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Abstract

In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and 

anaphylaxis development. We repeatedly observed non-responder animals protected from food 

allergy. Here, we aimed to analyse reasons for this protection. Ten out of 64 mice, subjected to oral 
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ovalbumin (OVA) immunizations under gastric acid-suppression, were non-responders without 

OVA-specific IgE or IgG1 elevation, indicating protection from allergy. In these non-responders, 

allergen challenges confirmed reduced antigen uptake and lack of anaphylactic symptoms, while 

in allergic mice high levels of mouse mast-cell protease-1 and a body temperature reduction, 

indicative for anaphylaxis, were determined. Upon OVA stimulation, significantly lower IL-4, 

IL-5, IL-10 and IL-13 levels were detected in non-responders, while IL-22 was significantly 

higher. Comparison of fecal microbiota revealed differences of bacterial communities on single 

bacterial Operational-Taxonomic-Unit level between the groups, indicating protection from food 

allergy being associated with a distinct microbiota composition in a non-responding phenotype in 

this mouse model.
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1 Introduction

Severity and unpredictability of clinical reactions in context with food allergy are major 

challenges for patients, caretakers and health care personnel. The observed clinical response 

might differ between food allergic patients ranging from mild local symptoms like the oral 

allergy syndrome to severe systemic reactions such as anaphylaxis [1,2]. Actually, food 

allergy is among the main causes for potentially life-threatening anaphylaxis accounting for 

41% of fatal reactions as reported to an European anaphylaxis registry [3]. For an efficient 

definition of allergy prevention measures, a profound mechanistic knowledge on sensitizing 

events is fundamental.

During the past years, we have investigated the association between anti-ulcer drug intake 

and food allergy development [4–10]. In firrst human studies in adult patients, a 3 months 

treatment with anti-ulcer drugs led to an increase of pre-existing food-specific IgE titers in 

10% of patients, and to de novo sensitization against common dietary compounds in 15% of 

patients [8]. Among them, in 60% of patients with hazelnut-specific IgE clinically relevant 

food allergy was diagnosed by double-blind placebo controlled food challenges [10]. Further 

studies indicated an influence of either maternal gastric acid-suppression during pregnancy 

or anti-ulcer drug treatment of pediatric patients on the development of food allergy also in 

children [7,11–14].

Based on these murine and human data, a mouse model of oral sensitization under 

concomitant acid-suppression was developed being associated with induction of allergen-

specific IgE, elevated Th2 cytokines and positive skin tests [5]. This immunization protocol 

induced severe clinical responses evidenced by positive mucosal testing, a drop of body 

temperature after provocations and a sustained mediator release [5,6,9].

However, in both, human and experimental studies, a certain percentage of individuals is 

protected from food allergy development during intake of anti-ulcer medication. This 

heterogeneity of reactivity especially in experimental studies with inbred mouse strains has 
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been a matter of debate. To gain novel mechanistic insights, the overall aim of the current 

study was to phenotype those mice being protected from food allergy development (non-

responders) in comparison with animals revealing marked systemic food allergic symptoms 

after immunizations based on our experimental food allergy protocol.

2 Material and methods

2.1 Animals and immunization regimen

Sixty-four female BALB/cAnNCrl mice (aged 6–8 weeks, 15–20 g) were purchased from 

Charles River Laboratory (Charles River Laboratory, Sulzfeld, Germany). Mice were kept in 

polycarbonate Makrolon cages (Ehret GmbH, Emmendingen, Germany) with filter tops and 

espen wood bedding (Ehret GmbH, Emmendingen, Germany) and housed under 

conventional conditions (12 h light/dark cycle at 22 °C). The animals were kept on an 

ovalbumin (OVA) free diet (Ssniff, Soest, Germany) with ad libitum access to food and 

water. Treatment of the animals was performed by trained staff in the morning in an animal 

experimentation room. Animals were treated according to European Union guidelines of 

animal care and with permission of the ethical board of the Medical University of Vienna 

and the Austrian Federal Ministry of Science and Research (permission number GZ 

BMWF-66.009/0051-II/10b/2008). All animals were subjected to our previously established 

food allergy protocol [5] with modification. On days 1 to 3, animals were treated 

intravenously (i.v.) with the proton pump inhibitor (PPI; Losec® Astra Zeneca GmbH, 

Wedel, Germany; 116 μg omeprazole in 100 μL sterile sodium chloride) 2 times within 1 h. 

On days 2 and 3, mice were fed 0.2 mg OVA (Sigma Aldrich, Vienna, Austria, #A5503) in 

combination with sucralfate (2 mg; Ulcogant®, Merck, Vienna, Austria) 15 min after the 

second PPI i.v. injection. This immunization cycle was repeated for 7 times (Fig. 1A). Out of 

the total of 64 animals undergoing the immunization protocol, we defined 10 animals of 

interest based on their IgE and IgG1 antibody titers after the last immunization step. These 

ten mice revealed antibody levels below the detection limit and were classified as antibody 

non-responder group (group N, n = 10/64; Fig. 1B). They were compared to 10 control 

animals with an OVA-specific IgE antibody response above 15 ng/mL classified as highly 

sensitized (allergic) group (group A; n = 10/64). This cut-off level was chosen based on our 

numerous previous immunization studies investigating clinical response upon oral 

immunizations under gastric acid suppression [5,6,9] and own unpublished data. All other 

sensitized animals with IgE responses below 15 ng/mL and above background values as well 

as OVA-specific IgG1 responses (n = 44) were excluded from this study. Four weeks after 

the last immunization, mice were subjected to an oral PBS challenge for control purposes to 

exclude unspecific changes during provocation and 10 days later to an oral OVA provocation 

(50 mg per mouse; oral challenge 1 (OC1)). Mice were fasted overnight before oral 

challenges with access to water only. One hour after each challenge, blood was collected for 

measurements of mouse mast cell protease-1 (mMCP-1) as well as OVA uptake. Four days 

thereafter, animals were re-challenged with OVA i.g. (OC2) to induce a strong local 

intestinal allergic response. One hour later, mice were challenged i.v. (50 μg OVA in 50 μL 

0.9% sodium chloride) to trigger a systemic anaphylactic response. Mice were sacrificed 15 

min thereafter.
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Blood samples were taken prior to the first immunization step and 2 weeks after the last 

immunization, 1 h after the PBS challenge as well as after the first OVA challenge (OC1).

2.2 Antibody measurements

Mouse sera were collected before the first and 2 weeks after the last immunization step and 

screened for OVA-specific IgE, IgG1, IgG2a and IgA in ELISA, as described recently [5] 

using rat anti-mouse IgG1, IgG2a, IgA and IgE (0.1 μg per well, BD Biosciences, 

Heidelberg, Germany) and peroxidase-labeled goat anti-rat IgG (1:1000, Amersham, 

Buckinghamshire, UK). After sacrifice, mouse intestines were removed and flushed with 2 

mL extraction buffer (Complete Mini, Roche) for detection of mucosal total and OVA-

specific IgA levels. For total IgA determination, microtiter plates were coated with a rat anti-

mouse IgA (0.1 μg per well; BD Biosciences) overnight at 4 °C. After washing, wells were 

blocked with 1% bovine serum albumin in TBS containing 0.05% Tween for 2 h. Thereafter, 

standard dilution series or mucosal lavage fluid (diluted 1:1000) were added for 30 min. 

After repeated washing, a biotin-labeled anti-mouse IgA antibody (0.1 μg per well; BD 

Biosciences) was added for 30 min. After washing, wells were incubated with horseradish 

peroxidase-labeled streptavidin (1:5000, Pierce, Rockford, USA) and the color reaction was 

developed using tetramethylbenzidine (TMB) substrate and measured at 450 nm with 

reference 630 nm.

OVA-specific IgA was determined in intestinal lavage fluid as described above for serum 

OVA-specific IgA, except that mucosal lavage samples were applied undiluted. Antibody 

titers were calculated according to standard dilution series using mouse IgA, IgE, IgG1 and 

IgG2a antibodies (BD Biosciences) after subtraction of antibody levels before the first 

immunization as described before [5].

2.3 Systemic OVA uptake

For measurements of OVA levels in serum samples collected after OC1, microtiter plates 

were coated with a mouse anti-OVA capture antibody (0.1 μg per well; AbD Serotec) 

overnight at 4 °C. After washing, wells were blocked with 1% dry milk powder in TBS 

containing 0.05% Tween for 2 h. Thereafter, serum samples (diluted 1:4) were added 

overnight at 4 °C. After repeated washing, a rabbit anti-OVA antibody (0.025 μg per well; 

Thermo Scientific) was added for 2 h. After washing, wells were incubated with horseradish 

peroxidase-labeled anti-rabbit antibody (1:6000, Thermo Scientific) and the color reaction 

was developed using TMB substrate and measured at 450 nm with reference 630 nm.

2.4 Gastric pH measurements

The efficacy of PPI injections to elevate the gastric pH was evaluated 1 h after i.v. PPI 

application, as described previously [5]. The pH was measured on a pH-meter after diluting 

150 μL gastric fluids in 1.3 mL distilled water. As controls, 150 μL 0.9% sodium chloride or 

150 μL pH calibrating solution in distilled water were used.

2.5 Anaphylaxis read-out

To evaluate allergen-specific severe clinical responses after OVA challenges, mouse sera 

were screened for the mast cell degranulation marker mMCP-1 using the mouse mMCP-1 

Diesner et al. Page 4

Clin Immunol. Author manuscript; available in PMC 2017 June 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



ELISA kit (eBioscience, Vienna, Austria, #88-7503), as described recently [8]. Serum 

samples were taken 1 h after PBS challenge (as negative control) and after the first oral OVA 

challenge (OC1). Hypothermia as a consequence of systemic anaphylaxis was assessed by 

measurements of rectal body temperature before and 5 and 10 min after i.v. OVA challenge.

2.6 Spleen cell stimulation and cytokine measurement

After sacrifice, spleens were removed under sterile conditions and spleen cells were 

prepared as described [5]. Spleen cells were stained for CD4+ CD25+ Foxp3+ T-regulatory 

cells with the mouse regulatory T-cell staining kit (eBioscience, #88-8111), according to the 

manufacturer's instructions. Absolute numbers of CD4+ T-cells and CD4+ CD25+ Foxp3+ T-

cells were calculated per spleen.

For cytokine measurements, spleen cells were stimulated with OVA (0.2 μg per well), 

medium for 72 h. Undiluted spleen cell supernatants were screened for cytokine production 

using the mouse Th1/Th2/Th17/Th22 13plex FlowCytomix Multiplex kit (eBiosciences, 

#BMS822FF), following manufacturer's instructions. Acquisition was performed on a FACS 

Calibur flow cytometer (BD Biosciences) and data were analyzed using the eBioscience 

FlowCytomix Pro Software.

2.7 Histological evaluations of gastro-intestinal tissue sections

Stomach and intestine were removed under sterile conditions and put into 4% 

paraformaldehyde overnight and then transferred into PBS. The stomach was cut open along 

the sagittal plane. The intestine was transversally cut using a random start and a cutting 

interval of 2 cm to obtain systematic uniform random samples. Sections of paraffin 

embedded samples (3–4 μm thickness) were stained with haematoxylin/eosin (HE) for 

inflammatory infiltrates, periodic acid-Schiff reagent (PAS) for goblet cells, and 

chloracetate-esterase (CAE) for detection of myeloid cells in the mucosa as previously 

described [15].

2.8 Bacterial community composition in feces samples

Ten days before sacrifice, feces samples were collected from individual animals by placing 

the mouse into a restrainer to avoid cross-contamination. Feces samples were immediately 

shock-frozen in liquid nitrogen and stored at −80 °C until further processing.

About 35 mg of fecal samples per mouse were used for microbiome analyses. Total bacterial 

genomic DNA was extracted using NucleoSpin Kit for Soil (Macherey-Nagel, Dueren, 

Germany) following the manufacturer's instructions. Amplification of the V6–V9 region of 

16S rRNA gene was performed with primer 926F (5′-AAACTYAAAKGAATTGACGG-3′) 
[16] and 630R (5′-CAKAAAGGAGGTGATCC-3′) [17] with the attached Roche 454 

sequencing adaptors. For multiplexing purposes the forward primer included a 10-nt barcode 

sequence. Three independent PCRs were performed for each sample with Fast Start High 

Fidelity PCR System (Roche, Mannheim, Germany) containing 20 ng of template DNA with 

an optimal annealing temperature of 50 °C and 22 cycles. PCR reactions were pooled and 

purified using QiaQuick PCR Purification Kit (Qiagen, Hilden, Germany). After 

quantification using a Quant-iT™ PicoGreen dsDNA quantification kit (Invitrogen, Paisley, 
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UK), samples were equally pooled. The sequencing of this amplicon library was performed 

on a Roche 454 GS FLX Pyrosequencer (Roche, Mannheim, Germany) using Titanium 

chemistry. Amplicons were sequenced unidirectionally as recommended in the 

manufacturer's instruction for amplicon Lib-L libraries. Sequences were processed and data 

were analyzed according to the 454 Schloss standard operating procedure (SOP; http://

www.mothur.org/wiki/Schloss_SOP) [18] with the software Mothur v.1.29.0 [19]. Reads 

were denoised, quality filtered and trimmed. For taxonomic analysis, sequences were 

aligned against Silva SEED alignment database [20], chimeras were removed using 

UCHIME implementation [21] in Mothur, and taxonomic assignment was performed using 

RDP trainset with a cut-off of 80% [22]. To compare equal numbers of sequences of each 

fecal sample, subsamples with 10,429 sequences were generated. Sequences with similarity 

>97% were combined to one OTU. Prior to the statistical analysis, all OTUs with <0.01% of 

the total abundance were excluded from the analysis.

2.9 Statistical analysis

Data evaluation was done using GraphPad Prism 5 software. First, results were tested for 

normal distribution followed by unpaired t-test. Cytokine levels results were analyzed using 

two-way ANOVA and Bonferroni multiple comparison test. A p-value < 0.05 was 

considered statistically significant.

Statistical analysis of gut microbiome data was performed using R platform (R version 

2.15.1) with the packages VEGAN [23] and ade4 [24] and custom R scripts. Hellinger 

transformed OTU abundances were used to compare community patterns between the two 

groups by Principal Component Analysis (PCA). In addition, a multivariate analysis of 

variance (npMANOVA), based on Bray-Curtis distance on relative OTU abundances was 

performed. Wilcoxon-Mann Whitney tests were performed on OTU levels to compare 

groups N and A. Differences with an p-value < 0.01 were considered to be statistically 

significant.

3 Theory

Using an inbred mouse strain with all animals housed under identical conditions and 

immunized following a standardized protocol, a uniform immune response would be 

expected. Due to different responses in previous experiments we aimed to retrospectively 

phenotype animals, which were protected from food allergy development, and compare them 

to allergic control animals. This work should establish a sound basis for further studies to 

prospectively induce a phenotype protected from food allergy development, with the final 

aim of developing allergy prevention strategies.

4 Results

4.1 Determination of specific antibody levels allows classification of mice as non-
responders versus highly sensitized animals

Sixty-four mice were subjected to our protocol of oral food allergy induction (Fig. 1A). 

After the last immunization step, 10 out of 64 animals of interest were identified based on 

lack of OVA-specific antibodies (Fig. 1B), i.e. non-responder animals, group N (Fig. 2A–D). 
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They were compared to 10 control mice (10/64), which mounted high levels of OVA-specific 

IgE (Fig. 2A), IgG1 (Fig. 2B), IgG2a (Fig. 2C) and IgA (Fig. 2D) responses. These animals 

were classified as the highly sensitized, allergic group A. Mice with OVA-specific IgE below 

15 ng/mL but above background levels, as well as with specific IgG1 responses were 

excluded from further analysis (n = 44).

For read-out of clinical symptoms animals were orally challenged with OVA twice to induce 

a strong mucosal response. Systemic OVA uptake was evaluated in serum samples after oral 

challenges (Fig. 3A). We observed higher levels of circulating OVA in the highly sensitized 

animals (group A), which might point towards an enhanced intestinal uptake compared to 

non-responder animals (group N). Additionally, mice were subjected to an i.v. OVA 

provocation to investigate their potential for a systemic anaphylactic response. Mouse mast 

cell protease-1 (mMCP-1) levels, which indicate a mast cell-dependent anaphylactic 

response, were measured in serum taken 1 h after PBS and first oral OVA challenge (OC1) 

(Fig. 3B). We detected only baseline mMCP-1 levels in challenged non-responders (group 

N), which were significantly lower as compared to the allergic mice. To ensure the antigen-

specificity of the anaphylactic response, mice were also challenged with PBS 10 days before 

the first OVA challenge. Mouse MCP-1 titers were below 10 ng/mL and did not differ 

between the 2 groups after oral PBS challenges (data not shown). Additionally, 8/10 mice of 

the allergic animals developed a reduction of body temperature, being defined as a decrease 

of at least 0.5 °C, measured after oral OVA provocation (data not shown). The temperature 

drop 5 and 10 min after i.v. OVA challenge was significantly more pronounced in the 

allergic animals of group A (Fig. 3C).

4.2 Serological differences are associated with distinct intestinal IgA levels

As a surrogate marker for mucosal humoral defense and potential protective factor in food 

allergic responses, total IgA and OVA-specific IgA in intestinal lavage fluids of the 

immunized animals were measured. Intestinal total (Fig. 4A) and OVA-specific IgA (Fig. 

4B) levels were significantly lower in the non-responders (N) compared to allergic animals 

(A).

To rule out the possibility that the differences in antibody production might be caused by 

variable responsiveness of mice to the gastric acid-suppressive effect of PPIs, we performed 

gastric pH measurements 1 h after PPI injection. Comparable elevated gastric pH levels were 

determined in both groups (Fig. 5).

Sagittal sections of the stomach and transverse, uniform systematic random sections of the 

intestine stained with HE and CAE for inflammatory infiltrates, and myeloid mucosal cells, 

respectively, showed comparable gastrointestinal morphology between the groups (Fig. 6).

4.3 IgE responders have stronger Th2 responses, but also higher T-regulatory cell 
numbers

To assess whether differences on the antibody level were accompanied by differences in T-

regulatory cell subsets, spleen cells were stained for CD4, CD25 and Foxp3 and analyzed by 

flow cytometry. No significant differences in total spleen cell numbers were found between 

the two groups. The absolute numbers of CD4+ T-cells (Fig. 7A) and CD4+ CD25+ Foxp3+ 
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T-regulatory cells (Fig. 7B) were significantly lower in the non-responder animals (N) 

compared to allergic mice (A). Cytokine levels were measured in supernatants of spleen 

cells, which were stimulated with medium, to investigate the background levels of cytokine 

production, or with OVA, to induce an allergen-specific cytokine response. In a 

FlowCytomix multiplex approach, 13 different cytokines were measured (Table 1). In line 

with the increased IgE response the Th2 type cytokines IL-4, IL-5 and IL-13 were 

significantly higher after OVA stimulation in the allergic mice than in group N. No group 

differences were observed for IL-22, however, this cytokine was significantly elevated 

within group N when antigen-specific splenocyte stimulation was compared to stimulation 

with medium control. Interestingly, the T-regulatory cell associated cytokines IL-10 and 

IL-27 were higher in the allergic animals (group A) being in line with the higher numbers of 

T-reg cells, indicating a counter-regulatory mechanisms in this group. IL-2 as cytokine for T-

cell proliferation and differentiation was significantly elevated in the OVA-stimulated spleen 

cells of allergic mice (Table 1).

4.4 Bacterial OTU differences in feces samples of non-responder mice and anaphylactic 
animals

Feces samples of individual mice were analyzed to identify gut bacterial community 

composition. 454-pyrosequencing of the V6-V9 region of the 16S rRNA gene was 

performed. After quality check and subsampling, an output of 10,429 sequences per fecal 

sample was obtained. All sequences with at least 97% similarity were considered as 1 OTU 

resulting in the detection of 409 OTUs. Principal component analysis (PCA) demonstrated 

only very limited clustering of OTUs identified in the fecal samples of animals within the 

same group (PCA; Fig. 8A). npMANOVA analysis was used to compare the group of 

interest with the allergic control animals for differences in the bacterial community 

composition on OTU level. No significant differences could be shown (p = 0.349). After 

taxonomic classification of sequence data, we did not detect OTUs of the 

Porphyromonadaceae family assigned to Barnesiella (OTU 185) and Tannerella (OTU 213) 

genus (Fig. 8B and C) in the non-responders. Therefore, these two OTUs belonging to the 

Porphyromonadaceae family were not present in animals being protected from food allergy. 

Higher abundances of sequences showing high similarities to Synthrophaceae 
(Deltaproteobacteria) and Ruminococcaceae (Firmicutes, Clostridia) were found in the 

antibody non-responder animals (group N) compared to the allergic animals (group A), 

where Smithella (OTU 233, Fig. 8D) and Faecalibacterium (OTU 102, Fig. 8F) were not 

found and the abundance of Acetivibrio (OTU 289, Fig. 8E) was significantly lower.

5 Discussion

Food allergy does affect patients' quality of life and represents an enormous economic 

burden [25] with major efforts for patients, their caretakers and regulatory authorities. 

Therefore, researchers have focused on identifying underlying mechanisms of food allergy 

development using animal models. Although substantial differences are known between 

human and mouse allergic responses, food allergy mouse models provide important and 

useful information on disease mechanisms [26,27]. However, a number of different routes 
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and protocols of sensitizations has been published so far, rendering direct comparison of 

results from studies highly complex [28].

The advantage of our oral food allergy model in BALB/c mice is the physiological 

sensitization route applying the allergen intragastrically under acid suppressive medication 

without further adjuvants [5]. Even though in our animal experiments inbred mice were 

housed and sensitized under identical conditions, immune responses were not uniform [4–

7,9,10,29–32] (and own unpublished data). Thus, in the present study we aimed to 

phenotype mice being protected from food allergy in comparison to mice being highly 

sensitized and anaphylactic after immunizations.

Based on this retrospective approach, we identified 3 distinct features of animals protected 

from food allergy development: 1) a tight intestinal epithelium, 2) elevated levels of IL-22 

and 3) a distinct microbial composition.

The integrity of the intestinal epithelium is one of the first major regulatory mechanisms 

against the development of food allergy. A “leaky gut”, meaning the damage of the epithelial 

barrier function and an increased uptake of food antigens and allergens into the system, can 

facilitate allergic responses if other local pro-inflammatory signals are present. In our model 

we observed significantly lower serum concentrations of orally applied OVA only in the 

animals protected from food allergy, which might indirectly point towards a lower uptake of 

the allergen via the mucosa. Functional intestinal epithelial integrity has been linked to 

secretory immunity as mice deficient for sIgA and IgM have increased mucosal leakiness 

[33,34]. In general, mucosal IgA is important for the immunological defense against 

exogenous antigens and pathogens by exclusion, and thus, might be protective and lead to 

mucosal tolerance [35]. Some studies revealed tolerant mice to have more secretory IgA than 

sensitized animals [36]. However, also in mice deficient for the polymeric immunoglobulin 

receptor, and thus lacking secretory IgA, oral tolerance can be induced. This observation led 

to the conclusion that IgA is probably not the only control mechanism of oral tolerance 

[37,38]. In contrast, a recent study using a cholera toxin-based mouse model of cow's milk 

allergy revealed high IgA levels in plasma and colon homogenates upon a 6 weeks 

immunization protocol [39]. It might be hypothesized that in food allergy increased amounts 

of allergen-specific IgA are secreted into the intestine as counter mechanism to avoid 

intestinal allergen uptake or as a result of the overall enhanced immune response, which 

might be the explanation for the observed higher local and systemic IgA levels in allergic 

mice in our food allergy model.

In addition to the local secretory immune differences we observed changes in intestinal 

bacterial colonization patterns between the groups. Although inbred animals were housed 

and treated identically, non-allergic animals (group N) revealed significantly higher 

abundances of sequences belonging to Synthrophaceae (Deltaproteobacteria) and 

Ruminococcaceae (Firmicutes, Clostridia), whereas two OTUs of the Porphyromonadaceae 
family were more abundantly present only in allergic animals (group A). Variations in gut 

microbiota are associated with the induction of several diseases, including diabetes, obesity 

and cancer [40] and were strongly linked to the development of atopic disorders [41], 

including food allergy [42]. In line with the hygiene hypothesis [43], a reduced or altered 
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microbial load may insufficiently counterbalance a Th2 response thus favouring the 

occurrence of food allergy [44]. In mice, it appears that even minor differences in the gut 

microbiome can have substantial effects on experimental models of disease. Inbred mice 

with the same genetic background obtained from two different suppliers featured different 

dominant microbial communities [45]. Changes in microbial composition were further 

induced by variations of diet, by moving young mice from one room to another or by stress 

[40,46]. Therefore, inconsistencies within animal experiments may be related to the 

observed differences in the bacterial composition. In our mouse model, animals were 

obtained from the same supplier. Offspring of different mothers were randomly grouped and 

were all fed the same OVA-free diet. Interestingly, Tannerella forsythensis and 

Porphyromonas gingivalis, both belonging to the Porphyromonadaceae family, which was 

present at significantly higher levels in allergic mice in our study, were shown to stimulate a 

strong pro-inflammatory epithelial immune response under anaerobic conditions [47]. With 

regard to food allergy, the Porphyromonadaceae family was also found in OVA sensitized 

Il4raF709 mice together with Rikenellaceae species, to discriminate between OVA sensitized 

and PBS sensitized mice [48].

Moreover, Ruminococcaceae, belonging to the system of Clostridiales, might be linked to 

IL-22, as Clostridia-containing microbiota protected against sensitization to food allergens 

and induced IL-22 [49], which has been characterized for its protective and inflammatory 

functions and its regulatory role on intestinal epithelial integrity [50,51]. In line with these 

results we observed higher levels of IL22 after OVA stimulation of spleen cells in tolerant 

mice, which had higher abundances of Ruminococcaceae, compared to allergic animals. 

However, at this point it can only be speculated whether the OTUs more abundantly present 

in the tolerant group can explain the non-responsiveness of these animals. As we collected 

feces samples only shortly before sacrifice, it is not possible to draw conclusions on 

bacterial composition before and during food allergy development. We do not know at this 

point whether the significantly more abundant OTUs were found in the respective animals 

already before sensitization and, therefore, had a direct influence on the development of the 

immune response, or whether the suppression of these OTUs occurred as a result of the 

immunization process and had an indirect effect on the sensitization.

In conclusion, our food allergy animal model likely reflects the situation in human patients. 

By phenotyping animals being protected from food allergy we determined a reduced uptake 

of OVA, presumably due to a tighter epithelium, elevated allergen-specific IL-22 levels and 

absence or higher abundance of distinct bacterial strains to be associated with allergy 

protection. Without any doubt, it will be essential for future studies to evaluate whether 

changes of microbiota composition as observed in this retrospective evaluation can 

prospectively achieve induction of a phenotype protected from food allergy development.
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Fig. 1. 
Immunization scheme and selection of animals. Sixty-four BALB/c mice were immunized 

(panel A) according to the protocol described in the methods section. Based on the lack of 

OVA-specific IgE and IgG1 antibodies, 10 animals were selected as the group of interest 

(non-responder, group N; panel B). They were compared to highly sensitized animals, which 

were characterized as being anaphylactic during the study evaluations (group A). IMM, 

immunization; MIS, mouse immune serum; OC, oral OVA challenge; i.v. C., intravenous 

challenge.
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Fig. 2. 
OVA-specific antibody profile in murine sera. OVA-specific IgE (A), IgG1 (B), IgG2a (C) 

and IgA (D) levels were determined by ELISA. According to the serological status, animals 

of interest were selected as antibody non-responders (group N) and compared to highly 

sensitized control animals (group A). Data represent mean + standard error of the mean 

(SEM); ****p < 0.0001, ***p < 0.001, **p < 0.01.
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Fig. 3. 
Differences in antigen uptake and clinical responses. After OVA gavage, higher OVA 

concentrations in serum (A) were found in allergic mice (group A). Mouse MCP-1 levels (B) 

were significantly elevated in group A after the first oral OVA challenge (OC 1). Rectal 

temperature (C) was measured before and 5 and 10 min after i.v. OVA provocation of 

antibody non-responders (triangle) and highly sensitized animals (circles). Data represent 

mean + SEM; *p < 0.05.
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Fig. 4. 
IgA levels in intestinal lavage fluid. Total (A) and OVA-specific IgA (B) were measured in 

intestinal lavage fluid by ELISA. Data represent means + SEM; **p < 0.01, *p < 0.05.
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Fig. 5. 
Gastric pH measurement after anti-ulcer medication. Acid-suppressive medication induces 

comparable elevated intragastric pH levels in all animals. Gastric pH was measured one hour 

after i.v. PPI injection on day of sacrifice. Data represent mean + SEM.
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Fig. 6. 
Histology of mouse intestines. Representative micrographs of paraffin sections of jejunum 

stained with HE (upper row: apical portion of villi, middle row: basal portion of villi; 1:40) 

and CAS staining (bottom row, 1:40) are shown. Left panels for group N and right panels for 

group A. No significant differences were found with respect to epithelium, infiltrating 

eosinophils and myeloid / mast cells .
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Fig. 7. 
T-regulatory cell subset staining of splenocytes. Significantly lower numbers of T-cells are 

found in spleens of antibody non-responder animals. Absolute numbers of CD4+ T-cells (A) 

and T-reg cells (CD4 + CD25 + Foxp3+) (B) were evaluated by flow cytometry. Data are 

mean + SEM; *p < 0.05.
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Fig. 8. 
Analysis of bacterial community composition of murine feces samples of non-responder (N) 

and allergic (A) mouse groups. Hellinger transformed sequence abundance data on OTU 

levels were analyzed by principal component analysis (A). Relative abundances of 

Barnesiella (OTU 185; B), Tannerella (OTU 213; C), Smithella (OTU 233; D), Acetivibrium 
(OTU 289, E) and Faecalibacterium (OTU 102; F) are shown in boxplot analyses for each 

group N and A. The boxes represent the inner quartile value range with the median indicated 

as black line.
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