposure: (i) a rapid boosting and
decay in antibody levels following clearance of infection (ii)
limited inter-individual variation in the kinetics (boosting and
decay) of the response and therefore predictable kinetics (iii)
minimal impact on the kinetics due to prior exposure and a
limited formation of an antibody memory response. We could
also show that antibody responses that were not informative of
recent exposure did not exhibit this behaviour and thereby
explicitly demonstrate how the ability to identify recent exposure
using serology is based on an understanding of the underlying
antibody kinetics.

Fig. 7 Relationship between classification accuracy and the relative
reduction in antibody levels. Antibody kinetic model-estimated mean
relative reduction in antibody levels after 1 year of follow-up versus
classifier performance as evaluated using the classifier area under the
receiver operating characteristic (ROC) curve (AUC). Rainbow colours
indicate the antibody responses identified as top 10 most accurate in
detecting recent infection, when using the response to a single antigen.
Vertical and horizontal error bars represent the 95% confidence interval
(CI) of the estimated mean relative reduction in antibody levels and
classifier AUCs, respectively. Classifiers were fitted to data on antibody
responses measured in 282 samples from 107 unique study participants
and controls. Antibody kinetic models were fitted to antibody data
measured in 240 samples from 65 unique study participants.
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The unique longitudinal design of this study, in which the exact
time-point of natural exposure is known and where the absence
of re-exposure during follow-up can be guaranteed, avoids mis-
classification of true exposure status thereby limiting bias and
providing a unique opportunity to identify markers of recent
exposure. Furthermore, including individuals who are both pri-
mary infected and previously exposed minimises potential con-
founding between time since infection and prior exposure

intensity and allowed us to ascertain that our candidate ser-
ological markers were able to perform equally well independently
of the individuals prior level of exposure.

Although the cohort of travellers serves as an important model
population for the discovery of serological exposure markers, it
may not be entirely representative of a population living in a
malaria endemic setting. The ultimate usefulness of the candidate
serological markers as a malaria surveillance tool will depend on

Fig. 8 Antibody patterns within the Junju cohort. a Schematic representation of the follow-up and sampling of the Junju cohort. 280 children (age 1–12
years) were monitored for 12 months using passive and weekly active malaria case surveillance. Samples were collected in a cross-sectional bleed at the
end of the 12-month follow-up. b Box-plot of the overall magnitude of the antibody response to P. falciparum relative to current infection status and time
since last documented clinical malaria episode (averaging signal intensities over all antigens for each individual) in individuals age <5 years (dark blue, 111
antibody responses (a) measured in 114 samples (s) from 114 unique study participants (n)), age 5–12 years (green, a= 111, s= 166, n= 166) and in
negative controls (light grey, a= 111, s= 42, n= 42). c Box-plot of the breadth of the response relative to current infection status and time since last
documented clinical malaria episode in individuals age <5 years (dark blue, a= 111, s= 114, n= 114), age 5–12 years (green, a= 111, s= 166, n= 166) and in
negative controls (light grey, a= 111, s= 42, n= 42). The breadth is expressed as the total number of antigens (out of the 111) to which the individual
responds. The centres of boxes correspond to the median. The lower and upper hinges of boxes correspond to the first and third quartiles of the data. The
upper and lower whiskers extend from the hinges to the largest and smallest values, respectively, no further than 1.5 * the interquartile range from the
hinges. Data beyond the end of the whiskers are plotted individually. d A heat map of the normalised median fluorescent intensity (MFI) of the antibody
response to each of the 111 antigens within the Junju cohort. Rows correspond to individual antigens while columns correspond to individual samples.
Antigens are sorted from top to bottom by decreasing average normalised MFI across all samples. Samples are sorted first by age, second by time since
last clinical malaria episode and third by average normalised MFI across all antigens.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27863-8

10 NATURE COMMUNICATIONS |          (2022) 13:331 | https://doi.org/10.1038/s41467-021-27863-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


their ability to detect recent infection in both adults and children
living in endemic settings where re-exposure is common. We
therefore also examined the antibody responses towards the top
10 individually most informative candidate serological markers
(identified in travellers) in naturally malaria exposed children
living in a moderate transmission area in Kenya. We found
antibody response patterns comparable to those observed among
adult travellers with a decline in antibody levels with time after a
symptomatic infection. We found that the level of the response
towards individual candidate markers provided information on
whether the child was currently infected or had experienced an
episode of clinical malaria within the last three months (AUC
range: 0.72–0.76). Within the Kenyan cohort antibody responses
to MSP11, MSP2, SERA5, MSP10, and MSP4 were most infor-
mative in detecting recent symptomatic infection (AUC range:
0.77–0.81). The performance did not differ significantly from the
performance of the candidate serological markers identified in
adult travellers, for which AUCs were slightly lower. It is

important to note that the results from the travellers and the
Kenyan children are not directly comparable due to the funda-
mentally different study designs and the different types of data
analysed which in turn preclude a formal validation of the can-
didate serological markers of recent infection within the Kenyan
cohort. Furthermore, due to the different study designs we do not
expect equal performance of the candidate serological markers
across both cohorts. In contrast to the travellers, who were
sampled longitudinally and in absence of re-exposure after
P. falciparum infection, the Kenyan children were monitored
continuously for one year for clinical malaria, using both passive
and weekly active surveillance, and sampled in a cross-sectional
bleed at the end of the follow-up period. This design will detect
the vast majority of symptomatic P. falciparum infections that
occur during follow-up but low density and asymptomatic
infections will go undetected. It is possible that the antibody
responses towards the candidate serological markers of recent
infection could have been boosted by this undetected exposure

Fig. 9 Identifying recent infection in Kenyan children. a Receiver operating characteristic (ROC) curve for classifying individuals as currently infected or
having suffered from a clinical malaria episode within 90 days using a threshold antibody level to a single antigen. The first set of coloured curves
correspond to the top 10 antibody responses that were most informative as determined by the classifier area under the ROC curve (AUC). The second set
of coloured curves indicates the performance of antibody responses identified as individually most informative in detecting recent P. falciparum exposure
within the longitudinally monitored travellers cohort. b Box-plots of the magnitude of the antibody response in Junju children age <5 years (dark blue,
114 samples (s) from 114 unique study participants (n)) and age 5–12 years (green, s= 166, n= 166) relative to current infection status and time since last
documented clinical malaria episode as well as the reactivity in negative controls (light grey, s= 42, n= 42) for antibody responses identified as
individually most informative in detecting recent P. falciparum exposure within the longitudinally monitored travellers cohort. The centres of boxes
correspond to the median. The lower and upper hinges of boxes correspond to the first and third quartiles of the data. The upper and lower whiskers extend
from the hinges to the largest and smallest values, respectively, no further than 1.5 * the interquartile range from the hinges. Data beyond the end of the
whiskers are plotted individually.
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and that this would have influenced their performance within the
Kenyan cohort.

Collectively the results from the travellers and from the Kenyan
cohort suggest that the identified candidate responses could be
suitable for exposure monitoring in both low and moderate
transmission settings17,54,55. Additional validation will be
required to demonstrate their usefulness, not only in various
transmission settings but also across different geographical loca-
tions in order to assess the potential impact of parasite genetic
diversity on their performance. We aim to pursue this by studying
populations from different sites and endemic settings, sampled
longitudinally and monitored closely for both symptomatic and
asymptomatic P. falciparum infections.

In summary, we identify candidate serological markers of
recent exposure that, when quantified individually or in combi-
nation in a single plasma sample, provide information on when
the donor was last exposed to P. falciparum infection. Using both
a data driven and a modelling approach, we demonstrate that a
recent exposure is not necessarily identified by a complex anti-
body signature that requires sophisticated algorithms for detec-
tion but rather by a thorough understanding of the kinetics of the
antibody response to a limited number of antigens. We show that
the antibody responses towards highly antigenic proteins that
demonstrate predictable boosting and decay following infection
are sufficient to detect whether a given individual has been
exposed within a defined period of time. These candidate ser-
ological markers generate information that could be useful for
malaria control purposes in order to understand when and where
to intensify surveillance, perform targeted testing and treatment,
and/or deploy vector control measures, and thereby effectively
improve efforts to limit transmission and accelerate progress
towards malaria elimination.

Methods
Study populations. The primary study population consisted of adults hospitalised
due to P. falciparum malaria at the Department of Infectious Diseases at Karolinska
University Hospital in Stockholm, Sweden. Study participants were enroled at the
time of diagnosis and followed prospectively for up to one year with repeated blood
sampling19. All participants were treated with a full course of artemether-
lumefantrine (AL). Sixteen participants who were vomiting, or who were hyper-
parasitaemic (>5% parasitaemia) and/or showing signs of severe malaria (according
to the WHO classification56) at the time of admission received one to four initial
doses of intravenous artesunate followed by a full course of AL. Venous blood
samples were collected at the time of enrolment (i.e. at diagnosis) and follow-up
samples were collected approximately 10 days, and one, three, six, and twelve
months after the first sample. In total, 242 samples were collected from 65 parti-
cipants. Data on country of birth, previous countries of residence, travel history,
use of antimalarial prophylaxis, previous malaria episodes and co-morbidities were
collected using a questionnaire administered to each study participant upon
enrolment as well as at the end of the follow-up period. Additional clinical data
were extracted from hospital records19.

A secondary study population included 280 children of age 1–12 years enroled
in cohort study in Junju village, Kilifi district, Kenya57. All children were
continuously monitored for clinical malaria using passive and weekly active
surveillance for febrile illness for 12 months prior to sample collection (i.e. from
May 2007 until May 2008). Symptomatic individuals were tested for parasitaemia
using blood smears and all individuals positive for P. falciparum were treated for
malaria according to Kenyan national guidelines. Samples for serological analysis
were collected in a cross-sectional bleed at the beginning of the subsequent more
intense malaria transmission season in May 200857.

Ethics statement. The Swedish study was approved by the Ethical Review Board in
Stockholm, Sweden (Dnr 2006/893-31/4 and 2013/550-32/4, 2018/2354-32, 2019-
03436) and written informed consent was obtained from all study participants.

The Kenyan study was approved by the Kenya Medical Research Institute
(KEMRI) National Ethical Review committee and written informed consent was
obtained from the parents and/or guardians of all study participants.

Protein microarray (KILchip v1.0). The KILchip v1.0 protein microarray was
used for simultaneous quantification of IgG antibody responses to 111 P. falci-
parum antigens39. The microarray includes 82 full-length proteins (or for multi-
membrane proteins, the largest predicted extracellular loop) and 29 protein

fragments from 8 unique proteins (i.e. MSP1, MSP2, MSP3, MSPDBL1, MSPDBL2,
PfSEA-1, PF3D7_06293500 and Surfin 4.2). The proteins were derived from the
3D7 parasite line except for MSP1 Block 2, MSP2, MSP3, and Surfin 4.2 for which
five, two, one, and one non-3D7 allelic type(s) were included, respectively. A
majority of proteins were produced using a mammalian expression system, while a
minority were produced in Escherichia coli39. Four KILchip v1.0 protein micro-
array slides were fitted into a hybridisation cassette (Arrayit Corporation ARYC) to
obtain a 96-well assay format. After washing four times with 250 μl of HEPES
buffered saline (HBS) with 0.1% (v/v) Tween 20 (HBS-Tween) and three times with
250 μl of HBS, 200 μl of blocking buffer, HBS-Tween, with 2% (w/v) bovine serum
albumin (BSA) was added to each well and incubated for 2 h at room temperature
on a plate shaker. After washing four times, 150 μl of plasma in 1:400 dilution was
added to each well and incubated over night at 4 °C on a shaker. After washing,
150 μl of AlexaFluor647-Donkey-anti-Human-IgG (Jackson ImmunoResearch,
Catalog no.: 709-605-098) was added to each well and incubated for 3 h at room
temperature. After final washing, hybridisation cassettes were disassembled, slides
rinsed and dried, and then read at 635 nm using a GenePix® 4000B scanner
(Molecular Devices) and results obtained using the GenePix® Pro 7 software
(Molecular Devices). Positive and negative controls consisting of pooled plasma
from malaria exposed Kenyan adults and serum samples from malaria unexposed
adult northern European donors without history of travel to malaria endemic
countries, respectively, were run on each slide. A 3-fold serially diluted standard
calibrator consisting of purified IgG from highly malaria exposed Kenyan donors
was assayed once within each batch.

Data acquisition, cleaning, and normalisation. R (R: A language and environ-
ment for statistical computing, v3.4.4, v3.6.1, and 4.1.1) was used for data proces-
sing, normalisation, and analyses. The median fluorescent intensities (MFI) of the
local spot background surrounding each spot was subtracted from the MFI of each
antigen spot. The mean MFIs of replicate spots were log-transformed to yield an
approximate Gaussian distribution of signal intensities. To account for technical
slide-to-slide and batch-to-batch variation a two-step normalisation process was
applied according to a previously validated procedure58,59. First, to account for
within batch slide-to-slide effects, a Robust Linear Model (RLM) was fitted to the
log-transformed data from the positive control samples assayed on each slide. This
was done separately for data from each batch58. After obtaining the best-fit para-
meters for the slide effect the estimated coefficients for each slide was subtracted
from all spots within each slide. Following this within-batch RLM normalisation, a
second between-batch RLM normalisation was performed similarly using data for
the serially diluted standard calibrator. Data for all target antigens that did not
demonstrate optical saturation or no signal was used for normalisation in both
steps. Following normalisation, the median coefficient of variation (CV) of the
antigen-specific batch-to-batch variation was 18.3% (IQR: 15.6–21.5%). A threshold
of seropositivity was defined as the mean reactivity + 3 SD of the 42 negative
controls. The breadth of the response within each tested sample was defined as the
number of antigens for which the reactivity exceeded the seropositivity threshold.

Evaluating exposure-dependent differences in antibody responses. Linear
mixed-effect regression models were used to identify antigens to which responses
were significantly different between primary infected and previously exposed
individuals at each sampling time-point. The models were fitted separately to the
log-transformed normalised MFI data for each antigen. To account for the false
discovery rate (FDR) due to testing such a large number of hypotheses all p-values
were FDR-adjusted according to the procedures described by Benjamini and
Hochberg60. FDR-adjusted p-values of <0.05 were considered significant.

Binary classification of recent exposure. For the purpose of the main analysis a
recent exposure was defined as the infection having occurred within 3 months (i.e.
90 days) of sample collection. All samples were categorised as obtained from either
a “recently infected” or “not recently infected” individual depending on whether or
not they were collected within this specified time frame. To evaluate if the antibody
response to any single P. falciparum antigen was informative of recent exposure,
binary classification using a threshold antibody level was applied to the data for
each of the 111 antigens individually using ROC analysis. The AUC was used to
compare the classification performance of the individual antibody responses and
confidence intervals for the AUCs were estimated using the method described by
Sun and Xu61. Alternate definitions of recent exposure were also evaluated as part
of a sensitivity analysis.

Feature selection using a Boruta algorithm. Combining data on multiple anti-
body responses could theoretically improve the ability to accurately identify recent
exposure, however, there are 2111 potential unique combinations of antibody
responses to 111 antigens and to evaluate them all was not feasible62. To reduce the
number of tentative antibody response combinations to evaluate, feature selection
was performed using a Boruta algorithm63. The Boruta algorithm is a wrapper
method built around a random forest classifier that performs a top-down search for
relevant features, while progressively eliminating irrelevant features, by comparing
the importance of original features with the importance achievable at random
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(estimated using permuted copies of the original features). The algorithm was fitted
jointly to antibody data for all 111 antigens.

Random forest classification based on antibody combinations. Following feature
selection, random forest classifiers were fitted exhaustively to all possible two- to
five-way combinations of the down-selected antibody responses in order to eval-
uate whether a combination of responses could improve the performance of
classification of recent infection. Classifier performance was determined by the
cross-validated AUC. Cross-validation was performed for each classifier using
repeated random sub-sampling by iteratively and randomly splitting the data set
into a training set (2/3) and a test set (1/3)64. For each split the model was fitted to
the training set and the predictive accuracy assessed using the test set. The results
from 500 iterations were averaged to obtain a cross-validated estimate of the
classifier performance and the 0.025 and 0.975 quantiles of the AUC across
iterations were extracted to obtain a 95% confidence interval of the cross-
validated AUC.

Modelling antibody kinetics. A previously validated mathematical model was
used to estimate the antigen-specific antibody kinetics18,19,28. The model captures
the boosting and bi-phasic decay in antibody levels following infection and
quantifies their inter-individual variation, while simultaneously accounting for
differences in prior malaria exposure. Briefly the model assumes that the infection
causes antibody levels to rise τ0 days before the individual presents to the hospital
(where τ0 is a parameter estimated for each individual) and that A(t) is the anti-
body level at time t > τ0 and is given by the following Eq. (1):

A tð Þ ¼ Abg þ A0e
�rl t�τ0ð Þ þ β 1� ρ

� � e�rs t�τ0ð Þ � e�ra t�τ0ð Þ
ra � rs

þ ρ
e�rl t�τ0ð Þ � e�ra t�τ0ð Þ

ra � rl

 !

ð1Þ

where ra is the rate of decay of IgG molecules; rs and rl are the rates of decay of
short- and long-lived antibody secreting cells (ASCs), respectively; β is the boost in
ASCs following infection at time τ0; and ρ is the proportion of ASCs that are long-
lived. A0 is the pre-existing levels of antibodies. For primary infected individuals,
A0 ¼ 0. Abg is the background level of antibody reactivity. The models were fitted
separately for each antibody response in a Bayesian framework, and mixed-effect
methods were used to capture the natural variation in antibody kinetics between
individuals while estimating the average value and variance of the parameters
across the entire cohort. Additionally, the antibody kinetic model accounts for
sample reactivity exceeding the upper limit of detection of the microarray assay.
The rate of decay in antibody reactivity was expressed as the relative reduction (%)
after 1 year, starting from the peak of the response65.

Association between antibody kinetics and exposure variables. Multivariable
beta-regression models with a logit link function were used to examine the asso-
ciation between antibody kinetic model-estimated relative reduction (%) in anti-
body reactivity over 1 year and peak antibody reactivity, prior exposure status and
years spent in malaria endemic areas. The beta-regression models were used to
account for the outcome variable being a rate with values in the standard unit
interval (i.e. 0 to 1) and the potential heteroscedasticity and/or skeweness com-
monly observed with this kind of data and fitted separately to data for each
antibody response. To account for the false discovery rate (FDR) due to testing
such a large number of hypotheses, all p-values were FDR-adjusted according to
the procedures described by Benjamini and Hochberg60. FDR-adjusted p-values of
<0.05 were considered significant.

Antibody levels and time since last malaria episode in Kenyan children. Linear
regression models were used to evaluate the association between the geometric
mean antibody response and time since last clinical malaria episode in Kenyan
children. The models were fitted separately to the log-transformed normalised MFI
data for each antigen. The independent variable, time since last clinical malaria
episode, was treated as a categorical variable with the following categories: (i)
currently infected, (ii) clinical episode within <3 months, (iii) clinical episode
within 3–12 months, (iv) no clinical episode during follow-up. All p-values were
FDR-adjusted according to the procedures described by Benjamini and
Hochberg60. FDR-adjusted p-values of <0.05 were considered significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets for the travellers cohort generated and analysed within the current study are
included within the supplementary material of this publication (Supplementary Data 10).

Code availability
The R code and data for reproducing the analysis of the travellers datasets are publicly
available under an MIT License online at https://github.com/ymanvictor/
Pfalciparum_sero_sign.
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