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A commentary on

Adaptation maintains population home-
ostasis in primary visual cortex
by Benucci, A., Saleem, A.B., and
Carandini, M. (2013). Nat. Neurosci. 16,
724-729. doi: 10.1038/nn.3382

Adaptation and homeostasis, the abil-
ity to reach stable attractor states within
changing environments, are the most typ-
ical characteristics of biological systems.
A recent study by Benucci et al. (2013)
reported that the primary visual cor-
tex (V1) counteracts biases in a rapidly
changing stimulus ensemble by introduc-
ing the appropriate opposing biases in
the responsiveness and selectivity of neu-
rons. Using sequences of differently ori-
ented gratings (32 ms frame duration)
and biasing the input statistics toward
one orientation (the “adaptor”), such that
the selected orientation occurred three to
four times more often than all other ori-
entations, a remarkable adaptive behav-
ior was found: decreased activities in
response to the adapter were exactly coun-
terbalanced such that the average pop-
ulation signal was kept constant. This
was attributed to homeostatic mechanisms
“that work toward two simple goals: to
maintain equality in the time-averaged
responses across the population and to
enforce independence in selectivity across
the population.” When calculating the nec-
essary time span to show these effects, the
authors concluded that V1 needs ∼1.7 s
in order to catch up with the actual sta-
tistical input properties and, thus, adapt

adequately to the bias within the sequence
of input.

While it is an intriguing idea, assign-
ing V1 a role as a probability detector
that integrates incoming information over
a considerable time of multiple seconds,
our own data (Nortmann et al., 2013)
revealed a much smaller time window
for a similar effect; that is, responses to
the adapting orientation and to all other
orientations balanced each other within
100 ms (Figure 1A, hatched areas in bot-
tom graph). In this study, we used voltage-
sensitive dye imaging to capture V1
population dynamics and applied unbi-
ased 10-Hz sequences of oriented stimuli.
Moreover, our data suggest that this mech-
anism is effective for gratings as well as for
natural stimuli, and even for single isolated
switches. In the example shown, vertically
and horizontally filtered natural images
were presented, depicted here as grat-
ings for simplicity. Because superimposed
orientations were also embedded (cf.
plaid in Figure 1A marked purple) in
our sequences, a switch from a sin-
gle orientation to superposition could be
analyzed with respect to its underlying
adapting component (marked red) and
the newly added orientation (i.e., the
changing component, blue). Comparing
the calculated superimposed component
responses with the measured superposi-
tion responses revealed that population
tuning amplitude for adapted orientation
decreased (see purple line and downward
arrow) while activity of the changing ori-
entation was facilitated in the opposite
direction (upward arrow). Strikingly, the

effect was also valid for switches in oppo-
site direction; that is, when a single ori-
entation was removed from superposition,
most likely due to increased contributions
from OFF responses. In addition, these
results suggest that V1 encoded orienta-
tion differences rather than current ori-
entations (see Eriksson et al., 2012 for
similar findings) and hence, reduced input
redundancies in accordance with predic-
tive encoding principles (Rao and Ballard,
1999). These immediate dynamics might
be mediated by tuned “push–pull”-like
mechanisms (Hirsch et al., 2003) involving
synaptic depression (Nelson, 1991) and
post-inhibitory rebound (Creutzfeld and
Struck, 1962; Sanchez-Vives et al., 2000).

Although the stimulation protocols in
the studies outlined here have differed in
several aspects, we think a link between
them exists. The biased stimulation pro-
tocol in Benucci et al. (2013) inevitably
promotes occurrence of doublets, triplets,
etc. and thus repeated frames, leading
to longer adapter durations of effec-
tively 64, 96 ms etc., rather than inde-
pendent presentations of single adapter
frames (Figure 1B). Particularly, the onset
of adaptation may vary with the intro-
duced amount of statistical bias. Hence,
the reported 1.7 s window might com-
prise a stimulation-specific time span
needed for collecting enough responses to
long-duration adapters to reach the sig-
nal detection threshold (Figure 1B, inset)
within the particular regime of boundary
conditions. To be conclusive however, sev-
eral open questions remain to be addressed
in future experiments. For example, in
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FIGURE 1 | (A) In Nortmann et al. (2013), pseudorandom stimulus sequences of 17 stimuli
(vertically and horizontally filtered natural images, their superpositions, and isoluminant gray image)
were presented at 10 Hz (>64 shuffled repetitions). For switch-triggered averaging, sequences
were aligned to a specific switch between a pair of stimuli, here to a switch from a single
orientation to superimposed horizontal and vertical orientations (see sketch in gray box at top). Plot
depicts fitted V1 population tuning curves for adaptive component (red), changing component
(blue), and composite switch (purple curve, median across 12 different experiments). Hatched areas
indicate deviations (∼20%) from the component average (gray). (B) Introducing a bias in one
orientation (“adapter”) across random sequences of differently oriented gratings. A simple
permutation test was done: adapter bias was set to 30% probability, 12 different orientations were
simulated (100 repetitions), single frame = 32 ms, overall stimulation time was 20 s (#625 frames),
as used in Benucci et al. (2013). Number of adapter occurrences as single, doublet, triplet,
quadruple, and quintuple (black, gray, red, blue, and green, respectively). Inset: number of counts
(black horizontal line represents N = 1) for 96 and 128 ms periods of adapter stimulation after 3 s of
sequence presentation. After 0.6 s, probability is enhanced to include at least one triplet (red; cf.
start of adaptation effect in Supplementary Figure 5 of Benucci et al., 2013). After 1.7 s, a presence
of quadruple is likely (blue); variance was smaller than line width.

Benucci et al. (2013), adaptation occurs
exponentially, whereas probability for long
duration adapters increases linearly. Thus,
it is not clear if the counterbalancing
effects, as observed in Nortmann et al.
(2013), are of sufficient magnitude to
explain homeostasis as found by Benucci
et al. (2013). Moreover, in Benucci et al.
(2013) the phase of the gratings was varied
while Nortmann et al. (2013) used sta-
tionary images. The latter could promote
contributions of simple cells, whereas
variation in phase averages these out
and may enhance nonlinear complex cell
contributions.

Regardless of the underlying neural
mechanisms: which benefits are provided
by cortical adaptation in the hundreds
of milliseconds up to second ranges?
One may ask the question the other way
around: which disadvantages are brought
about by longer adaptation times? As
often, the answer depends on the task.
We suggest that this is when eye move-
ments come into play. For inspection of
fine details within natural scenes, high-
frequency sampling is useful (Rucci et al.,
2007), requiring ongoing cortical encod-
ing (Benucci et al., 2009; Nortmann et al.,
2013), and rapid transmission of informa-
tion along with further adaptive cortical
mechanisms acting at tens of milliseconds
(Felsen et al., 2002). In contrast, for sac-
cades occurring at much lower frequen-
cies and on larger spatial scales, it may
be advantageous to emphasize stimulus
differences to past input (Movshon and
Lennie, 1979; Müller et al., 1999; Dragoi
et al., 2000), as natural scene statistics pre-
dict distant image structure sampled by
saccades, to be weakly correlated (Dragoi
et al., 2002).

In the study by Benucci et al. (2013),
the dense sampling over different orienta-
tions (up to 12) allowed a comprehensive
modeling account for cortical homeostasis
and decorrelation effects across fine-scaled
orientation space. In our work (Nortmann
et al., 2013), we showed counterbalanc-
ing effects already after 100 ms adapter
times, without probabilistic accumulation
of external stimulus statistics over seconds.
In fact, the underlying internal process-
ing dynamics may have been implemented
in neuronal functioning via adaptation to
embodied sensorimotor regularities, such
as provided by eye movements. As empha-
sized in Benucci et al. (2013), adaptation
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operates on multiple timescales (Wark
et al., 2007; Haak et al., 2014). In this way,
indeed, input statistics experienced during
a lifetime may guide manifold cortical net-
work properties while “homeostasis” acts
as a dynamic attractor that maintains the
ability of the cortex to perform lively devi-
ations from baseline across populations of
neurons.
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