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Aims Atrial flutter (AFlut) is a common re-entrant atrial tachycardia driven by self-sustainable mechanisms that cause
excitations to propagate along pathways different from sinus rhythm. Intra-cardiac electrophysiological mapping
and catheter ablation are often performed without detailed prior knowledge of the mechanism perpetuating AFlut,
likely prolonging the procedure time of these invasive interventions. We sought to discriminate the AFlut location
[cavotricuspid isthmus-dependent (CTI), peri-mitral, and other left atrium (LA) AFlut classes] with a machine
learning-based algorithm using only the non-invasive signals from the 12-lead electrocardiogram (ECG).

...................................................................................................................................................................................................
Methods
and results

Hybrid 12-lead ECG dataset of 1769 signals was used (1424 in silico ECGs, and 345 clinical ECGs from 115
patients—three different ECG segments over time were extracted from each patient corresponding to single AFlut
cycles). Seventy-seven features were extracted. A decision tree classifier with a hold-out classification approach
was trained, validated, and tested on the dataset randomly split after selecting the most informative features. The
clinical test set comprised 38 patients (114 clinical ECGs). The classifier yielded 76.3% accuracy on the clinical test
set with a sensitivity of 89.7%, 75.0%, and 64.1% and a positive predictive value of 71.4%, 75.0%, and 86.2% for CTI,
peri-mitral, and other LA class, respectively. Considering majority vote of the three segments taken from each
patient, the CTI class was correctly classified at 92%.

...................................................................................................................................................................................................
Conclusion Our results show that a machine learning classifier relying only on non-invasive signals can potentially identify the

location of AFlut mechanisms. This method could aid in planning and tailoring patient-specific AFlut treatments.
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Introduction

Atrial Flutter (AFlut) represents one of the most common supraven-
tricular arrhythmias.1,2 They are defined as organized, macro-re-en-
trant atrial tachycardias. The re-entry could either revolve around
the tricuspid annulus [so-called typical forms or cavotricuspid-
isthmus (CTI)-dependent forms], or originating in other atrial regions,
such as the mitral annulus, the superior vena cava, or the pulmonary
veins (PV), mostly facilitated by previous atrial ablations.3,4 The wide-
spread use of PV isolation and other left atrial ablation procedures
for the treatment of atrial fibrillation may alter the normal activation
patterns in the left atrium (LA) as well.5,6 As a consequence, the prev-
alence of atypical left AFlut and of CTI-dependent flutter with atypical
electrocardiogram (ECG) patterns post-ablation procedures in-
creased in the recent years. These complex arrhythmias pose new di-
agnostic and classification challenges.7–9

Clinical diagnosis of AFlut currently relies on the interpretation of
a non-invasive 12-lead surface ECG. Although distinctive features for
identifying typical CTI-dependent flutter have long been identified
and often enable an easy diagnosis, atypical non-CTI-dependent flut-
ter forms are more difficult to recognize.9 Catheter ablation repre-
sents a curative therapy for all forms of AFlut. The CTI-dependent
flutter requires relatively straightforward, right-sided procedures
with an anatomically well-characterized target: the CTI. Conversely,
non-CTI-dependent flutter requires longer and technically more
challenging procedures. In those procedures, transseptal puncture
and electroanatomical mapping require additional preparation and
additional diagnostic examinations such as transoesophageal echo-
cardiography, adding further possible complications for the patient.10

Non-invasive identification of the AFlut location enables to delineate
the most likely target prior to the procedure. This would allow to
avoid time-consuming and potentially riskier electroanatomic map-
ping and even pre-procedural transoesophageal echocardiography if
a right-side flutter is identified and it is therefore appealing for optimal
planning of procedures and utilization of hospital resources.

Several clinical schemes based on visual, non-computational, in-
spection of P-wave morphology of the surface 12-lead ECGs have
been proposed, with equivocal results.11,12 Machine learning-based
algorithms are an emerging tool in classifying many diseases and have
shown promising results in the field of cardiac arrhythmia detec-
tion.13,14 Compared with clinical schemes, machine learning classifiers
have a larger flexibility to fit the data, and are less operator-
dependent resulting in better performance and more standardized
approaches. Moreover, a feature selected-based machine learning al-
gorithm can lead to a clear interpretation of the results as clinical
algorithms do. As opposed to a deep learning approach that is

What’s new?

• Non-invasive diagnostic algorithm for atrial flutter location
discrimination.

• Identification of atrial flutter mechanisms using short F-wave
segments [atrial activity in the 12-lead electrocardiogram
(ECG)].

• Hybrid machine learning classifier (training dataset: in silico þ
clinical ECGs) for atrial flutter location discrimination.

• Machine learning algorithm based on selected features.
• Patient-specific ablation therapy.
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referred to as a black box model (data goes in, decisions come out,
but the processes between input and output are not evident).

In a previous work, we developed a machine learning classifier that
provides an accurate and reliable classification for AFlut location for
in silico signals.15 After further training with in silico and clinical ECGs
(hybrid approach) to discriminate CTI-dependent AFlut vs. peri-
mitral AFlut vs. other non-CTI-dependent flutter classes, we tested
the performance of the classifier on clinical ECGs. In the present
work, we offer a proof of concept for a clinical tool able to non-
invasively predict the target location for therapeutic catheter abla-
tion, fostering the enablement of a more personalized therapy and
better allocation of medical resources.

Methods

Study population
Clinical data were retrospectively collected, including standard 12-lead
surface ECGs and electrophysiological data of 115 patients who pre-
sented with AFlut on baseline ECGs between 2015 and 2020 and under-
went an electrophysiological study and catheter ablation in Städtisches
Klinikum Karlsruhe. Inclusion criteria were atrial arrhythmia ECG charac-
teristics and subsequent invasively confirmed diagnosis of AFlut.
Exclusion criteria were the absence of complete and clinically evaluable
12-lead ECG documentation of atrial arrhythmia.

Exact arrhythmic mechanisms were confirmed invasively during the
electrophysiological examination by termination of the arrhythmias after
successful catheter ablation of the target site or non-inducibility of the ar-
rhythmia by pacing or pharmaceutical challenge after catheter ablation.
Seventy-three patients were diagnosed with CTI-dependent AFlut, 20
peri-mitral flutter, and 22 other non-CTI-dependent flutter with a critical
isthmus in the LA (‘other LA AFlut’). Patients with right AFlut with non-
CTI-dependent mechanism (such as re-entry in the superior vena cava)
were not present in the study population. The clinical characteristics of
the test set patient cohort are shown in Table 1 (see Supplementary ma-
terial online for the clinical characteristics of all the patients).

From each patient, three different single AFlut segments were
extracted from the standard 12-lead ECG (10 s length) to run the analy-
sis, resulting in a total of 345 clinical signals (219 CTI-dependent AFlut, 60
peri-mitral AFlut, and 66 other LA AFlut). An AFlut segment is a single

flutter cycle in-between two consecutive QRS-T complexes (red seg-
ments in Figure 1). Segments were manually derived from ECGs. To ob-
tain such a segment, a random point in the F-wave was selected as
starting point, and the subsequent part of the signal was manually
extracted until the signal itself returned to the same state as the selected
starting point (Figure 1). The three independent (not in the same phase of
the F-wave) clearest and least compromised by QRS-T complexes AFlut
segments were randomly chosen from each patient for the analysis.
Segment quality and its distinction from QRS-T complexes were the only
criteria for selecting the three segments from each ECG to avoid bias in
the acquisition protocol. The 12-lead ECGs (1 kHz sampling frequency)
were notch filtered at 50 Hz and band-pass Butterworth filtered between
0.05 Hz and 100 Hz (Figure 1).

In silico population
A database with computational AFlut scenarios was setup based on com-
putational studies conducted in previous work.16 Cardiac excitation was
modelled using the fast marching approach to solve the Eikonal equation
on 100 bi-atrial anatomies generated from a statistical shape model.17

Scars were added circumferentially around ipsilateral PVs representing
previous PV isolation. More details regarding the simulations can be found
in Luongo et al.16

In total, 15 mechanisms of AFlut were implemented and merged into
the three classes under analysis in this study: CTI-dependent, peri-mitral,
and other LA AFlut mechanisms (a complete list of the in silico mecha-
nisms and their classification is shown in Table 2; re-entry path examples
and ECGs of in silico cases in Figure 2). The simulated cardiac excitation
was used to compute the body surface potential map (BSPM) on the
mean geometry derived from a statistical shape model of the torso.17

Finally, conventional 12-lead ECGs were extracted from the BSPM
(1 kHz sampling frequency). From the in silico ECGs, the AFlut single cycle
segments were extracted. A total of 1424 sets of signals were obtained
(198 CTI-dependent, 186 peri-mitral, and 1040 other LA AFlut mecha-
nisms). Due to anatomical reasons, the implementation and/or sustain-
ment of some scenarios was not possible on some atrial geometries. The
final simulated dataset was held unbalanced to keep the number of geom-
etries used in generating the simulations constant to prevent introducing
anatomical bias. The unbalanced dataset was then accounted for during
classifier training as described in machine learning classification.

The AFlut from the acquired clinical data matched the simulated
data. Particularly, in the other LA class, the clinical cases obtained

....................................................................................................................................................................................................................

Table 1 Test set patient characteristics mean values with univariate ANOVA test between groups (P-values < 0.05)

All patients

(n 5 36)

CTI-dependent

AFlut (n 5 13)

Peri-mitral

AFlut (n 5 12)

Other LA

AFlut (n 5 13)

Univariate

(P-value)

Multivariate

(P-value)

Age (years) 70 (8) 68 (9) 69 (11) 71 (5) 0.59 0.39

Female 10 (27.8) 1 (7.7) 5 (41.7) 4 (30.8) 0.16 0.25

Body mass index (kg/m2) 289 (4.9) 29 (3.8) 27 (4.4) 29 (5.0) 0.09 0.09

Coronary artery disease 14 (38.9) 6 (46.1) 5 (41.7) 3 (23.1) 0.51 –

LVEF (%) 55 (7) 51 (3) 56 (5) 56 (7) 0.16 –

LVEDD (mm) 47 (5.5) 50 (5.2) 45 (5.2) 43 (8.3) 0.06 0.12

LAD (mm) 44 (4) 46 (6) 42 (5) 46 (7) 0.48 –

Previous catheter ablation 24 (66.7) 3 (23.1) 11 (91.7) 10 (76.9) <0.01 0.07

Machine learning classifier – – – – – 0.03

Values are given as mean (±standard deviation) or number (%). Multivariate regression analysis performed between the variables with a univariate P-value <0.1 and our
classifier.
LAD, left atrial diameter; LVEDD, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction.
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correspond to the same simulated categories (i.e. the clinical other
LA AFlut dataset is composed by 10 figure-of-eight re-entries, 3 focal
sources, 5 micro-re-entries, and 4 scar-related re-entries). The pre-

processing of the simulated and clinical signals was the same with the
only difference that no filtering was applied to the simulated data,
which contained no noise.

....................................................................................................................................................................................................................

Table 2 In silico AFlut mechanisms and attribution to the three classes under analysis

Mechanism Atrium Position Direction Class

Macro-reentry RA Tricuspid valve ccw CTI-dependent

Macro-reentry RA Tricuspid valve cw CTI-dependent

Macro-reentry LA Mitral valve ccw Peri-mitral

Macro-reentry LA Mitral valve cw Peri-mitral

Scar-related re-entry LA LPV post Other LA

Scar-related re-entry LA LPV ant Other LA

Scar-related re-entry LA RPV post Other LA

Scar-related re-entry LA RPV ant Other LA

Figure-8 macro-reentry LA Both PVs ant Other LA

Figure-8 macro-reentry LA Both PVs post Other LA

Figure-8 macro-reentry LA RPVs ant Other LA

Focal source LA RSPV anterior Other LA

Focal source LA RSPV posterior Other LA

Focal source LA LSPV anterior Other LA

Focal source LA LSPV posterior Other LA

ant, anterior; cw, clockwise; ccw, counterclockwise; LA, left atrium; LPV, left pulmonary vein; LSPV, left superior pulmonary vein; post, posterior; PVs, pulmonary veins; RA, right
atrium; RPV, right pulmonary vein; RSPV, right superior pulmonary vein.

Figure 1 Example of clinical CTI-dependent, peri-mitral, and other LA AFlut 12-lead ECGs in the test set, respectively. The red segments repre-
sent one of the three AFlut single cycles extracted and used in this work for this specific patient. The values of the two most predictive metrics are
reported for the three cases in example (FwD and EVL

icRQAPC3
).
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Feature extraction and selection
Seventy-seven features were extracted from the signals using several bio-
signal processing methods from different domains, i.e. time, frequency,
wavelet, entropy, and non-linear recurrence analysis. A table summarizing
the features and more information regarding the feature extraction meth-
ods are provided in the Supplementary material online.

Among these features some proved to be particularly relevant in pilot
analysis: the F-wave (flutter wave, P-wave during AFlut) duration, the du-
ration of a complete cycle of atrial electrical activation of each specific
AFlut mechanism, i.e. the length of the F-wave in the ECGs (the feature
was manually derived and corresponded to the length of the extracted
ECG segments), wavelet features which are able to extract spectral and

temporal information simultaneously from the signals, recurrence quanti-
fication analysis features to analyse the regularity and stability of time do-
main signals,16 morphological features such as the fragmented conduction
index, the optimal model order (number of Gaussian functions needed to
model the signals),18 and symbolic dynamic features.

To reduce the degree of redundant information obtainable from the
extracted features and therefore to avoid over-fitting by using too many
features, the optimal set of features was selected with a greedy forward
selection technique. This algorithm starts with an empty feature set and
adds the feature which leads to the highest increase of classification accu-
racy in each iteration. The algorithm was stopped when the performance,
based on the validation set, could not be further increased. In order to

Figure 2 Example of different re-entry paths for each class in simulation with the respective 12-lead ECG. The top line shows a frame of one
of the cardiac simulations computed in this study: CTI-dependent flutter with counterclockwise direction (left), peri-mitral flutter wit clockwise
direction (middle), other left atrium flutter, i.e. figure-8 macro-re-entry with anterior direction (right). Following, in the bottom line there are
three 12-lead ECGs as result of the top simulations. It can be seen that there is no QRS-T activity given the lack of ventricles from the simula-
tions. The segments used for each signal have been highlighted in red. The values of the two most predictive metrics are reported for the three
cases in example (FwD and EVL

icRQAPC3
).
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handle possible correlations among features, the candidate feature was
only added to the set if the correlation coefficient with any of the already
included features was <0.6.

Shapley calculation was implemented to analyse a posteriori the impor-
tance of the features selected for classification once the model was
trained. Shapley calculation was run 1000 times with random samples
(Bootstrap approach) to calculate the standard deviation (SD).

Machine learning classification
A decision tree was implemented for three-class classification: CTI-
dependent AFlut, peri-mitral AFlut, and other LA AFlut (similar results
obtained with other machine learning algorithms are provided in the
Supplementary material online). The classifier was trained and applied us-
ing the MATLAB (The MathWorks, Inc.) functions fitctree and predict, re-
spectively. The dataset used to train, validate, and test the classifier was a
hybrid of the in silico and clinical datasets with a total of 1769 signals. First,
a multi-feature classification was performed with the feature set selected
as described in the previous section. Hold-out classification was per-
formed randomly, dividing the dataset into a training set, validation set,
and test set with a ratio of 70, 15, and 15%, respectively. Signal segments
from the same patient were always used solely in one of the sets to avoid
over-fitting. The training set was used to tune the classifier parameters,
while the validation set was used for the greedy feature selection optimi-
zation. During training, class imbalance was addressed by assigning a
weight to each sample in a given class (by setting the weights parameter
and the Prior model parameter to uniform in the MATLAB fitctree func-
tion). To solve the problem of the different number of data points and
the different number of cases for each AFlut class between simulated and
clinical data, the weight was inversely proportional to the number of sam-
ples in the class and extra weights were added for clinical cases to give
them more importance during the training phase. The decision tree can
also automatically provide a degree of confidence of the prediction. This
degree of confidence is the posterior probability that a test sample is of a
specific class, which is provided for all three classes. Lastly, the trained
classifier was tested on the clinical test set (114 segments data from 38
patients—39, 36, and 39 ECG segments for each class, respectively) and
on a simulated test set (90 simulated ECGs—30, 30, and 30 segments for
each class, respectively).

A blind annotation of the clinical test ECG signals was performed
by a trained physician in order to compare the physician’s prediction

with the classifier’s prediction to evaluate the added value of the
algorithm.

Ethics statement
The authors designed the study, gathered and analysed the data according
to the Helsinki Declaration guidelines on human research. The research
protocol used in this study was reviewed and approved by the institu-
tional review board. All patients provided written informed consent.

Statistical analysis
Classifier performance was evaluated using the accuracy (ACC), sensitiv-
ity, and positive predictive value (PPV). Sensitivity and PPV were calcu-
lated for each class, considering the specific class as positive and the
remaining classes as negative. The clinical characteristics of our test set
patient cohort and the extracted features were evaluated with the
ANOVA test between the classes (P-values <0.05 considered significant;
Table 1, univariate column; similar analysis for the full dataset in the
Supplementary material online). Next, multivariate regression analysis
was performed on variables that differed between groups with a P-value
<0.1 (from the previous ANOVA test) and the machine learning classifier
(Table 1, Multivariate column). Age and sex were included in the multivar-
iate model for their clinical relevance.

Figure 3 Clinical CTI-dependent case with atypical ECG-features
(positive atrial waves in lead II, III, aVF, and V1 to V6) correctly classi-
fied by the classifier. The red segments represent one of the three
AFlut single cycles extracted and used in this work for this specific
patient. The values of the two most predictive metrics are reported
(FwD and EVL

icRQAPC3
).

.................................................................................................

.................................................................................................

.................................................................................................

.................................................................................................

.................................................................................................

Table 3 Clinical test set confusion matrixes for three-
class classification

(A) True class

CTI-dependent Peri-mitral Others

CTI-dependent 35 7 7

Predicted class Peri-mitral 2 27 7

Others 2 2 25

(B) True class

CTI-dependent Peri-mitral Others

CTI-dependent 12 2 2

Predicted class Peri-mitral 0 10 3

Others 1 0 8

(A) Confusion matrix per ECG-segment (three different ECG segments were
extracted from each patient independently). (B) Confusion matrix per patient.
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Results

Patient characteristics of the test set patients with associated univari-
ate and multivariate analysis are provided in Table 1 (for similar analy-
sis for the full dataset in the Supplementary material online). The
multivariate regression analysis between the variables age, sex, body
mass, left ventricular ejection fraction (LVEF), left ventricular end-
diastolic diameter (LVEDD), previous catheter ablation, and our clas-
sifier showed that the classifier was the only significant variable
(P = 0.03). As such, it adds value beyond the routine clinical parame-
ters. The blind classification performed by a trained physician
achieved 44.7% correct classification on the clinical test ECGs: 84.6%
CTI AFlut, 41.7% peri-mitral AFlut, and 7.7% other LA AFlut cases
were correctly identified by the physician.

The hybrid decision tree for three-class classification (CTI-depen-
dent AFlut, peri-mitral AFlut, and other LA AFlut—Figures 1 and 2)
achieved an accuracy of 76.3% on the clinical test set with a sensitivity
of 89.7%, 75.0%, and 64.1% and a PPV of 71.4%, 75.0%, and 86.2% for
each class, respectively. Other classification methods were tested but
yielded worse performance (see Supplementary material online).
The mean degree of confidence that the classification obtained for
each class when predicted was 81.63%, 81.18%, and 70.30% for the
CTI, peri-mitral, and other LA AFlut classes, respectively. The deci-
sion tree was also tested on a simulated test set achieving 66.4% ac-
curacy. Table 3 shows the confusion matrices obtained from the
decision tree classifier on the clinical test set both for ECG segments
and patients. Considering the mean prediction out of the three seg-
ments for each patient, the classifier correctly classified 78.9% of the
patients. The four AFlut segments misclassified for the CTI-
dependent AFlut classes belong to three different patients, this means
that two out of the three patients were correctly classified consider-
ing the mean prediction (92.3% sensitivity for CTI AFlut patients).
Whereas the peri-mitral and other LA AFlut yielded 83.3% and
61.5% patient’s classification sensitivity, respectively. The imple-
mented classifier was also able to classify CTI-dependent AFlut with
atypical characteristics in the surface ECGs (two patients in the clini-
cal test set; see example in Figure 3).

The greedy forward selection technique reached the maximum ac-
curacy with 18 features. The 18 selected features were: F-wave dura-
tion, 8 features from the dynamic symbolic analysis (the number of
high valued segments, low valued segments, bottom valued segments,
isolines, sequence of top–top, low–zero, low–low, and bottom–low
segments in the signals), the minimum and mean optimal model
orders to model each ECG lead with Gaussian functions, the 7th, 8th,
and 9th coefficients from the discrete cosine transformation, the
mean prominence of the 5th and 6th order wavelets, the minimum
fragmented conduction index, and the vertical entropy calculated
with the individual component recurrence quantification analysis on
the 3rd principal component (icRQAPC3).

The Shapley calculation to analyse a posteriori the importance of
the 18 selected features showed that the most relevant features for
the implemented classification were the F-wave duration (FwD) and
the icRQAPC3 vertical entropy (EVL

icRQAPC3
) mainly supported by the

mean optimal model order, and the mean prominence of the 5th or-
der wavelet.

The definition of all extracted features, the feature set, the detailed
feature importance analysis, and the performance achieved with a

classifier trained with only simulated data or clinical data only can be
found in the Supplementary material online.

Discussion

Our results suggest that a non-invasive machine learning approach
based on surface ECG analysis can aid in the discrimination of the lo-
cation of the substrate which is sustaining AFlut. This could improve
protocols for clinical therapeutic decision-making and ablation proce-
dure planning.

The 12-lead ECG is broadly used for cardiac diagnostics, including
diagnosis and classification of AFlut from other cardiac rhythms.11–14

Many ECG-based clinical schemes have been proposed, with mixed
results. Due to novel and widespread left atrial ablation procedures
in the last decades, rare clinical entities with diagnostic challenges (i.e.
left AFlut or right AFlut with atypical ECG-features) are increasing in
prevalence and entering the routine of electrophysiology labs.7–9 In
addition, the 12-lead ECG is the most common and available tool for
arrhythmia diagnosis in clinical practice, thus its use would not lead to
any extra expense. In contrast, methods with extra electrodes or
body surface potential maps are not available in all hospitals and
would, therefore, require additional investment by the health care
system.

To the best of our knowledge, ours represent the first work to im-
plement a decision tree classifier to discriminate the location of AFlut
mechanisms by using in silico and clinical non-invasive ECG signals.
The computational 12-lead ECG simulations provided an ideal and
controlled environment to generate a consistent ground truth data-
set of AFlut mechanisms. This in silico dataset served as a reinforce-
ment to the clinical dataset to solve the problematic availability of
clinical data where ground truth was ascertained by invasive electro-
physiological analysis. The clinical data used during training helped to
bridge the domain gap between simulated and measured ECGs. In ad-
dition, the machine learning algorithm implemented in this project
uses carefully selected features. As a result, clinical knowledge is used
to optimize the algorithm, rendering also the interpretation of the
results easier than a deep learning approach.

This study builds on our previous work where we developed a
classifier for 20 AFlut mechanisms discrimination for in silico signals.15

Further analysis of the classifier showed that 20 classes of AFlut to be
classified was a too complex goal at the time. In addition, the classifier
trained with only simulated data proved to be unable to generalize
on clinical data. Therefore, in this study we used a hybrid approach
and a reduced number of classes. Of note, no other clinical character-
istics were statistically relevant in correctly classifying the AFlut
(Table 1).

Feature analysis
The Shapley calculation showed that, of the 18 features in the feature
set needed for classification, 4 were most relevant: The F-wave dura-
tion, the icRQAPC3 vertical entropy, the mean optimal model order,
and the mean prominence of the 5th order wavelet. The F-wave du-
ration already proved to be a fundamental feature in the AFlut char-
acterization in our previous works15,19 together with the vertical
entropy icRQAPC3. In fact, several previous results have reported
how RQA approaches can be useful in the characterization and
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discrimination of different cardiac arrhythmias.16,20 These two fea-
tures showed to be significantly higher in values in the ‘other LA
AFlut’ class in comparison with the other classes. In contrast, there
was no significant difference between the CTI-dependent and the
peri-mitral AFlut classes. The F-wave duration is a feature strongly
influenced by the size and shape of the atria and the conduction ve-
locity of the tissue. Therefore, it can be assumed that similar sizes be-
tween the two valves or complementary conduction velocities of the
tissue may result in similar F-wave durations (case of CTI and peri-
mitral AFlut classes). In contrast, the vertical entropy icRQAPC3 is an
expression of signal complexity and it can be reasonably assumed
that the other LA AFlut class has significantly higher values than the
other two classes due to the higher complexity of the mechanisms
composing the other LA AFlut class in comparison with the CTI and
peri-mitral AFlut classes. Thus, the resulting ECGs (specifically, the
third principal components calculated from 12-lead ECGs by PCA)
are more complex and irregular. However, these two features were
used as main features by the algorithm likely due to their expression
of both complexity of the mechanisms and atrial geometry and tissue
properties (i.e. conduction velocity). On the other hand, regarding
the mean prominence on the 5th order wavelet and the mean opti-
mal model order, there was no significant difference between the
three classes. Therefore, the importance identified by the Shapley
evaluation for these two last features, but not observed by the signifi-
cance analysis among the classes, must be solely due to their use in
the algorithm to better define the classification. The feature impor-
tance analysis, and the distribution of the values of the four most im-
portant features are shown in the Supplementary material online.

Classification
Previous studies have sought to find consistent and reliable non-
invasive predictors of location for AFlut. The most investigated and
promising features have been the morphology of the atrial waves in
12-lead ECGs. Several clinical decision-making schemes based on
such features have been proposed with mixed results and there is
currently no consensus on how to classify AFlut based on the surface
ECG.11,12 Nevertheless, as different AFlut types require different abla-
tion procedures with more challenging preparations for left atrial
types, a pre-procedural diagnosis and characterization of the location
of ablation targets would increase the efficacy of the procedure by
permitting direct targeting of the region of interest. Moreover, it
would also allow tailoring the procedure in a time- and resource-
saving fashion, avoiding potential unnecessary complications or delays.

Our decision tree classifier based on the surface 12-lead ECGs
achieved an accuracy of 76.3% on the clinical test set, demonstrating
the ability to correctly classify most of the AFlut segments extracted
from the 12-lead ECGs. In particular, the high sensitivity for the CTI-
dependent AFlut (89.7% for segments’ classification and 92.3% for
patients’ classification) shows the potentiality of the algorithm in the
identification of these patients. Moreover, the PPV for the other LA
AFlut class (86.2% and 88.9% for segments’ and patients’ classification,
respectively) demonstrated that most of the segments and patients
classified into this group were correct, making our classifier reliable in
the identification of these AFlut. The significant difference in accuracy
between the clinical and simulated test sets demonstrates the effec-
tiveness of our classifier training method in giving greater weight to
clinical data as the final application of our algorithm. In general, the

results indicate a good classification ability, likely negatively influenced
by the lower number of cases for the peri-mitral and other LA AFlut
classes in our training set. In addition, the degree of confidence auto-
matically provided by the system gives added support to clinicians by
knowing the order of probability of the three types of AFlut.

As Table 3A shows, four segments got misclassified for the CTI-
dependent AFlut class. These segments belong to three different
patients, thus indicating that the classifier correctly identified 92.3% of
the patients in this group when considering the majority prediction
from the three segments of each patient. Not having relied on a sin-
gle, random segment per patient, but rather three ECG segments per
patient, the classification accuracy per patient (Table 3B) of 78.9%
demonstrates robustness and reliability of the classifier. Moreover,
the comparison between the accuracy achieved by the classifier and
the blind classification performed by a trained physician is a demon-
stration of added value of the algorithm to clinical practice. Whereas
the physician was able to predict almost solely CTI cases, our classi-
fier was also able to discriminate between peri-mitral and other LA
AFlut (confusion matrix of the blind classification performed by the
physician in the Supplementary material online).

As the therapy spectrum for atrial ablation broadens, the preva-
lence of AFlut with atypical characteristics increases leading to new
diagnostic challenges. For example, CTI-dependent flutters, which
occurs after left atrial procedures tend to present atrial waves with
unusual morphologies. Such cases can easily be misinterpreted as left
AFlut and lead to unnecessary, lengthier, and potentially more dan-
gerous workup and procedures. Our classifier was able to correctly
identify the nature of the AFlut also for such challenging cases. The
CTI cases misclassified by the physician in blind mode were exactly
these unusual CTI ECGs. In Figure 3, we present one of the two cases
included in the clinical test set of patients who developed, after PV
isolation ablation and further ablation of peri-mitral AFlut, a CTI-
dependent AFlut. Despite the unusual characteristics in the surface
ECGs (positive atrial waves in leads II, III, aVF, and V1 through V6),
our classifier correctly identified their location.

Limitations
This study is limited to a small clinical dataset. As a next step, the algo-
rithm should be trained and tested on a more extensive patient co-
hort. In particular, more patients for the peri-mitral and other LA
AFlut classes should be collected and added to the training set to im-
prove the classifier performance. Even though the manual segmenta-
tion of the clinical ECG is not time-consuming, in view of future
clinical applications, automated segmentation of clinical ECG should
be implemented to extract the F-wave. However, due to the strong
influence that the F-wave duration has on the final classifier, the auto-
matic segmentation requires to be robust and reliable.

Fifteen AFlut mechanisms related to clinical situations have been
implemented. Although the clinical AFlut and the simulated ones
matched, they are just a general representation of the mechanisms
that are most commonly found in the literature. More mechanisms
could be included in the dataset, considering the heterogeneity seen
in the clinical practice, e.g. slow conduction areas.

Imaging or scar information could help in the classification, going
to give relevant information on the size of the atria and on the possi-
ble paths that the excitation may follow because of the scars present.
However, this would reduce one of the main goals of this study: to
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use non-invasive, easily available, and inexpensive systems (i.e. 12-
lead ECGs) to identify the location of AFlut.

Conclusions

The results presented in this study show that a machine learning
feature-based classifier can distinguish between CTI-dependent AFlut
vs. peri-mitral AFlut vs. other LA AFlut using single AFlut loop seg-
ments. Additionally, a hybrid approach (in silico dataþ clinical data) to
train the classifier can be successful when it is difficult to get enough
clinical data for purely clinical machine learning. As such, a machine
learning-based classifier leveraging the routinely available non-
invasive 12-lead ECG can be valuable for clinical decision-making and
increase the personalization of therapy. Our machine learning classi-
fier can correctly non-invasively predict ablation targets avoiding the
need for transseptal catheterization and LA mapping and conse-
quently even pre-procedural transoesophageal echocardiography in
some cases.

Supplementary material

Supplementary material is available at Europace online.
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