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ABSTRACT We report here the complete genome sequence of Geobacillus sp. strain
E55-1, isolated from the hot sediments of Mine Geyser in Japan. This strain exhibited
�85% average nucleotide identity and �98.5% 16S rRNA sequence identity with the
most closely related Geobacillus species.

The genus Geobacillus comprises a group of Gram-positive thermophilic bacterial
species (1) that were originally classified as group 5 within the genus Bacillus but

were later reclassified as a new genus, Geobacillus (2). Researchers are interested in
Geobacillus from a biotechnological point of view, particularly as a source of thermo-
philic enzymes (3).

We collected hot sediment samples at Mine Geyser in Japan (4, 5), which were
spread over Lennox-LB agar (1.5% [wt/vol]) plates. After overnight incubation at 55°C,
several single colonies were isolated. Colony PCR was conducted to amplify the nearly
full-length 16S rRNA gene using a set of primers, Bac8f(C) and UN1541r(U) (6). DNA
sequencing analysis suggested that many of them were affiliated with one of the
following thermophilic bacilli: Bacillus, Geobacillus, or Anoxybacillus. One of the strains,
designated E55-1, showed 98.5% identity with the 16S rRNA genes of a Geobacillus
species; this strain was subjected to whole-genome analysis by combining Oxford
Nanopore Technologies (ONT) and Illumina sequencing technologies. All software
analyses were implemented with default settings.

Cells were grown in Lennox-LB broth at 55°C for 18 h. Genomic DNA was extracted
from pelleted cells using lysozyme, proteinase K, and achromopeptidase for enhanced
cell lysis efficiency (7). For long-read sequencing, genomic DNA was treated with the
Short Read Eliminator XS kit (Circulomics). The resulting DNA was used to construct a
library using a ligation sequencing kit (SQK-LSK109; ONT). Sequencing was performed
using a GridION X5 system with a FLO-MIN106 R9.41 flow cell (ONT) for 6 h. Base calling
was performed using Guppy v.3.0.3 (ONT) to generate 68,238 reads corresponding to
781 Mb of genome with an average length of 11,447 bases. The raw reads were filtered
(quality [Q], �10; read length, �1,000 bases) using NanoFilt v.2.3.0 (8). The longest read
length was 198,777 bases.

For short-read sequencing, a library with �350-bp inserts was generated using the
Nextera DNA Flex library prep kit (Illumina), which was subjected to 156-bp paired-end
sequencing on the Illumina MiSeq platform. Adapter sequences and low-quality data
were trimmed (Q, �30; read length, �10 bases) using fastp v.0.20.0 (9), yielding 1.03
million paired-end reads, spanning 308 Mb with an average length of 149 bases.

The trimmed long- and short-read data were assembled using Unicycler v.0.4.8 (10) and
polished with Pilon v.1.23 (11), generating a single circular chromosome (3,754,053 bp,
51.0 mol% G�C content) and two circular putative plasmids, pGspE55-1 (126,981bp,
45.6 mol% G�C content) and pGspE55-2 (43,187 bp, 43.9 mol% G�C content). Coverages
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of short reads to the chromosome (72.9�) and plasmid (155.7� for pGspE55-1 and
274.4� for pGspE55-2) sequences suggested a copy number ratio of 1:2:4 in this case.

Automated annotation was performed using DFAST v.1.2.4 (12). The chromosome
contained 3,697 coding sequences, 89 tRNA genes, and 26 rRNA genes, while
pGspE55-1 and pGspE55-2 contained 134 and 65 coding sequences, respectively. A
Web-based JSpeciesWS search (13) revealed that E55-1 showed the highest �85%
average nucleotide identities with G. subterraneus KCTC 3922 (GenBank accession
number NZ_CP014342; 14) and G. kaustophilus HTA426 (NC_006510; 15), values that
were below the cutoff (95%) for novel species (16).

Data availability. The complete genome sequences are available from DDBJ/EMBL/
GenBank under the accession numbers AP022557 (chromosome), AP022558 (pGspE55-
1), and AP022559 (pGspE55-2). Raw sequencing data were deposited in the DDBJ/SRA
database under the accession numbers DRX197760 (Illumina MiSeq) and DRX197759
(GridION) (BioProject accession number, PRJDB9279; BioSample accession number,
SAMD00204259).
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