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SUMMARY
While genome-wide association studies (GWAS) have discovered thousands of disease-associated loci, mo-
lecular mechanisms for a considerable fraction of the loci remain to be explored. The logical next steps for
post-GWAS are interpreting these genetic associations to understand disease etiology (GWAS functional
studies) and translating this knowledge into clinical benefits for the patients (GWAS translational studies).
Although various datasets and approaches using functional genomics have been developed to facilitate
these studies, significant challenges remain due to data heterogeneity, multiplicity, and high dimensionality.
To address these challenges, artificial intelligence (AI) technology has demonstrated considerable promise in
decoding complex functional datasets and providing novel biological insights into GWAS findings. This
perspective first describes the landmark progress driven by AI in interpreting and translating GWAS findings
and then outlines specific challenges followed by actionable recommendations related to data availability,
model optimization, and interpretation, as well as ethical concerns.
INTRODUCTION

Decoding disease susceptibility is a central question in human

genetics and precision medicine. Genome-wide association

studies (GWAS) have discovered thousands of loci across the

genome that are significantly associated with human diseases

risk, indicating the genetic component and polygenicity underly-

ing most of the common diseases1,2 (Figure 1A). However, it is

challenging to determine the functional mechanisms for

GWAS-identified loci for several reasons. First, the association

of a locus does not specify the ‘‘causal variants’’ because

most variants with statistical significance are not biologically

causal but, rather, are correlated with the causal one(s) due to

linkage disequilibrium (LD)3 (Figure 1B). Second, it is unclear

which ‘‘target genes’’ are affected since most of these risk vari-

ants are non-protein coding and could regulate the transcription,

mRNA splicing, mRNA stability, and translation of nearby or

distant genes often in a tissue-/cell-type-specific manner4 (Fig-

ure 1B). Because of these challenges in deciphering the func-

tional mechanisms, it is even more difficult to translate GWAS

findings into clinical benefits for the patients.

Recently, increasing resources and datasets have been avail-

able to facilitate GWAS functional and translational studies

based on approaches such as expression quantitative trait locus

(eQTL)4 profiling, chromatin annotations (e.g., as cataloged in
This is an open access article under the CC BY-N
ENCODE5), and genome perturbation (e.g., CRISPR-based

screening6). These datasets provided fruitful features to infer

the ‘‘causal variants’’ and target genes underlying the GWAS

loci but are accompanied by substantial multiplicity and hetero-

geneity. For example, multiple datasets using different ap-

proaches (e.g., molecular QTL and chromatin interaction

studies) are valuable in linking variants to genes. However,

they often provide complementary or discordant results, making

it difficult to accurately weigh these complexities to achieve the

consensus. Moreover, even functional datasets using the same

experimental approach can be generated under specific con-

texts (tissue/cell types) with different statistical models or pa-

rameters, making the integration of such heterogeneous infor-

mation challenging.

Artificial intelligence (AI) technologies can be used to address

these challenges of dealing with diverse and heterogeneous

data. AI is an umbrella term for any computer program that has

the touch of human intelligence, encompassingmachine learning

and deep learning.7 Here, we used supervised deep learning, a

certain type of AI algorithm,8 as an example to demonstrate the

strengths of AI. Specifically, supervised deep learning (a classic

frameworkshowcased inFigure1C) enables (1) featureextraction

and pattern recognition based on the data itself, which negates

the need for labeling complex features; (2) iteration and gradient

strategy during training, which allows automatic optimization of
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parametric weights for accurate extraction and summarization of

complex features; and (3) multi-layer architecture consisting of

millions of neurons, which enablesmodeling of massive datasets

with data heterogeneity. For readers who are not familiar with su-

pervised deep learning, we have provided brief descriptions of

the aforementioned terms in Box 1. Please note that, in contrast

to superviseddeep learning, thereareother typesofAI algorithms

with varied architectures and learning processes (e.g., semi-su-

pervised or unsupervised).9 While deep-learning approaches

have been applied to genetics andgenomics in general (reviewed

in Eraslan et al.,9 Novakovsky et al.,10 Zou et al.,11 and Angermu-

eller et al.12), their promise and utility in GWAS follow-up studies

have not yet been thoroughly discussed. In the first part of this

perspective, we illustrate a few GWAS functional studies that

have benefited from AI approaches, including the prediction of

variant effects13 and target gene assignment.14 We then intro-

duce ongoing AI efforts toward translating GWAS findings into

clinical practice, including genetics-supported drug repurposing

and polygenic risk score (PRS) prediction. Finally, we discuss the

prospects and challenges of applying AI approaches to GWAS

functional and translational studies, including issues such as

the scarcity of ground-truth data, challenges in interpretation

due to the ‘‘black-box’’ nature of AI, and ethical concerns. We

also provide several actionable recommendations for addressing

these challenges.

GWAS FUNCTIONAL STUDIES DRIVEN BY AI
TECHNOLOGY

Decoding the effects of non-coding variants
Although disease-associated protein-coding variants often have

comprehensible functional consequences in protein products

(reviewed in Shameer et al.15), most GWAS risk variants

(�90%) are non-protein coding and have unknown functional

consequences. Previous studies indicated that non-coding var-

iants can mainly function by cis-regulation of gene expression

levels (Figure 1D). Furthermore, the regulatory activities of non-

coding variants could be highly tissue-/cell-type-specific and

could involve diverse and complexmechanisms, such as binding

of transcriptional factors (TFs), RNA-binding proteins, or micro-

RNAs (miRNAs) to affect transcription initiation, alternative
Figure 1. AI accelerates GWAS functional studies
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AI technologies were successfully applied to decoding non-

coding variant effects for different aspects of regulatory activ-

ities. One example is predicting the binding of regulatory pro-

teins (e.g., TFs) to their target sequences, which is the basis of

the allelic effects inmediating gene transcription. The TF-binding

event is not easily recognizable by conventional methods

because it involves not only sequence information but also the

competition or synergistic effects between proteins. One of the

earlier AI efforts include a deep-learning approach, DeepBind,

which predicts the sequence specificities of DNA- and RNA-

binding proteins.16 DeepBind includes a convolution module

that extracts the features from local sequences and a prediction

module that synthesizes local features into higher-level signals.

The performance of DeepBind was evaluated in nearly 1,000

publicly available datasets, including DNA-binding (chromatin

immunoprecipitation) and protein-binding microarrays.

DeepBind performed better than the previous methods devel-

oped with extensive biological knowledge, which could discover

regulatory motifs and interpret the effects of genetic variants.16 A

more recent AI-based development enabled the mapping of

DNA sequences to interpretable regulatory classes across the

whole genome. This deep-learning model, named Sei,17 was

trained to predict >20,000 features including TF binding and

chromatin modification/accessibility peaks from >1,300 cell-

line/tissue datasets for each of the 100 bp DNA sequences tiled

across the genome. By clustering and defining the genome-wide

predictions into 40 regulatory classes (e.g., promoter, cell-type-

specific enhancers), Sei could predict the effects of any

sequence or variant of interest, including those not previously

investigated in GWAS. For example, predicted promoter and

enhancer classes fromSei were strongly enriched for GWAS her-

itability beyond that explained by the baseline functional annota-

tions alone, suggesting extra regulatory elements defined by Sei

underlying GWAS signals.17 These examples highlight the ability

of AI-based methods to use complex and multi-dimensional da-

tasets to predict the effects of non-coding GWAS variants in a

more interpretable and scalable manner.
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Box 1. Brief description of terms mentioned in the introduction

Deep learning: deep learning consists of a range of AI algorithms,

which commonly involves a neural network with multiple layers and

numerous neurons in each layer. These neural networks are biologi-

cally inspired by human brains—albeit far from matching their abil-

ity—allowing it to learn from massive amounts of data.

Label: a label is used to explain a piece of data information, which

could provide ground-truth guidance (e.g., disease/normal) that AI

algorithms can learn from (called supervised learning). Notably, unsu-

pervised/self-supervised learning do not need ground-truth labels.

Training: the AI training process is to feed data into the algorithm with

labels (e.g., disease/normal). Over iterations, the algorithm extracts

the features and recognizes patterns from the data, achieving opti-

mized parametric weights to distinguish the disease from normal

(called trained model).

Layer: a layer in deep-learning algorithms is a structure or network to-

pology, which takes information from the previous layer and then

passes it to the next layer. There are several commonly used architec-

tures (e.g., convolutional neural network) and associated layers (e.g.,

convolution, pooling, and fully connected) in deep learning, underlying

different mathematics and functions.

Neuron: neurons in deep-learning algorithms are nodes through which

data and computations flow. Neurons usually receive one or more

input signals. These input signals can come from either the raw dataset

or from neurons positioned at a previous layer of the neural network.
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Linking variants to genes
Given that ‘‘causal variants’’ in GWAS loci are predominantly

regulatory, their target genes are not necessarily the closest

ones to ‘‘causal variants.’’ For example, a recent functional

follow-up study of kidney disease GWAS showed that 66% of

candidate variants were not assigned to the closest gene as their

target.18 Moreover, it has been reported that GWAS variants

could impact long-range chromatin interaction and thus regulate

genes far away.19 Molecular QTL or chromatin interaction ap-

proaches have been used to link the variants to the target genes

they regulate (Figure 1E), but they often provide complementary

or discordant results, and therefore accurately weighting these

complexities to achieve the consensus is challenging.20 To

address this issue, researchers from Open Targets developed

a systematic framework of integrating GWAS and functional

data and developing a machine-learning model to identify target

genes across GWAS loci. Specifically, they established a unified

pipeline in performing fine mapping and colocalization analysis

and integrated themwith GWAS and other functional data, which

resulted in four main feature categories at the locus level: in silico

pathogenicity prediction, colocalization of molecular QTLs,

chromatin interaction, and gene distance to credible set variants

weighted by fine-mapping probabilities.14 For each GWAS lo-

cus, locus-to-gene scores were derived from these features

both by aggregating variant-to-gene scores from multiple vari-

ants (e.g., in silico prediction, chromatin interaction) and summa-

rizing the gene-level evidence (e.g., conditional and tissue-

dependent colocalization). A machine-learning-based model

(XGBoost gradient-boosting classifier) was used to incorporate

all the locus-level features and was trained on a manually

curated set of 445 gold-standard-positive genes, for which the

target gene assignment is deemed credible. The model output
4 Cell Genomics 3, 100320, June 14, 2023
is the target gene ranking based on the predicted locus-to-

gene score. The full machine-learning model (area under the

curve [AUC] = 0.93) outperformed the classical model only

considering the variant-to-gene distance (AUC = 0.76–0.79)

across over 100,000 published GWAS loci associated with

various human traits.14 Although this is a remarkable advance-

ment, future efforts are warranted to improve the target gene

assignment given the limited sample size and potentially biased

sources of gold-standard labels for training (see discussion in

challenges and recommendations).

Decoding cell-type specificity and predicting
downstream pathways
Given that the genetic regulation is often cell-type specific (Fig-

ure 1E), deciphering the relevant cell types/states is important

for interpreting GWAS findings at both the locus level and the

downstream pathway level.21 Single-cell-based sequencing

technologies provide an opportunity to address this challenge,

which enables high-throughput profiling of transcriptome and

other modalities (e.g., chromatin accessibility) at a single-cell

resolution. Typical outputs from single-cell sequencing are large

scale and contain high dimensionality information of thousands

of cells, which is challenging to handle using conventional algo-

rithms. AI-driven efforts have been made to process the single-

cell datasets and to decode the cell-type specificity for GWAS

findings. For example, a deep-learning model was trained by a

single-cell assay for transposase-accessible chromatin

sequencing (ATAC-seq) profile of over 50,000 cells representing

13 human retinal cell types.22 The trained model could predict

the per-base differences in chromatin accessibility between

reference and alternate alleles specific to each cell type. The

authors identified 23 GWAS risk variants of eye diseases

showing a ‘‘high effect’’ on allelic chromatin accessibility,

including rs1532278 (associated with myopia risk) in M€uller glia

and rs1874459 (associated with glaucoma risk) in bipolar and

amacrine cells.22

Moving beyond the single locus-level gene identification from

GWAS data, gene regulatory network (GRN) inference can pro-

vide pathway-level insights for understanding disease suscepti-

bility. Although initially developed with bulk expression data,

various machine-learning-based algorithms have been applied

to single-cell expression data to predict the cell-type-relevant

GRNs, especially in the context of the differentiation and cell-

state transition.23 Machine-learning-based pipelines (e.g.,

elastic net regression) were shown to identify cell-type-specific

GRNs and cell-type-specific disease genes by integrating sin-

gle-cell multi-modal data with the GWAS variants, which

improved clinical phenotype prediction.24 A deep convolutional

neural network25 was also used to infer gene-gene relationship

and disease causality. This approach used gene expression

levels from complex single-cell data converted into an image

of a 2D histogram as an input for the deep-learning process,

which outperforms previous methods in predicting TF target

genes and the causality (direction) within the pathways. These

studies have showcased the merit of machine-learning algo-

rithms in handling single-cell datasets and characterizing

GWAS risk loci as well as their interaction and downstream

pathways.
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UPCOMING BREAKTHROUGHS IN GWAS
TRANSLATIONAL STUDIES

Candidate targets for drug repurposing
Drug repurposing, one of the notable directions in GWAS trans-

lational studies, refers to the identification of new indications for

approved or investigational (including clinically failed) drugs that

have not been approved. It is reported that only 0.02% of drug

candidates from preclinical testing make it to market.26 Given

the high attrition rates, substantial cost, and slow pace of de

novo drug discovery, exploiting known drugs can help improve

their efficacy while minimizing side effects in clinical trials.

It has been consistently reported that drug targets with genetic

support (e.g., GWAS associations) aremore likely to be success-

ful in clinical trials and drug development.27,28 Pleiotropic and

genetic correlation analyses can link target genes identified

from one disease to multiple correlated diseases and thereby

suggest new indications for known drugs. For example, raloxi-

fene is a selective estrogen receptor modulator that was initially

developed for osteoporosis and then successfully repositioned

for breast cancer.29 Consistently, GWAS-based pleiotropic ana-

lyses have indicated that ESR1, a gene that encodes an estrogen

receptor, contributed to the shared genetic basis between bone

mineral density and breast cancer risk.30 It should be noted that

pleiotropy can also result in unintended side effects when target-

ing certain genes, and therefore both potential beneficial and

harmful effects should be considered in drug development pro-

cesses. Moreover, multiple GWAS have identified signals on or

near the genes encoding the targets of known pharmacological

agents, such as HMGCR from low-density lipoprotein GWAS

to statins31 and IL23R from psoriasis GWAS to ustekinumab32

(reviewed in Reay and Cairns33). However, it is still controversial

howmuchweight should be given to GWAS-driven susceptibility

genes in prioritizing drug targets to pursue.

To enable a more robust connection between GWAS signals

and target genes as potential drug targets, multiple existing ap-

proaches can be applied, including eQTL, chromatin interaction

(see linking variants to genes section), transcriptome-wide asso-

ciation studies (TWASs) for gene-level association tests, and

Mendelian randomization (MR) for genetically informed causal

inference34 (Figure 2A). Additional information sources such as

literature, drug-gene interaction databases (e.g., DGIdb), and

clinical trial records (Figure 2A) can be valuable for assessing

the feasibility of these GWAS-driven susceptibility genes as po-

tential targets of drug development. To integrate all this informa-

tion, AI-empowered platforms have been initiated. For example,

PandaOmics is a platform that uses deep-learning models to

predict the potential of drug targets in the form of the likelihood

of a drug candidate entering phase 1 of clinical trials within 5

years. Their models included ‘‘omics scores’’ and ‘‘text scores.’’

Omics scores consider all available genetic datasets, such as

GWAS findings and gene-disease associations identified by

MR or TWASs. Text scores are based on literature, grants, and

patents searches. These models have been applied to identify

candidate drug targets for amyotrophic lateral sclerosis.35

Another platform developed by Open Targets integrated tissue

specificity from open-access expression profiles, biological

knowledge from Gene Ontology, and protein-protein interaction
networks into a machine-learning model, which achieved

improved power in identifying the drug target-disease pairs.36

These studies have shown the value of AI in translating multi-

dimensional knowledge into GWAS-informed drug prioritization,

but further efforts are required to prioritize robust targets with

better efficacy and specificity to ultimately achieve improved

therapeutics for complex diseases.

PRS
Another important direction of GWAS translational studies is

PRS, which calculates the cumulative effects of many genetic

variants and provides a quantitative measure of an individual’s

genetic predisposition to diseases (Figure 2B). PRS has potential

in a variety of medical scenarios, including disease risk predic-

tion, diagnostic refinement, and therapeutic response manage-

ment.37 However, the clinical implementation of PRS is still

rare, which could be attributed to two main obstacles. First,

the discriminative ability of PRS is compromised by the multi-

factorial contributors to complex diseases. To address this

issue, a neural-network-based model integrating polygenic and

clinical predictors has been developed for cardiovascular dis-

ease risk.38 This model is designed with three linear layers fol-

lowed by deep survival machines,39 a mixture of three linear

layers to parameterize a mixture of Weibull distributions. The

neural-network-based model was trained using features of 29

cardiovascular risk factors and 6 PRSs from different cohorts

as input. The model was then validated using spatially separated

samples from individual assessment centers of participants in

the UK Biobank cohort to predict the occurrence of a major

adverse cardiac event within 10 years. Compared with an exist-

ing model and a Cox proportional hazards model trained on the

same data, the neural network model achieved better integration

of polygenic and clinical predictors and improved predictive per-

formance.38 However, it should be noted that this model was

developed and validated in the UK Biobank cohort and has not

been evaluated in an entirely independent cohort.

The second challenge associated with PRS is poor transfer-

ability, a problem that is also encountered in many other statisti-

cal models. Transferability is defined as the accuracy of a

model’s predictions for an independent dataset, and in the

context of PRS, poor transferability refers to the situation where

a PRS generated from GWASs in one population does not

perform well in other populations. The accuracy of PRS depends

on the adequate estimation of allelic effect sizes and genetic sim-

ilarity between training and target sets. Therefore, PRS is more

predictive in European populations compared with underrepre-

sented populations due to the larger sample sizes available for

training in European populations. One solution to improve PRS

transferability is to introduce biological priors and select ‘‘candi-

date causal’’ variants using functional genomics data. This

approach is valid under the assumption that causal variants

are largely shared across populations. A recent study has shown

that cell-type-specific regulatory annotations can improve the

transferability of PRS from European to East Asian populations

across 21 human phenotypes.40 Another study introduced poly-

genic transcription risk scores (PTRS) based on the predicted

transcript levels, which presented higher portability from a Euro-

pean to an African population than variant-based PRSs.41 Future
Cell Genomics 3, 100320, June 14, 2023 5
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Figure 2. AI potentials in GWAS translational studies

(A) Multiple approaches/data are useful in translating GWAS findings into repurposed drug targets. Transcriptome-wide association studies (TWASs) are a gene-

based association approach that can integrate GWAS and eQTL data to identify transcriptionally regulated genes associated with diseases. The top and bottom

panels show positive and negative TWAS Z scores, respectively. Mendelian Randomization (MR) is a causal-inference approach to estimate the causal effects of

target genes on risk of diseases or traits. Other information includes literature on target gene biology, established databases of drug-gene interaction, and clinical

trial records relevant to the drug efficacy in patients.

(B) The polygenic risk score (PRS) is typically constructed as the weighted sum of a set of genetic variants, usually from GWASs (e.g., risk allele, effect size).

Different PRS approaches can be used by considering non-additive variant effects or interactions between genetic and environmental factors (G 3 E). An

ensemble of PRS approaches and a combination of clinical indicators are valuable in improving the predictive performance, resulting in relative risk estimation in a

given population.
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studies using AI and a combination of other functional data are

anticipated to improve PRS transferability across populations.

CHALLENGES AND RECOMMENDATIONS

Scarcity of ground-truth training data
Most of the state-of-the-art approaches in GWAS functional and

translational studies have relied on supervised AI models, but

these attempts have been hindered by the lack of adequately

sized ground-truth datasets for training and validation. Genetic

susceptibility involves many potential target genes and biolog-

ical pathways and interplay between them, which is often

context dependent. Consequently, it is challenging for AI to

make reliable predictions and unambiguously evaluate the pre-
6 Cell Genomics 3, 100320, June 14, 2023
dictive performance because confidently labeled data, such as

causal variants and target genes underlying most of the GWAS

loci, are rare.14 It is promising that fast-evolving high-throughput

assays (e.g., CRISPR and single-cell approaches) evaluating

variant and gene function in diverse biological contexts as well

as those involving animal models will help improve ground-truth

causal variant/gene assignment in the coming years. As these

data accumulate, it will be important to establish guidelines on

what qualifies as a ground-truth gene/variant assignment, espe-

cially for those GWAS loci with multiple non-coding variants in

high LD.

Recommendations

Beside ongoing efforts to improve the ground-truth datasets, a

few AI-based analytic approaches could be considered to



Perspective
ll

OPEN ACCESS
alleviate the problem. One way to improve the data size and

quality is to search and curate the training set in a more precise

and efficient manner. AI-based tools have shown their potentials

in handling the growing volume of literature with unstructured in-

formation. Regarding data searching, a tool enabled by algo-

rithms of natural language processing can automatically recog-

nize and extract genetic variant information with related

entities (e.g., allele) from literature. This tool presents a state-

of-the-art performance with over 90% in F-measure for variant

recognition and is now available for the entire PubMed and

PMC datasets.42 Moreover, AI-based tools have been devel-

oped to improve the data curation. For example, a deep-

learning-based approach achieves a precision 2.99 times higher

than current query-based approach in curating the most

comprehensive GWAS database, the NHGRI-EBI GWAS Cata-

log.43 This deep-learning approach can efficiently identify rele-

vant literature and thus significantly reduced the number of pa-

pers that required review in the manual curation process.

Another approach to address the challenge of insufficient

ground-truth training datasets is to use label-free strategies.

One example is using human-in-the-loop AI approaches,44

which could train AI models using a relatively small size of exist-

ing ground-truth labels to generate large-scale new labels. The

trainedmodel could be further calibrated by a correction process

of their newly generated labels by humans, which could ulti-

mately generate the labels with high confidence. Such a hu-

man-in-the-loop strategy has been primarily applied to gener-

ating labels for the data from hematoxylin and eosin staining in

immunohistochemistry.45 Alternatively, generative models can

be used to synthesize new data with labels based on prior knowl-

edge from relevant resources. Considering the sparsity and het-

erogeneity of existing labels of coding variant pathogenicity, a

deep generative model was developed without training on any

of the existing labels.46 Assuming that the evolutionary con-

straints from natural sequences reflected the propensity of

variant pathogenicity, the generative model could learn the dis-

tribution of sequence variation across species and thus approx-

imate the likelihood of each variant to be pathogenic by assign-

ing them to clusters (benign, uncertain, or pathogenic).46 This

model outperforms conventional variant-effect-prediction ap-

proaches that rely on existing labels. It is expected that the la-

bel-free generative strategies could be applied to GWAS func-

tional and translational studies to address the issue with

limited ground-truth labels.

Transparency and AI ‘‘black box’’
Another important challenge is that AI algorithms, such as deep

neural networks, are considered black boxes that predict out-

puts from inputs without regard to the internal rationale (i.e.,

‘‘end-to-end’’ strategy) and thus provide limited mechanistic

insights for GWAS functional and translational studies. The pa-

rameters within the neural network are subject to extensive

mathematical optimization during training, leading to a dense

web of neural connections neither tied to an actual system nor

based on human reasoning.

Recommendations

One way to address the ‘‘black-box issue’’ is to use models with

fewer parameters and select a minimal set of features for predic-
tion. For example, the study by the Open Targets group trained

their variant-to-gene predictive model using an XGBoost

gradient-boosting classifier with a binary logistic learning objec-

tive function.14 Leave-one-in/-out analyses were performed, by

leaving one feature in/out of model training at a time, to deter-

mine the individual feature’s contribution to the output, which

identified several key features in predicting target genes. It

should be noted that such models with simple architecture

may not capture the full complexity of genetic susceptibility to

human diseases and may result in a loss of information. Another

idea is to use models with a hierarchical resolution, whose inter-

nal logic fits naturally with biological systems and deep neural

networks.10 A notable example is DCell, a visible neural network

with a hierarchical structure to predict the cellular growth of a eu-

karyotic cell (budding yeast) based on the genotypes.47 Specif-

ically, the neurons inside this neural network are organized into

banks, each of which maps to a known cellular component. A

predicted change in cellular growth (output) caused by combina-

torial gene disruptions (input) can then be interpreted by exam-

ining the functional states (active or inactive) of underlying

cellular components.47 This group applied a similar strategy to

predicting the drug response of cancer cells, where an interpret-

able deep-learning model was used to couple the inner workings

of the model to the known hierarchical structure of human cell

biology.48 Nguyen et al. introduced an interpretable deep-

learning tool, Varmole, which takes the genotypes and gene

expression data as inputs to predict the disease phenotypes.49

Varmole embeds prior biological knowledge of QTLs and

GRNs into the deep-learning network, which enables the priori-

tization of the genetic variants and genes underlying the disease

phenotypic prediction.49 Wang et al. developed the deep struc-

tured phenotype network (DSPN), which adds a series of inter-

mediate layers between the prediction of genotype and pheno-

type.50 These intermediate layers could be associated with

specific genes (e.g., expression level or chromatin status) or

gene groups (e.g., coexpression modules) for mechanistic inter-

pretations from genotypes to traits. It should be noted that the

development of both Varmole and the DSPN benefited from

the large-scale and comprehensive functional genomics re-

sources of the PsychENCODE Consortium, including uniformly

processed bulk transcriptome, chromatin, genotype, Hi-C, and

single-cell transcriptomic data of brain tissues.50 Moreover, the

models with hierarchical resolution may require significant

computational resources and expertise and may not be appli-

cable to all types of genetic data. Despite these cautions, these

studies present promising examples of interpreting AI models to

inform mechanistic insights into genetic susceptibility to human

diseases.

Ethical concerns and biases
While the application of AI may enable higher accuracy and bet-

ter performance in conducting GWAS follow-up studies, it is also

accompanied by a series of ethical concerns and biases that

need to be addressed as the field moves forward. One notable

concern is that AI system could exacerbate injustice and

discrimination by amplifying the existing social inequity. For

example, the predictive performance of AI is affected by the

biases that are already presented in the training dataset, which
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could create inequity in AI-driven health benefits for underrepre-

sented racial and gender populations. Specifically, current

functional genomics resources such as molecular QTL- and sin-

gle-cell-based datasets lack diversity in terms of the represented

ancestries, tissue/cell types, and cellular contexts.21 It is notable

that many of the current advances in GWAS functional studies

using AI are largely limited to European populations and often

involving blood traits and immune cells, reflecting the composi-

tion of current GWAS and functional datasets. Similarly, biased

representation of socioeconomic, racial, and gender groups in

the GWAS, clinical trials, and other medical studies could affect

the predictive performance and generalizability of PRS and AI

pipelines for drug repurposing, which could exacerbate the ex-

isting health disparities. Furthermore, the black-box nature of

the AI process combined with embedded bias in the training

data could potentially create algorithmic biases with misleading

causal information, such as misinterpreting social and environ-

mental effects as genetic effects in the prediction outcome.51

Another ethical concern in AI-driven research is the privacy

and data protection issue, given that large-scale and diverse

genomic and clinical data are typically collected in generating

AI models. For example, PRS development and evaluation using

deep-learning-basedmodels are prone to involvingmore diverse

patient phenotype data and health records in addition to individ-

ual-level genotype data, which could create more complex data

protection issues. It is still controversial regarding the extent to

which anonymization can be ensured with the large amounts of

data used for AI studies. In addition to these fairness and privacy

issues in AI ethics, other concerns also exist, including regulatory

uncertainties.52

Recommendations

To reduce bias and injustice in AI-based GWAS follow-up

studies, conscious efforts should be made to include functional

genomics and clinical datasets representing diverse populations

for training deep-learning models. This process should certainly

be accompanied by systematic efforts by the biomedical

research community in generating more diverse genomic and

medical databases/studies that accurately represent the whole

populations that themedicine should serve. To this end, technol-

ogy-driven solutions such as remote digital clinical trials using

wearable devices without clinical sites could potentially help

reduce the barriers in participation to previously underrepre-

sented populations.53 At the algorithm level, fairness-enhancing

AI approaches have been developed. For example, multi-objec-

tive learning was proposed to mitigate the fairness via simulta-

neous optimization and automatic balance among accuracy

and multiple fairness measures.54 With regard to the privacy

and data protection issues, some technical solutions could be

considered in addition to implementing AI-specific health data

protection policies. Federated learning, for example, could allow

model training without sharing raw data in the multi-center

collaboration setting, where separate training is performed by

each center and model updates are shared and aggregated

through a trusted central server.55 Other approaches such as dif-

ferential privacy, which involves randomly disrupting individual-

level data while keeping global patterns of the dataset, and ho-

momorphic encryption, which uses encrypted input data, could

also be considered and combined with other solutions.53 Next-
8 Cell Genomics 3, 100320, June 14, 2023
generation privacy preservation techniques such as privacy-pre-

serving federated learning are thus highly anticipated.

Conclusions
AI is proving itself to be a revolutionary technology in GWAS

functional and translational studies. These AI-driven efforts

have enriched our understanding of genetic susceptibility and

empowered the translational potential of drug repurposing and

individual risk prediction. However, before AI models can

consolidate their role in clinical validity, efforts are required to

address several challenges in performance, generalizability,

and interpretability, as well as ethical concerns. It should be

noted that most of these models were developed recently

without accumulating enough time to be applied to diverse sce-

narios, and their value needs to be tested by the community over

times. Novel AI strategies, including generative models and

interpretable deep learning, may hold the key to unlocking the

full potential of GWAS in providing biological insights and health

benefits for complex human diseases.
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