Open Access ORIGINAL ARTICLE

Transurethral plasmakinetic resection of the prostate is a reliable minimal invasive technique for benign prostate hyperplasia: a meta-analysis of randomized controlled trials

Kai Wang^{1,*}, Yao Li^{2,*}, Jing-Fei Teng³, Hai-Yong Zhou¹, Dan-Feng Xu², Yi Fan¹

To evaluate the efficacy and safety of plasmakinetic resection of the prostate (PKRP) versus transurethral resection of the prostate (TURP) for the treatment of patients with benign prostate hyperplasia (BPH), a meta-analysis of randomized controlled trials was carried out. We searched PubMed, Embase, Web of Science and the Cochrane Library. The pooled estimates of maximum flow rate, International Prostate Symptom Score, operation time, catheterization time, irrigated volume, hospital stay, transurethral resection syndrome, transfusion, clot retention, urinary retention and urinary stricture were assessed. There was no notable difference in International Prostate Symptom Score between TURP and PKRP groups during the 1-month, 3 months, 6 months and 12 months follow-up period, while the pooled Q_{max} at 1-month favored PKRP group. PKRP group was related to a lower risk rate of transurethral resection syndrome, transfusion and clot retention, and the catheterization time and operation time were also shorter than that of TURP. The irrigated volume, length of hospital stay, urinary retention and urinary stricture rate were similar between groups. In conclusion, our study suggests that the PKRP is a reliable minimal invasive technique and may anticipatorily prove to be an alternative electrosurgical procedure for the treatment of BPH.

Asian Journal of Andrology (2015) 17, 135–142; doi: 10.4103/1008-682X.138191; published online: 03 October 2014

Keywords: benign prostate hyperplasia; lower urinary tract symptoms; plasmakinetic resection of prostate; transurethral resection of prostate

INTRODUCTION

Lower urinary tract symptoms or LUTS is a common age-related disease affecting men. Enlargement of the prostate gland is mainly due to a histopathological condition known benign prostate hyperplasia (BPH), which is considered the main reason of LUTS and usually develops beyond the fourth decade of life, affecting about 50% men by the age of 60 years and 90% by the age of 85 years.^{1,2} However, the statistic data in China show that the percentage of BPH in men aged 60 years is about 50%, and this figure rises to 83% in men aged 80 years.³

Various therapies are available for the treatment of BPH-related LUTS, including follow-up, drugs and surgical intervention.⁴⁻⁶ Surgical treatment includes minimally invasive and open prostatectomy. Despite advances in minimally invasive therapies, transurethral resection of the prostate (TURP) remains the gold standard for treatment of BPH and represents one of the most common surgeries in the Western world.⁷⁻¹⁰ Nevertheless, TURP-associated morbidity rate was reported to be 15%–18%, including clot retention, urethral stricture and TUR syndrome, etc.^{11–13} This high morbidity rate fueled the interests of investigators to search for alternative procedures.

Plasmakinetic resection of prostate (PKRP) is a newly developed method in the field of transurethral surgery that uses bipolar energy to resect the enlarged prostate gland.¹⁴ The plasmakinetic system enables to resect or vaporize the prostate tissue by creation of an ionized plasma corona, using an axipolar electrode and electro-conductive solutions.¹⁵ The active and return electrodes of the loop bend in the same axis. The use of normal saline irrigation (NaCl 0.9%) instead of mannitol solution to decrease the morbidity associated with TUR syndrome, and prolonged resection time are the two main supposed advantages. However, the real advantage of PKRP over conventional TURP and whether PKRP can replace TURP as the first-line urological intervention remain to be determined. The aim of this meta-analysis was to evaluate these two techniques by comparing the efficacy and safety in patients with BPH-related-LUTS.

PATIENTS AND METHODS

Publication search

Relevant studies were identified and selected by searching the electronic databases, PubMed, Embase, Web of Science and the Cochrane Library

¹Department of Urology, Zhejiang Xiaoshan Hospital, Hangzhou 311202, China; ²Department of Urology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China; ³Department of Urology, General Hospital of Beijing Military Command, Beijing 100700, China. *These authors contributed equally to this work.

Correspondence: Dr. Y Fan (fanyi@zjxsh.com) or Dr. DF Xu (xu-danfeng@hotmail.com) Received: 08 February 2014; Revised: 29 April 2014; Accepted: 21 July 2014

www.asiaandro.com; www.ajandrology.com

under the search words "pasmakinetic resection of the prostate," "PKRP," "TURP" and "TURP." We also did a full manual search of references in each relevant article. The article language was restricted to English only. All relevant studies comparing PKRP and TURP were selected in further screening (**Table 1**).

Table 1: Searching strategies and results

Database	Date	Search strategy	Results
PubMed	Up to April 2014	Plasmakinetic AND ("transurethral resection of the prostate" or TURP)	72
Embase	Up to April 2014	Plasmakinetic: abstract, title AND ("transurethral resection of the prostate": abstract, title or TURP: abstract, title)	81
Web of science	Up to April 2014	TS=Plasmakinetic AND TS=("transurethral resection of the prostate" or TURP)	67
Cochrane library	Up to April 2014	Plasmakinetic AND ("transurethral resection of the prostate" or TURP)	26

Table 2: Baseline characteristics of included studies

Inclusion and exclusion criteria

The following inclusion criteria were applied: (i) randomized clinical trials (RCTs) comparing PKRP and TURP; (ii) BPH with LUTS; and (iii) the International Prostate Symptom Score (IPSS) \geq 8 and a maximum flow rate (Q_{max}) <15 ml s⁻¹. The exclusion criteria were documented or suspected prostate carcinoma and neurogenic bladder disorders.

Quality assessment of included studies

Two primary investigators completed this procedure from sources mentioned above and all disagreements were resolved by consensus. The methodological quality of RCTs included was scored with the Jadad composite scale.^{16,17} This is a five-point scale, where a score ≤ 2 indicates a low quality while a score ≥ 3 indicates a high quality.^{17,18} This procedure was independently carried out by two investigators, and any disagreement was resolved by consensus.

Data extraction

Two investigators identified and enrolled all the relevant studies from the sources mentioned above according to the inclusion criteria. Data were extracted and tabulated from each

Studies	Treatments	Number of patients	Q_{max} (ml s ⁻¹)	PVR (ml)	QoL	IPSS	Publication type	Jadad score
lori <i>et al.</i> 22	TURP	26	8.7±2	96±97	3.6±1	20±4	RCT	3
	PKRP	27	7±1	99±58	3±1	21±2		
Seckiner et al.29	TURP	24	8.3±3.1	138±115		23.2±4.9	RCT	3
	PKRP	24	8.5±2.9	88±74		24.1±5.2		
Autorino <i>et al.</i> ²⁴	TURP	35	6.2±3	75±35.5	3.9±1	24.3±5	RCT	3
	PKRP	35	7.1±2	80±22.5	4.2±1	24.2±4		
Bhansali <i>et al.</i> ²⁵	TURP	33	4.194±1.5046				RCT	3
	PKRP	34	4.367±1.1813					
Muslumanoglu <i>et al.</i> ²⁶	TURP	33					RCT	3
	PKRP	34						
Nuhoglu <i>et al.</i> ²³	TURP	30	7.3±2.1	88±20		17.3±5.8	RCT	3
	PKRP	27	6.9±2.8	96±27		17.6±6.1		
Patankar <i>et al.</i> ²⁸	TURP	51	6.4±1.77			23.73±4.6	RCT	3
	PKRP	52	5.9±1.98			23.3±4.85		
de Sio <i>et al.</i> 37	TURP	35	6.3±3	75±35.5	3.9±1	24.3±5	RCT	3
	PKRP	35	7.1±2	80±22.5	4.2±1	24.18±4		
Erturhan <i>et al.</i> 27	TURP	120	9.2±1.7	135±25	3±1	24±6	RCT	3
	PKRP	120	10.9±1.2	114±19	2±1	23±5		
Lv <i>et al.</i> ³⁴	TURP	136	7.2±1.4	75.5±20.2	4.9±1.0	27.2±3.0	RCT	3
	PKRP	193	7.4±1.1	74.9±18.6	4.7±0.8	27.6±3.5		
Sinanoglu <i>et al.</i> ³⁵	TURP	85	8.5±2.73	120.8±59		18.6±7.8	RCT	3
	PKRP	80	8.4±4.2	131.2±74.3		25.6±7.6		
Huang <i>et al.</i> ³³	TURP	65	6.95±2.47		4.14±0.95	22.09±3.72	RCT	3
	PKRP	71	6.73±2.43		4.23±0.87	23.38±3.64		
Tefekli <i>et al.</i> ³⁶	TURP	47	8.3±3.6			20.4±3.5	RCT	3
	PKRP	49	7.8±3.7			21.3±3.2		
Giulianelli <i>et al.</i> 32	TURP	80	6.5±4.8	187±195	3.0±2.5	23.4±1.8	RCT	3
	PKRP	80	8.9±2.9	243±241.6	3.3±2.1	22.3±3.2		
Akçayöz <i>et al.</i> ³⁰	TURP	21					RCT	3
	PKRP	21						
Kong <i>et al.</i> ³⁹	TURP	51	4.60±1.61	103±24.83	4.51±0.76	23.9±4.32	RCT	3
	PKRP	51	4.99±1.48	107±28.01	4.47±0.81	23.3±4.77		
Yoon <i>et al.</i> ³⁸	TURP	53	8.4±2.0		4.5±1.2	19.9±4.8	RCT	3
	PKRP	49	8.7±2.7		4.1±1.0	18.7±4.5		
Engeler et al.31	TURP	101	9.1±6.2	195±361	3.6±1.7	18.2±5.5	RCT	3
	PKRP	111	8.3±4.9	186±253	3.0±2.1	18.4±6.2		

TURP: transurethral resection of the prostate; PKRP: transuretheral plasmakinetic resection of the prostate; PVR: postvoiding residual; QoL: quality of life; IPSS: International Prostatic Symptom Score; RCTs: randomized controlled trials

eligible article. The following variables were involved: authors, journal and year of publication, number of patients, Q_{max} , IPSS, operation time, catheterization, hospital stay, irrigated volume, clot retention, transfusion, TUR syndrome, urethral stricture and urinary retention.

Statistical analysis

A formal meta-analysis was made of all RCTs comparing the efficacy and safety of PKRP with those of TURP treating patients with LUTS/BPH. Review Manager Software (version 5.1 Cochrane Collaboration, Oxford, UK) was used to analyze the risk ratio for dichotomous outcomes and mean or standardized mean difference for continuous data, with 95% confidence intervals. When the heterogeneity appears in a meta-analysis, a random-effect model (DerSimonian-Laird method) was used to calculate pooled estimates; otherwise, a fixed-effect model (Mantel-Haenszel method) was applied according to heterogeneity.¹⁹ The significance of pooled effects was determined by the Z-test and P < 0.05 was considered to display statistical significance.^{20,21} The Cochrane Chi-squared test was used to assess the heterogeneity between trials and the inconsistency (I^2) statistic to assess the extent of the inconsistency. P < 0.10 was considered as the presence of heterogeneity while I2 was considered acceptable heterogeneity.

RESULTS

We identified 133 potential articles after a primary search in the database, and 18 RCTs,²²⁻³⁹ including a total of 2119 patients enrolled in this meta-analysis (**Figure 1**). **Table 2** summarizes the preoperative baseline characteristics of included studies. The results of quality assessment of RCTs are shown in **Table 3**. The 18 RCTs all got a Jadad score of 3, because it was not possible to made double-blinding for RCTs. There were no significant differences in IPSS between the two groups at 1-month, 3 months, 6 months and 12 months after operation (**Figure 2**). The pooled Q_{max} at 1-month suggesting that the PKRP group was statistically superior to that of TURP group, but the pooled Q_{max} between the two groups at 3 months, 6 months, 12 months

Table 3: The Jadad scale for quality assessment of RCTs

was no noticeable differences. However, the heterogeneity between the studies was clear (**Figure 3**).

Catheterization was remarkably less frequent in PKRP group than that in TURP group, operation time and hospital stay was shorter in PKRP group, while there was no notable difference in other perioperative data such as irrigated volume between the two groups. In addition, there was great heterogeneity between the studies (**Figure 4**).

There was a remarkable difference in TUR syndrome, clot retention and transfusion rate between TURP and PKRP groups. However, there was no notable difference in urinary retention and urethral stricture between the two groups (**Figure 5**). There was no heterogeneity.

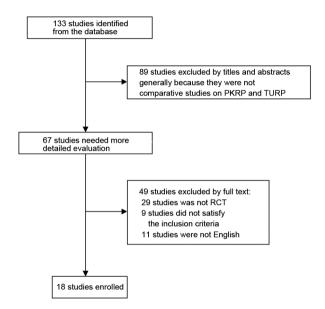


Figure 1: Flowchart showing the selection of studies for meta-analysis.

Studies	Was the study described as randomized (e.g., using the words randomly, random and randomization)?	Was the method of randomization described and appropriate (e.g., table of random numbers, computer-generated)?	Was the study described as double-blind?	Was the method of blinding described and appropriate (e.g., identical placebo, active placebo, dummy)?	Was there a description of withdrawals and dropouts?	Total
lori et al.22	1	1	0	0	1	3
Seckiner et al.29	1	1	0	0	1	3
Autorino et al.24	1	1	0	0	1	3
Bhansali <i>et al.</i> ²⁵	1	1	0	0	1	3
Muslumanoglu <i>et al.</i> ²⁶	1	1	0	0	1	3
Nuhoglu <i>et al.</i> ²³	1	1	0	0	1	3
Patankar <i>et al.</i> ²⁸	1	1	0	0	1	3
de Sio <i>et al.</i> 37	1	1	0	0	1	3
Erturhan <i>et al.</i> 27	1	1	0	0	1	3
Lv et al. ³⁴	1	1	0	0	1	3
Sinanoglu <i>et al.</i> 35	1	1	0	0	1	3
Huang <i>et al.</i> ³³	1	1	0	0	1	3
Tefekli <i>et al.</i> ³⁶	1	1	0	0	1	3
Giulianelli et al.32	1	1	0	0	1	3
Akçayöz <i>et al.</i> 30	1	1	0	0	1	3
Kong <i>et al.</i> ³⁹	1	1	0	0	1	3
Yoon <i>et al.</i> ³⁸	1	1	0	0	1	3
Engeler et al.31	1	1	0	0	1	3

RCTs: randomized clinical trials

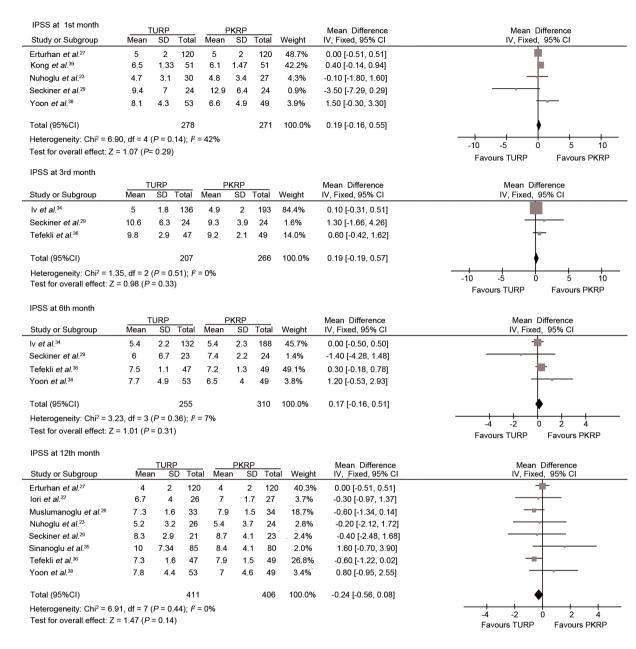


Figure 2: Pooled estimates of International Prostate Symptom Score at 1-month, 3 months, 6 months and 12 months follow-up.

DISCUSSION

Although, TURP is considered safe and effective method for the treatment of LUTS secondary to BPH and has been regarded as the reference standard for decades, its morbidity and related mortality remain a clinical challenge for urologists. Many attempts have been made to search surgical alternatives or advance new resectoscope and electrosurgical devices²² such as holmium laser enucleation of the prostate, photoselective vaporization of the prostate and thulium laser resection of the prostate, all of which are considered extremely promising technologies.40-42

Plasmakinetic resection of the prostate is another novel electrosurgical technique that was first used for BPH therapy in 2001.23 Many studies have already proven the efficacy and safety of PKRP.²²⁻²⁹ In our meta-analysis, we have displayed the overall efficacy and safety of PKRP compared with TURP.

Monopolar TURP has a limitation in treating large prostates, especially those larger than ≥ 80 ml, because it requires a longer operation time. In addition, some irrigation fluid may enter the circulation via the prostate blood vessels opened, eventually leading to the development of the TUR syndrome. Although rare, TUR syndrome is the most dreaded complication of monopolar TURP. The Gyrus PlasmaKinetic System uses a bipolar coaxial system with an active and return electrodes placed on the same axis separated by a ceramic insulator,²⁴ so the system permits an effective operation because it is immersed in conductive normal saline as the irrigation fluid rather than in glycine or sorbitol. As a result, it decreases the risk of dilutional hyponatremia and TUR syndrome. The present meta-analysis showed that the PKRP group was remarkable shorter in operation time. The reason may be that urologists were now skilled in PKRP, compared with TURP. The rate of TUR syndrome was notably lower in PKRP

138

Study or Subgroup	TU Mean	JRP SD T	otal	PKI Nean	RP SD To	tal W		Mean Differ IV, Fixed, 95		Mean Diff IV, Fixed, S	
Erturhan <i>et al.</i> 27	5		120	5	2 12		8.7%	0.00 [-0.51			
Kong <i>et al.</i> ³⁹	16.51				2.86 5			-1.13 [-2.18			
Nuhoglu <i>et al.</i> ²³	17.7				4.3 2		3.8%	0.10 [-1.72			-
Seckiner <i>et al.</i> ²⁹	17.8			17.3	7.3 2		.6%	0.50 [-3.80			
Yoon <i>et al.</i> ³⁸	16.9						3.7%	-0.50 [-1.96			
Total (95%CI)		2	278		27	'1 1(0.0%	-0.85 [-1.39	9, -0.30]	•	
Heterogeneity: Chi ² = 2.	.07. df = 4 ((P = 0.7)	2): /² = (0%				-		-++	
Test for overall effect: Z										-10 -5 0 Favours TURP	5 10 Favours PKRP
Qmax at 3rd month											
		URP			RP	.		Mean Differ		Mean Diffe	
Study or Subgroup	Mean	SD T	otal	Mean	SD To	otal W	eight	IV, Fixed, 95	5% CI	IV, Fixed, 9	5% CI
lv <i>et al.</i> ³⁴	18.5	3.1	136 -	18.3	3.4 19	37	6.4%	0.20 [-0.51,	0.91]		
Seckiner <i>et al</i> . ²⁹	18.6	9.1	24 [~]	17.7	9.1	24 1	.4%	0.90 [-4.25,	6.05]		
Tefekli <i>et al</i> . ³⁶	15.8	3.7	47 <i>`</i>	16.9	2.8 4	9 22	.1% -	1.10 [-2.42,	0.22]	-=-{	
Total (95%CI)		2	207		26	6 10	0.0%	-0.08 [-0.70,	,0.54]	•	
Heterogeneity: Chi ² = 3	.05, df = 2 /	(P = 0.2)	2);	34%					-		
Test for overall effect: Z		•								-10 -5 0	5 10
	`	,								Favours TURP	Favours PKRP
Qmax at 6th month		TUF				PKRP			Mean Difference	Mean Differ	0000
Study or Subgroup	Ň			otal	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 9	
lv et al. ³⁴	1	9.2	3.7	132	19.3	3.5	188	63.0%	-0.10 [-0.91, 0.71]		
Seckiner <i>et al.</i> 29	1	6.2	12	23	23.4	10.6	24	1.0%	-7.20 [-13.68, -0.72]		
Tefekli <i>et al</i> . ³⁶	1	7.5	4.3	47	18.3	3.5	49	16.5%	-0.80 [-2.37, 0.77]		
Yoon <i>et al</i> . ³⁸	1	8.5	4.3	53	18.9	3.1	49	19.5%	-0.40 [-1.85, 1.05]	1	
Total (95% CI)				255			310	100.0%	-0.34 [-0.98, 0.30]	•	
Heterogeneity: Chi ² = 4	98, df = 3 (P = 0.17	7);	40%						-10 -5 0	5 10
Test for overall effect: Z	= 1.05 (P =	= 0.29)								Favours TURP	Favours PKRP
Qmax at 12th month		TURE			DVDD						r
	Mea	TURP		l Mear	PKRP 1 SD	Total	Weight		Difference d, 95% Cl	Mean Dit IV, Fixed,	
Study or Subaroup				16.6			13.0%		-2.09, 0.69]		
Study or Subgroup	15.9					120	36.7%	-	-1.82, -0.18]		
Bhansali <i>et al.</i> ²⁵	15.9 18.5		120	19 5					···	_	
Bhansali <i>et al.</i> ²⁵ Erturhan <i>et al.</i> ²⁷	18.5	3	120 26	19.5 24				-	-4.74, 3.141		
Bhansali <i>et al.</i> ²⁵ Erturhan <i>et al.</i> ²⁷ Iori <i>et al.</i> ²²	18.5 23.2	3 9	26	24	5	27	1.6%	-0.80 [-4.74, 3.14]		_
Bhansali <i>et al.</i> ²⁵ Erturhan <i>et al.</i> ²⁷ Iori <i>et al.²²</i> Muslumanoglu <i>et al.</i> ²⁶	18.5 23.2 16.9	3 9 4.1	26 33	24 17.2	5 3.9	27 34	1.6% 6.8%	-0.80 [-0.30 [·	-2.22, 1.62]		-
Bhansali <i>et al.</i> ²⁵ Erturhan <i>et al.</i> ²⁷ Iori <i>et al.</i> ²² Muslumanoglu <i>et al.</i> ²⁶ Nuhoglu <i>et al.</i> ²³	18.5 23.2	3 9 4.1 3.1	26 33 26	24 17.2 17.1	5 3.9 2.7	27 34 24	1.6% 6.8% 9.7%	-0.80 [-0.30 [0.80 [-	-2.22, 1.62] -0.81, 2.41]		-
Bhansali <i>et al.</i> ²⁵ Erturhan <i>et al.</i> ²⁷ lori <i>et al.</i> ²² Muslumanoglu <i>et al.</i> ²⁶ Nuhoglu <i>et al.</i> ²³ Seckiner <i>et al.</i> ²⁹	18.5 23.2 16.9 17.9	3 9 4.1 3.1	26 33 26 21	24 17.2 17.1 18.8	5 3.9 2.7 6.9	27 34 24 23	1.6% 6.8%	-0.80 [-0.30 [0.80 [- -3.10 [-	-2.22, 1.62] -0.81, 2.41] 7.00, 0.80]		_
Bhansali <i>et al.</i> ²⁵ Erturhan <i>et al.</i> ²⁷ Iori <i>et al.</i> ²² Muslumanoglu <i>et al.</i> ²⁸ Nuhoglu <i>et al.</i> ²⁸ Seckiner <i>et al.</i> ²⁹ Sinanoglu <i>et al.</i> ³⁵	18.5 23.2 16.9 17.9 15.7 20	3 9 4.1 3.1 6.3 4.9	26 33 26 21 85	24 17.2 17.1 18.8 5 19.2	5 3.9 2.7 6.9 2 6.3	27 34 24 23 80	1.6% 6.8% 9.7% 1.6% 8.3%	-0.80 [-0.30 [0.80 [- -3.10 [- 0.80 [-	-2.22, 1.62] -0.81, 2.41] 7.00, 0.80] -0.93, 2.53]		-
Bhansali <i>et al.</i> ²⁵ Erturhan <i>et al.</i> ²⁷ lori <i>et al.</i> ²² Muslumanoglu <i>et al.</i> ²⁶ Nuhoglu <i>et al.</i> ²³ Seckiner <i>et al.</i> ²⁹	18.5 23.2 16.9 17.9 15.7	3 9 4.1 3.1 6.3 4.9 4.1	26 33 26 21 85	24 17.2 17.1 18.8 5 19.2 7 17.2	5 3.9 2.7 6.9 2 6.3 2 3.9	27 34 24 23 80 49	1.6% 6.8% 9.7% 1.6%	-0.80 [-0.30 [0.80 [- -3.10 [- 0.80 [-0.30 [-2.22, 1.62] -0.81, 2.41] 7.00, 0.80]		
Bhansali <i>et al.</i> ²⁵ Erturhan <i>et al.</i> ²⁷ Iori <i>et al.</i> ²⁷ Muslumanoglu <i>et al.</i> ²⁶ Nuhoglu <i>et al.</i> ²⁸ Seckiner <i>et al.</i> ²⁹ Sinanoglu <i>et al.</i> ³⁵ Tefekli <i>et al.</i> ³⁶ Yoon <i>et al.</i> ³⁸	18.5 23.2 16.9 17.9 15.7 20 16.9	3 9 4.1 3.1 6.3 4.9 4.1	26 33 26 21 85 47	24 17.2 17.1 18.8 5 19.2 7 17.2 8 18.9	5 3.9 2.7 6.9 2 6.3 2 3.9	27 34 24 23 80 49 49	1.6% 6.8% 9.7% 1.6% 8.3% 9.7% 12.5%	-0.80 [-0.30 [0.80 [- -3.10 [- 0.80 [- -0.30 [-0.20 [-	-2.22, 1.62] -0.81, 2.41] 7.00, 0.80] -0.93, 2.53] -1.90, 1.30] -1.61, 1.21]		
Bhansali <i>et al.</i> ²⁵ Erturhan <i>et al.</i> ²⁷ Iori <i>et al.</i> ²² Muslumanoglu <i>et al.</i> ²⁸ Nuhoglu <i>et al.</i> ²⁸ Seckiner <i>et al.</i> ²⁹ Sinanoglu <i>et al.</i> ³⁵ Tefekli <i>et al.</i> ³⁶	18.5 23.2 16.9 17.9 15.7 20 16.9 18.6	3 9 4.1 3.1 6.3 4.9 4.1 2.9	26 33 26 21 85 47 53 444	24 17.2 17.1 18.8 5 19.2 7 17.2 8 18.9	5 3.9 2.7 6.9 2 6.3 2 3.9	27 34 24 23 80 49	1.6% 6.8% 9.7% 1.6% 8.3% 9.7%	-0.80 [-0.30 [0.80 [- -3.10 [- 0.80 [- -0.30 [-0.20 [-	-2.22, 1.62] -0.81, 2.41] 7.00, 0.80] -0.93, 2.53] -1.90, 1.30]		- - - -

Figure 3: Pooled estimates of Qmax at 1-month, 3 months, 6 months and 12 months follow-up.

group than that in TURP group. None of 595 patients in PKRP group developed TUR syndrome. This could be an advantage for procedures with large prostate glands. The complication of urinary stricture was probably related to high ablative energy and violent manipulation. The early irritative symptoms and urinary retention were mainly attributed to urethral edema and obstruction of the residual prostate tissue. There was no statistical difference in the two complications between the two groups. However, there was more clot retention in TURP group than that in PKRP group because of greater thermal damage and more granulation tissue induced by the monopolar current.

Although the catheterization time in PKRP group was remarkably shorter than that in TURP group, there was no statistical difference in bladder irrigation volume between the two groups (P = 0.14), nor was there statistical difference in hospital stay (P = 0.04). The pooled estimates of our meta-analysis gave similar results for PKRP and TURP in IPSS (1-month, 3 months, 6 months and 12 months), but the Q_{max} (1-month) was noticeably higher in PKRP group.

Some authors have argued about excessive blood loss in conventional TURP. Bhansali *et al.*²⁵ reported that blood loss in TURP group was remarkably higher than that in PKRP, and even higher in cases of larger prostate glands. Nuhoglu *et al.*²³ believed that less bleeding should be expected in PKRP technique because it both resects the prostate tissue and can controls bleeding. de Sio *et al.*³⁷ reported that the mean decrease in hemoglobin level 24 h after operation was lower in PKRP, though the difference was not statistically notable when compared with TURP group.

There are two limitations in our meta-analysis. First, the follow-up periods were not long enough. Only one study²⁶ reported a 100 months

a. 1 [°] a. 1		TURP			PKRP	.		Mean Difference	Mean Difference
Study or Subgroup	Mean		Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
Akçayöz <i>et al</i> . ³⁰	44	14	21	45	20	21	2.7%	-1.00 [-11.44, 9.44]	
Ēngeler <i>et al</i> . ³¹	41.8	17.5	101	50.3	20.8	111	11.1%	-8.50 [-13.66, -3.34]	
Erturhan <i>et al</i> .²²	57	24	120	36	19	120	9.8%	21.00 [15.52, 26.48]	
Giulianelli <i>et al</i> .³²	59	18	80	58	14.6	80	11.4%	1.00 [-4.08, 6.08]	
v et al. ³⁴	74	20.8	136	58.7	16.9	193	16.5%	15.30 [11.07, 19.53]	
Muslumanoglu <i>et al</i> .² ⁶	57.8	13.4	33	40.3	11.5	34	8.2%	17.50 [11.51, 23.49]	
Nuhoglu <i>et al.</i> ²³	52	13.2	30	55	9.7	27	8.3%	-3.00 [-8.97, 2.97]	
^D atankar <i>et al.</i> ²⁸	57,88	18.95	51	49.99	12.35	52	7.7%	7.89 [1.70, 14.08]	
Seckiner <i>et al.</i> 29	52.9	16.3	24	52.9	12.8	24	4.3%	0.00 [-8.29, 8.29]	
Tefekli <i>et al.</i> ³⁶	57.8	13.4	47	40.3	11.4	49	11.9%	-17.50 [12.51, 22.49]	
Huang et al.33	71.22	19.85		75.77	22.63	71	5.8%	-4.55 [-11.69, 2.59]	
Yoon et al.38	74.2	26.6	53	72.6	31.2	49	2.3%	1.60 [-9.70, 12.90]	
Total (95% CI)			761			831	100%	7.38 [5.67, 9.10]	
Heterogeneity: Chi ² = 13		•		1); <i>P</i> = 9	2%				-20 -10 0 10 20
Test for overall effect: Z	= 8.42 (P <	0.0000	11)						Favours TURP Favours PKR
Catheterization time									
Study or Subgroup	Mean	TURP D SD	Total	Mean	PKRP SD	Total	Weight	Mean Difference IV, Fixed, 95% CI	Mean Difference IV, Fixed, 95% Cl
Bhansali <i>et al.</i> ²⁵	39.25	10.22		19.05	3.92	34	7.1%	2.59 [1.93, 3.25]	
Engeler <i>et al</i> . ³¹	3	1	101	2.9	0.7	111	8.3%	0.12 [-0.15, 0.39]	†-
Erturhan <i>et al.</i> 27	4.5	1.1	120	3	1.1	120	8.2%	1.36 [1.08, 1.64]	
Giulianelli <i>et al</i> .³²	48	48	80	24	12	80	8.2%	0.68 [0.36, 1.00]	
ori <i>et al.</i> 22	31.9	4	26	23	4	27	7.0%	2.19 [1.50, 2.88]	
Kong <i>et al.</i> ³⁹	57.7	17.31	51	37.2	15.03	51	7.9%	1.26 [0.83, 1.68]	· · ·
v et al. ³⁴	4.6	1	136	3.9	0.8	193	8.3%	0.79 [0.56, 1.01]	-
Muslumanoglu <i>et al</i> . ²⁶	3.8	0.7	33	2.3	0.7	34	7.3%	2.12 [1.51, 2.72]	
Nuhoglu et al.23	75.7	12.5	30	47	5.6	27	6.8%	2.87 [2.12, 3.63]	
	42.4	15.12		18.44	2.7	52	7.7%	2.20 [1.71, 2.69]	
Patankar <i>et al.²⁰</i>									
Patankar <i>et al.</i> ² ⁸ Seckiner <i>et al.</i> ² ⁹			24	31	0.6	24		0 00 [-0 57 0 57]	
Seckiner <i>et al.</i> ²⁹	3.1	1.4	24 47	3.1 2.3	0.6	24 49	7.5%	0.00 [-0.57, 0.57]	+
Seckiner <i>et al.</i> ²º Tefekli <i>et al</i> .³ ⁶	3.1 3.8	1.4 0.7	47	2.3	0.7	49	7.5% 7.7%	2.13 [1.62, 2.63]	Ť
Seckiner <i>et al.</i> ²⁹	3.1	1.4					7.5%		
Seckiner <i>et al.</i> ²º Tefekli <i>et al</i> .³ ⁶	3.1 3.8	1.4 0.7	47	2.3 2.28	0.7	49	7.5% 7.7%	2.13 [1.62, 2.63]	
Seckiner <i>et al.²⁹</i> Tefekli <i>et al.³⁶</i> Yoon <i>et al.³⁸</i>	3.1 3.8 3.12	1.4 0.7 0.69	47 53 785	2.3 2.28	0.7 1.37	49 49 851	7.5% 7.7% 8.0% 100%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18]	
Seckiner <i>et al.²⁹</i> Tefekli <i>et al.³⁶</i> Yoon <i>et al.³⁸</i> Total (95% CI)	3.1 3.8 3.12 .58, Chi ² = 7	1.4 0.7 0.69 181.07,	47 53 785 df = 12	2.3 2.28	0.7 1.37	49 49 851	7.5% 7.7% 8.0% 100%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18]	-2 -1 0 1 2 Favours TURP Favours PKF
Seckiner <i>et al.</i> ²⁹ Tefekli <i>et al.</i> ³⁶ Yoon <i>et al.</i> ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z	3.1 3.8 3.12 .58, Chi ² = 7	1.4 0.7 0.69 181.07,	47 53 785 df = 12	2.3 2.28	0.7 1.37	49 49 851	7.5% 7.7% 8.0% 100%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18]	
Seckiner <i>et al.</i> ²⁹ Tefekli <i>et al.</i> ³⁸ Yoon <i>et al.</i> ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay	3.1 3.8 3.12 .58, Chi ² = 7 = 6.43 (<i>P</i> <	1.4 0.7 0.69 181.07, : 0.0000	47 53 785 df = 12 1)	2.3 2.28 (<i>P</i> < 0.0	0.7 1.37 00001); PKRP	49 49 851 P = 939	7.5% 7.7% 8.0% 100%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference	Favours TURP Favours PKI Mean Difference
Seckiner <i>et al.</i> ²⁹ Tefekli <i>et al.</i> ³⁶ Yoon <i>et al.</i> ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z	3.1 3.8 3.12 .58, Chi ² = 7 = 6.43 (<i>P</i> <	1.4 0.7 0.69 181.07, : 0.0000	47 53 785 df = 12	2.3 2.28 (<i>P</i> < 0.0	0.7 1.37 00001);	49 49 851	7.5% 7.7% 8.0% 100%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86]	Favours TURP Favours PK
Seckiner <i>et al.</i> ²⁹ Tefekli <i>et al.</i> ³⁶ Yoon <i>et al.</i> ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Hospital stay Study or Subgroup	3.1 3.8 3.12 .58, Chi ² = 7 = 6.43 (<i>P</i> < <u>T</u> <u>Mean</u>	1.4 0.7 0.69 181.07, : 0.0000	47 53 785 df = 12 11) Total	2.3 2.28 (<i>P</i> < 0.0	0.7 1.37 00001); <u>PKRP</u> SD	49 49 851 P = 939	7.5% 7.7% 8.0% 100% %	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl	Favours TURP Favours PK Mean Difference
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵	3.1 3.8 3.12 .58, Chi ² = 7 = 6.43 (<i>P</i> < <u>T</u> Mean 81.09	1.4 0.7 0.69 181.07, 0.0000 <u>URP</u> SD 15.438	47 53 785 df = 12 11) Total 33	2.3 2.28 (<i>P</i> < 0.0 <u>F</u> <u>Mean</u> 79.21	0.7 1.37 00001); <u>PKRP</u> SD 14.251	49 49 851 $\beta = 939$ $Total$ 34	7.5% 7.7% 8.0% 100% % Weight 14.0%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60]	Favours TURP Favours PK Mean Difference
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹	3.1 3.8 3.12 .58, Chi ² = $\frac{1}{2}$ = 6.43 (<i>P</i> < <u>T</u> Mean 81.09 6.7	1.4 0.7 0.69 181.07, 0.00000 URP SD 15.438 2	47 53 785 df = 12 11) Total 33 101	2.3 2.28 (<i>P</i> < 0.0 <u>F</u> <u>Mean</u> 79.21 8.1	0.7 1.37 00001); <u>PKRP</u> SD 14.251 3.6	49 49 851 $\beta = 939$ <u>Total</u> <u>34</u> 111	7.5% 7.7% 8.0% 100% % Weight 14.0% 14.7%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20]	Favours TURP Favours PK Mean Difference
Seckiner <i>et al.</i> ²⁹ Tefekli <i>et al.</i> ³⁸ Yoon <i>et al.</i> ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay Study or Subgroup Bhansali <i>et al.</i> ²⁵ Engeler <i>et al.</i> ³¹ Erturhan <i>et al.</i> ²⁷	3.1 3.8 3.12 .58, Chi ² = 7 = 6.43 (<i>P</i> < <u>T</u> Mean 81.09 6.7 5	1.4 0.7 0.69 181.07, 0.00000 <u>URP</u> SD 15.438 2 1.2	47 53 785 df = 12 1) Total 33 101 120	2.3 2.28 (<i>P</i> < 0.0 <u>F</u> <u>Mean</u> 79.21 8.1 3	0.7 1.37 00001); <u>PKRP</u> SD 14.251 3.6 1.2	$49 \\ 49 \\ 851 \\ \beta = 939 \\ \hline Total \\ 34 \\ 111 \\ 120 \\ \hline $	7.5% 7.7% 8.0% 100% % Weight 14.0% 14.7% 14.7%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96]	Favours TURP Favours PKI Mean Difference
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0, Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³²	3.1 3.8 3.12 .58, Chi ² = - .58, Chi ² = - .58, Chi ² = - .5 .5 .72	1.4 0.7 0.69 181.07, 0.00000 <u>URP</u> SD 15.438 2 1.2 48	47 53 785 df = 12 1) Total 33 101 120 80	2.3 2.28 (<i>P</i> < 0.0 <u>F</u> <u>Mean</u> 79.21 8.1 3 48	0.7 1.37 00001); <u>PKRP</u> SD 14.251 3.6 1.2 6	49 49 851 $\beta = 939$ Total 34 111 120 80	7.5% 7.7% 8.0% 100% % Weight 14.0% 14.7% 14.7% 14.6%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02]	Favours TURP Favours PKI Mean Difference
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² lori et al. ²²	3.1 3.8 3.12 .58, Chi ² = - 6.43 (<i>P</i> < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6	1.4 0.7 0.69 181.07, 0.0000 <u>URP</u> 5D 15.438 2 1.2 48 3	47 53 785 df = 12 11) Total 33 101 120 80 26	2.3 2.28 (<i>P</i> < 0.0 <u>F</u> <u>Mean</u> 79.21 8.1 3 48 48	0.7 1.37 00001); 00001); 14.251 3.6 1.2 6 1	49 49 851 ℓ = 939 Total 34 111 120 80 27	7.5% 7.7% 8.0% 100% % Weight 14.0% 14.7% 14.7% 14.7% 14.6% 13.4%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74]	Favours TURP Favours PKI Mean Difference
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Hospital stay Study or Subgroup Shansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Siulianelli et al. ³² Iori et al. ³²	3.1 3.8 3.12 .58, Chi ² = - 6.43 (<i>P</i> < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6	1.4 0.7 0.69 181.07, 0.0000 URP 5D 15.438 2 1.2 48 3 0.92	47 53 785 df = 12 11) Total 33 101 120 80 26 51	2.3 2.28 (<i>P</i> < 0.0 <u>F</u> <u>Mean</u> 79.21 8.1 3 48 48 48 1.5	0.7 1.37 00001); 00001); 14.251 3.6 1.2 6 1 0.88	$49 \\ 49 \\ 851 \\ \beta = 939 \\ \hline Total \\ 34 \\ 111 \\ 120 \\ 80 \\ 27 \\ 51 \\ \hline \\ 51 \\ \hline $	7.5% 7.7% 8.0% 100% % <u>Weight</u> 14.0% 14.7% 14.8% 13.4% 13.4% 13.2%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64]	Favours TURP Favours PKI Mean Difference
Seckiner et al. ²⁹ Tefekli et al. ³⁸ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² lori et al. ²² Kong et al. ³⁹ .	3.1 3.8 3.12 .58, Chi ² = - 6.43 (<i>P</i> < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6	1.4 0.7 0.69 181.07, 0.0000 <u>URP</u> 5D 15.438 2 1.2 48 3	47 53 785 df = 12 11) Total 33 101 120 80 26	2.3 2.28 (<i>P</i> < 0.0 <u>F</u> <u>Mean</u> 79.21 8.1 3 48 48	0.7 1.37 00001); 00001); 14.251 3.6 1.2 6 1	49 49 851 ℓ = 939 Total 34 111 120 80 27	7.5% 7.7% 8.0% 100% % Weight 14.0% 14.7% 14.7% 14.7% 14.6% 13.4%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74]	Favours TURP Favours PKI Mean Difference
Seckiner <i>et al.</i> ²⁹ Tefekli <i>et al.</i> ³⁸ Yoon <i>et al.</i> ³⁸ Total (95% Cl) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay Study or Subgroup Bhansali <i>et al.</i> ²⁵ Engeler <i>et al.</i> ³¹	3.1 3.8 3.12 .58, Chi ² = - 6.43 (<i>P</i> < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6	1.4 0.7 0.69 181.07, 0.00000 URP 15.438 2 1.2 48 3 0.92 1.893	47 53 785 df = 12 11) Total 33 101 120 80 26 51	2.3 2.28 (<i>P</i> < 0.0 <u>F</u> <u>Mean</u> 79.21 8.1 3 48 48 48 1.5	0.7 1.37 00001); 00001); 14.251 3.6 1.2 6 1 0.88	$49 \\ 49 \\ 851 \\ \beta = 939 \\ \hline Total \\ 34 \\ 111 \\ 120 \\ 80 \\ 27 \\ 51 \\ \hline 51 \\ \hline$	7.5% 7.7% 8.0% 100% % <u>Weight</u> 14.0% 14.7% 14.8% 13.4% 13.4% 13.2%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64]	Favours TURP Favours PKI Mean Difference
Seckiner et al. ²⁹ Tefekli et al. ³⁸ Yoon et al. ³⁸ Total (95% Cl) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² Iori et al. ²³ Kong et al. ³⁹ . Yoon et al. ³⁸	3.1 3.8 3.12 .58, Chi ² = - = 6.43 (P < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6 4.27	1.4 0.7 0.69 181.07, 0.00000 URP 5D 15.438 2 1.2 48 3 0.92 1.893	47 53 785 df = 12 11) Total 33 101 120 80 26 51 53 464	2.3 2.28 (<i>P</i> < 0.0 <u>Mean</u> 79.21 8.1 3 48 48 1.5 3.52	0.7 1.37 00001); 00001); 14.251 3.6 1.2 6 1 0.88 2.55	$49 \\ 49 \\ 851 \\ \beta = 939 \\ \hline Total \\ 34 \\ 111 \\ 120 \\ 80 \\ 27 \\ 51 \\ 49 \\ 472 \\ \hline $	7.5% 7.7% 8.0% 100% % <u>Weight</u> 14.0% 14.7% 14.6% 13.4% 14.2% 14.3%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72]	Favours TURP Favours PKI Mean Difference IV, Fixed, 95% CI
Seckiner et al. ²⁹ Tefekli et al. ³⁸ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² Iori et al. ²³ Kong et al. ³⁹ . Yoon et al. ³⁸	3.1 3.8 3.12 5.58, Chi ² = - = 6.43 (P < T Mean 81.09 6.7 5 72 50.6 2.6 4.27 70, Chi ² = 1	1.4 0.7 0.69 181.07, 0.0000 URP SD 15.438 2 1.2 48 3 0.92 1.893 26.66, 0	47 53 785 df = 12 11) Total 33 101 120 80 26 51 53 464	2.3 2.28 (<i>P</i> < 0.0 <u>Mean</u> 79.21 8.1 3 48 48 1.5 3.52	0.7 1.37 00001); 00001); 14.251 3.6 1.2 6 1 0.88 2.55	$49 \\ 49 \\ 851 \\ \beta = 939 \\ \hline Total \\ 34 \\ 111 \\ 120 \\ 80 \\ 27 \\ 51 \\ 49 \\ 472 \\ \hline $	7.5% 7.7% 8.0% 100% % <u>Weight</u> 14.0% 14.7% 14.6% 13.4% 14.2% 14.3%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72]	Favours TURP Favours PKI Mean Difference IV, Fixed, 95% CI
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² Iori et al. ³⁹ . Yoon et al. ³⁹ . Total (95% CI) Heterogeneity:Tau ² = 0.	3.1 3.8 3.12 5.58, Chi ² = - = 6.43 (P < T Mean 81.09 6.7 5 72 50.6 2.6 4.27 70, Chi ² = 1	1.4 0.7 0.69 181.07, 0.0000 URP SD 15.438 2 1.2 48 3 0.92 1.893 26.66, 0	47 53 785 df = 12 11) Total 33 101 120 80 26 51 53 464	2.3 2.28 (<i>P</i> < 0.0 <u>Mean</u> 79.21 8.1 3 48 48 1.5 3.52	0.7 1.37 00001); 00001); 14.251 3.6 1.2 6 1 0.88 2.55	$49 \\ 49 \\ 851 \\ \beta = 939 \\ \hline Total \\ 34 \\ 111 \\ 120 \\ 80 \\ 27 \\ 51 \\ 49 \\ 472 \\ \hline $	7.5% 7.7% 8.0% 100% % <u>Weight</u> 14.0% 14.7% 14.6% 13.4% 14.2% 14.3%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72]	Favours TURP Favours PKI Mean Difference IV, Fixed, 95% CI
Seckiner et al. ²⁹ Tefekli et al. ³⁸ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² lori et al. ³⁹ . Yoon et al. ³⁸ Total (95% CI) Heterogeneity:Tau ² = 0. Test for overall effect: Z Irragated volume	3.1 3.8 3.12 5.58, Chi ² = - = 6.43 ($P < \frac{T}{Mean}$ 81.09 6.7 5 50.6 2.6 4.27 70, Chi ² = 1 = 2.05 ($P = \frac{T}{2}$	1.4 0.7 0.69 181.07, 50 0000 15.438 2 1.2 48 3 0.92 1.893 26.66, 4 5 0.04) TURP	47 53 785 df = 12 11) Total 33 101 120 80 26 51 53 464 df = 6 (2.3 2.28 2 (P < 0.0 <u>F</u> <u>Mean</u> 79.21 8.1 3 48 48 1.5 3.52 P < 0.00	0.7 1.37 000001); 5D 14.251 3.6 1 2.55 001); <i>P</i> PKRP	49 49 851 <i>P</i> = 93% 34 111 120 80 27 51 49 472 = 95%	7.5% 7.7% 8.0% 100% % <u>Weight</u> 14.0% 14.7% 14.7% 14.8% 13.4% 13.4% 13.4% 13.4%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72] 0.67 [0.03, 1.31] Mean Difference	Favours TURP Favours PKI Mean Difference IV, Fixed, 95% CI
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Hospital stay Study or Subgroup Shansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²² Kong et al. ³⁹ Yoon et al. ³⁹ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Irragated volume Study or Subgroup	3.1 3.8 3.12 5.58, Chi ² = - = 6.43 (P < T Mean 81.09 6.7 5 72 50.6 2.6 4.27 70, Chi ² = 1 = 2.05 (P =	1.4 0.7 0.69 181.07, 5D 15.438 2 1.2 48 3 0.92 1.893 26.66, (0.04) <u>TURP</u> 1 <u>SD</u>	47 53 785 df = 12 11) Total 33 101 120 80 26 51 53 464 df = 6 (Total	2.3 2.28 (<i>P</i> < 0.0 <u>Mean</u> 79.21 8.1 3 48 48 1.5 3.52	0.7 1.37 000001); 14.251 14.251 1.2 6 1 0.88 2.55 0001); <i>P</i>	$49 \\ 49 \\ 851 \\ \beta = 939 \\ \hline Total \\ 34 \\ 111 \\ 120 \\ 80 \\ 27 \\ 51 \\ 49 \\ 472 \\ \hline $	7.5% 7.7% 8.0% 100% % <u>Weight</u> 14.0% 14.7% 14.6% 13.4% 14.2% 14.3%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72] 0.67 [0.03, 1.31] Mean Difference IV, Fixed, 95% Cl	Favours TURP Favours PKI Mean Difference IV, Fixed, 95% CI
Seckiner et al. ²⁹ Tefekli et al. ³⁸ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² Iori et al. ³² Kong et al. ³³ . Yoon et al. ³⁸ Total (95% CI) Heterogeneity:Tau ² = 0. Test for overall effect: Z Irragated volume Study or Subgroup Engeler et al. ³¹	3.1 3.8 3.12 5.58, Chi ² = -7 = 6.43 (P < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6 4.27 70, Chi ² = 1 = 2.05 (P = <u>Mean</u> 29.5	1.4 0.7 0.69 181.07, 5D 15.438 2 1.2 48 3 0.92 1.893 26.66, 6 0.04) <u>TURP</u> 10.2	47 53 785 df = 12 11) Total 33 101 120 80 26 51 53 464 df = 6 (Total 210 100 100 100 100 100 100 100 100 100	2.3 2.28 2 (P < 0.0 F Mean 79.21 8.1 3 48 48 1.5 3.52 P < 0.00 Mean 28.1	0.7 1.37 00001); PKRP SD 14.251 1.2 6 1 0.88 2.55 001); <i>P</i> PKRP SD 10.9	49 49 8511 <i>P</i> = 933 34 111 120 80 27 51 49 472 = 95%	7.5% 7.7% 8.0% 100% % 14.0% 14.7% 14.7% 14.6% 13.4% 14.2% 14.3% 100% Weight 12.6%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72] 0.67 [0.03, 1.31] Mean Difference IV, Fixed, 95% Cl 1.40 [-1.44, 4.24]	Favours TURP Favours PK
Seckiner et al. ²⁹ Tefekli et al. ³⁸ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² lori et al. ³⁹ Yoon et al. ³⁹ Total (95% CI) Heterogeneity:Tau ² = 0. Test for overall effect: Z Irragated volume Study or Subgroup	3.1 3.8 3.12 .58, Chi ² = - 6.43 (P < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6 4.27 70, Chi ² = 1 = 2.05 (P = <u>Mean</u>	1.4 0.7 0.69 181.07, 5D 15.438 2 1.2 48 3 0.92 1.893 26.66, (0.04) <u>TURP</u> 1 <u>SD</u>	47 53 785 df = 12 11) Total 33 101 120 80 26 51 53 464 df = 6 (Total 210 100 100 100 100 100 100 100 100 100	2.3 2.28 2 (P < 0.0 <u>F Mean</u> 79.21 8.1 3 48 48 1.5 3.52 P < 0.00 <u>Mean</u>	0.7 1.37 000001); PKRP SD 14.251 3.6 1.2 6 1 0.88 2.55 001); <i>F</i> PKRP SD	49 49 851 <i>P</i> = 93% 34 111 120 80 27 51 49 472 = 95% Total	7.5% 7.7% 8.0% 100% % <u>Weight</u> 14.0% 14.7% 14.8% 13.4% 14.2% 14.3% 100% Weight	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72] 0.67 [0.03, 1.31] Mean Difference IV, Fixed, 95% Cl	Favours TURP Favours PK
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²² Kong et al. ³⁹ . Yoon et al. ³⁸ Total (95% CI) Heterogeneity:Tau ² = 0. Test for overall effect: Z Irragated volume Study or Subgroup Engeler et al. ³¹	3.1 3.8 3.12 5.58, Chi ² = -7 = 6.43 (P < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6 4.27 70, Chi ² = 1 = 2.05 (P = <u>Mean</u> 29.5	1.4 0.7 0.69 181.07, 5D 15.438 2 1.2 48 3 0.92 1.893 26.66, 6 0.04) TURP 1.5 2 1.2 0.02 1.893 2 1.2 0.02 1.893 1.2 0.02 1.2 0.04 1.2 0.02 1.2 0.000 0.000000	47 53 785 df = 12 11) Total 33 101 120 80 26 51 53 464 df = 6 (Total 210 100 100 100 100 100 100 100 100 100	2.3 2.28 2 (P < 0.0 F Mean 79.21 8.1 3 48 48 1.5 3.52 P < 0.00 Mean 28.1	0.7 1.37 00001); PKRP SD 14.251 1.2 6 1 0.88 2.55 001); <i>P</i> PKRP SD 10.9	49 49 8511 <i>P</i> = 933 34 111 120 80 27 51 49 472 = 95%	7.5% 7.7% 8.0% 100% % 14.0% 14.7% 14.7% 14.6% 13.4% 14.2% 14.3% 100% Weight 12.6%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72] 0.67 [0.03, 1.31] Mean Difference IV, Fixed, 95% Cl 1.40 [-1.44, 4.24]	Favours TURP Favours PK
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²² Kong et al. ³² . Yoon et al. ³⁰ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Irragated volume Study or Subgroup Engeler et al. ³¹ Erturhan et al. ²⁷	3.1 3.8 3.12 5.8, Chi ² = - = 6.43 (P < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6 4.27 70, Chi ² = 1 = 2.05 (P = <u>Mean</u> 29.5 7.5	1.4 0.7 0.69 181.07, 50 15.438 2 1.2 48 3 0.92 1.893 26.66, 6 5.004) 1 TURP 1 SD 10.2 1.1	47 53 785 df = 12 1) Total 33 101 120 80 26 51 53 464 df = 6 (Total	2.3 2.28 (P < 0.0) F Mean 79.21 8.1 3 48 48 1.5 3.52 P < 0.00 Mean 28.1 4.5	0.7 1.37 00001); 00001); 14.251 3.6 1.2 6 1 0.88 2.55 001); <i>P</i> PKRP SD 10.9 1.5	$\begin{array}{c} 49\\ 49\\ 851\\ \hline r = 933\\ \hline 111\\ 120\\ 80\\ 27\\ 51\\ 49\\ 472\\ = 95\%\\ \hline \hline Total\\ 111\\ 120\\ \end{array}$	7.5% 7.7% 8.0% 100% % Ueight 14.0% 14.7% 14.6% 13.4% 14.2% 14.3% 14.2% 14.3% 14.2% 14.3%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.79, 1.64] 0.33 [-0.06, 0.72] 0.67 [0.03, 1.31] Mean Difference IV, Fixed, 95% Cl 1.40 [-1.44, 4.24] 3.00 [2.67, 3.33]	Favours TURP Favours PK
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% Cl) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² foon et al. ³⁸ Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z Irragated volume Study or Subgroup Engeler et al. ³¹ Erturhan et al. ²⁷ Muslumanoglu et al. ²⁸	3.1 3.8 3.12 5.8, Chi ² = - = 6.43 (P < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6 4.27 70, Chi ² = 1 = 2.05 (P = <u>Mear</u> 29.5 7.5 7.8	1.4 0.7 0.69 181.07, 50 15.438 2 1.2 48 3 0.92 1.893 26.66, 6 1.893 26.66, 0 1.893 20.02 1.893 20.02 1.893	47 53 7855 df = 12 1) Total 33 101 120 80 26 51 53 464 df = 6 (Total 21 53 3	2.3 2.28 P < 0.0 P < 0.0 P < 0.00 P < 0.00 P < 0.00 P < 0.00 P < 0.00	0.7 1.37 00001); 00001); 14.251 3.6 1.2 6 1 0.88 2.55 001); <i>P</i> PKRP SD 10.9 1.5 1.5	$\begin{array}{c} 49\\ 49\\ 851\\ \hline r = 933\\ \hline r \\ 111\\ 120\\ 80\\ 27\\ 51\\ 49\\ 472\\ = 95\%\\ \hline \hline r \\ 751\\ 49\\ 472\\ = 95\%\\ \hline \hline r \\ 111\\ 120\\ 34\\ \end{array}$	7.5% 7.7% 8.0% 100% % 14.0% 14.7% 14.6% 13.4% 14.2% 14.3% 14.2% 14.3% 100% Weight 12.6% 24.3% 23.0% 16.7%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72] 0.67 [0.03, 1.31] Mean Difference IV, Fixed, 95% Cl 1.40 [-1.44, 4.24] 3.09 [0.13, 1.67] -1.40 [-3.39, 0.59]	Favours TURP Favours PK
Seckiner et al. ²⁹ Fefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² Iori et al. ²³ Yoon et al. ³⁸ Total (95% CI) Heterogeneity: Tau ² = 0. Test for overall effect: Z Irragated volume Study or Subgroup Engeler et al. ³¹ Erturhan et al. ²⁷ Muslumanoglu et al. ²⁶ Seckiner et al. ²⁸	3.1 3.8 3.12 5.8, Chi ² = - = 6.43 (P < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6 4.27 70, Chi ² = 1 = 2.05 (P = <u>Mean</u> 29.5 7.5 7.8 6.9	1.4 0.7 0.69 181.07, 50 0.0000 15.438 2 1.2 48 3 0.92 1.893 26.66, (0.04) 10.2 1.1 1.893 20.02 1.2 1.2 1.893	47 53 7855 df = 12 1) Total 33 101 120 80 26 51 53 464 df = 6 (Total 120 33 24	2.3 2.28 P = (P < 0.0) 79.21 8.1 3 48 48 1.5 3.52 P < 0.00 Mean 28.1 4.5 6.9 8.3	0.7 1.37 00001); PKRP SD 14.251 3.6 1.2 6 1 0.88 2.55 001); <i>F</i> PKRP SD 10.9 1.5 3.8	$\begin{array}{c} 49\\ 49\\ 851\\ 7\\ 7\\ 7\\ 8\\ 111\\ 120\\ 80\\ 27\\ 51\\ 49\\ 472\\ = 95\%\\ \hline \\ \hline \\ \hline \\ 7\\ 7\\ 120\\ 34\\ 24\\ \end{array}$	7.5% 7.7% 8.0% 100% % ¥eight 14.0% 14.7% 14.6% 13.4% 14.3% 14.3% 100% ¥eight 12.6% 24.3% 23.0%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72] 0.67 [0.03, 1.31] Mean Difference IV, Fixed, 95% Cl 1.40 [-1.44, 4.24] 3.00 [2.67, 3.33] 0.90 [0.13, 1.67]	Favours TURP Favours PK
Seckiner et al. ²⁹ Fefekli et al. ³⁶ ('oon et al. ³⁸ Fotal (95% CI) Heterogeneity: Tau ² = 0 Fest for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Siulianelli et al. ³² ori et al. ³⁹ ('oon et al. ³⁹ Fotal (95% CI) Heterogeneity: Tau ² = 0. Fest for overall effect: Z Irragated volume Study or Subgroup Engeler et al. ³¹ Erturhan et al. ²⁷ Wuslumanoglu et al. ²⁸ Seckiner et al. ²⁹ Tefekli et al. ³⁶	3.1 3.8 3.12 5.8, Chi ² = - = 6.43 (P < <u>T</u> <u>Mean</u> 81.09 6.7 5 72 50.6 2.6 4.27 70, Chi ² = 1 = 2.05 (P = <u>Mean</u> 29.5 7.5 7.8 6.9	1.4 0.7 0.69 181.07, 50 0.0000 15.438 2 1.2 48 3 0.92 1.893 26.66, (0.04) 10.2 1.1 1.893 20.02 1.2 1.2 1.893	47 53 7855 df = 12 1) Total 33 101 120 80 26 51 53 464 df = 6 (Total 120 33 24	2.3 2.28 P < 0.00 79.21 8.1 3 48 48 1.5 3.52 P < 0.000 Mean 28.1 4.5 6.9 8.3 6.9	0.7 1.37 00001); PKRP SD 14.251 3.6 1.2 6 1 0.88 2.55 001); <i>F</i> PKRP D 10.9 1.5 3.8	$\begin{array}{c} 49\\ 49\\ 851\\ 7\\ 7\\ 7\\ 8\\ 111\\ 120\\ 80\\ 27\\ 51\\ 49\\ 472\\ = 95\%\\ \hline \\ \hline \\ \hline \\ 7\\ 7\\ 120\\ 34\\ 24\\ \end{array}$	7.5% 7.7% 8.0% 100% % 14.0% 14.7% 14.6% 13.4% 14.2% 14.3% 14.2% 14.3% 100% Weight 12.6% 24.3% 23.0% 16.7%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72] 0.67 [0.03, 1.31] Mean Difference IV, Fixed, 95% Cl 1.40 [-1.44, 4.24] 3.09 [0.13, 1.67] -1.40 [-3.39, 0.59]	Favours TURP Favours PKI Mean Difference IV, Fixed, 95% CI
Seckiner et al. ²⁹ Tefekli et al. ³⁶ Yoon et al. ³⁸ Total (95% Cl) Heterogeneity: Tau ² = 0 Test for overall effect: Z Hospital stay Study or Subgroup Bhansali et al. ²⁵ Engeler et al. ³¹ Erturhan et al. ²⁷ Giulianelli et al. ³² Iori et al. ²² Kong et al. ³³ Total (95% Cl) Heterogeneity: Tau ² = 0. Test for overall effect: Z Irragated volume Study or Subgroup Engeler et al. ³¹ Erturhan et al. ²⁷ Muslumanoglu et al. ²⁸	3.1 3.8 3.12 5.8, Chi ² = - = 6.43 (P < <u>T</u> Mean 81.09 6.7 5 50.6 2.6 4.27 70, Chi ² = 1 = 2.05 (P = <u>Mean</u> 29.5 7.5 7.8 6.9 7.8	1.4 0.7 0.69 181.07, 50 0000 15.438 2 1.2 48 3 0.92 1.893 26.66, (0.04) 10.2 1.1 1.7 3.2 1.7	47 53 7855 df = 12 11) Total 33 101 120 80 26 51 53 464 df = 6 (Total 20 33 24 47 325	2.3 2.28 P < 0.00 79.21 8.1 3 48 48 1.5 3.52 P < 0.000 Mean 28.1 4.5 6.9 8.3 6.9	0.7 1.37 000001); PKRP SD 14.251 14.251 14.251 1.2 6 1 0.88 2.55 001); <i>P</i> PKRP SD 10.9 1.5 1.5 3.8 1.5	$\begin{array}{c} 49\\ 49\\ 851\\ P=933\\ \hline \\ \hline \\ 111\\ 120\\ 80\\ 27\\ 51\\ 49\\ 472\\ =95\%\\ \hline \\ \hline \\ \hline \\ 111\\ 120\\ 34\\ 24\\ 49\\ 338\\ \end{array}$	7.5% 7.7% 8.0% 100% % ¥ 14.0% 14.7% 14.6% 13.4% 14.2% 14.3% 100% ¥ 100% ¥ 00% 12.6% 23.0% 16.7% 23.4%	2.13 [1.62, 2.63] 0.78 [0.37, 1.18] 1.43 [0.99, 1.86] Mean Difference IV, Fixed, 95% Cl 0.13 [-0.35, 0.60] -0.47 [-0.75, -0.20] 1.66 [1.37, 1.96] 0.70 [0.38, 1.02] 1.15 [0.57, 1.74] 1.21 [0.79, 1.64] 0.33 [-0.06, 0.72] 0.67 [0.03, 1.31] Mean Difference IV, Fixed, 95% Cl 1.40 [-1.44, 4.24] 3.00 [2.67, 3.33] 0.90 [0.13, 1.67] -1.40 [-3.9, 0.59] 0.90 [0.26, 1.54]	Favours TURP Favours PKI Mean Difference IV, Fixed, 95% CI

Figure 4: Pooled estimates of perioperative variables.

Ť.

follow-up period, while the other studies had only 1-year follow-ups without including PVR and QoL. Thus, we were unable to evaluate the long-term efficacy and safety of PKRP. Secondly, the complications were not described sufficiently, such as sexual dysfunction, bladder neck contracture and the re-intervention rate.

CONCLUSION

The advantage of PKRP over TURP seems to lie in decreasing the risk of TUR syndrome, reducing the time of operation, catheterization and hospital stay, lowering the incidence of transfusion and clot retention, and increasing $Q_{\rm max}$ (1-month). IPSS (1-month,

Transfusion	τu	RP	PKR	P		Risk Difference	Risk Difference
Study or Subgroup					Weight	M-H, Fixed, 95% Cl	M-H, Fixed,95% Cl
Bhansali et al.25	7	33		34	4.1%	0.01 [-0.19, 0.20]	
De <i>et al.</i> ³⁷ Engeler <i>et al</i> . ³¹	0 0	35 101		35 111	4.2% 12.8%	-0.03 [-0.10, 0.05] 0.00 [-0.02, 0.02]	···
Giulianelli et al.32	3 7	80	0 8	80	9.7%	0.04 [-0.01, 0.08]	
Erturhan <i>et al.</i> 27 Iori <i>et al.</i> 22	0	120 26		20 27	14.6% 3.2%	0.05 [0.01,0.09] 0.00 [-0.07, 0.07]	
Kong et al.39	2	51		51 .	6.2%	0.04 [-0.02, 0.10]	· +
lv et al. ³⁴	4	136		93	19.4%	0.02 [-0.01, 0.05]	
Muslumanoglu et al. ² Nuhoglu et al. ²³	⁶ 1 2	33 30		34 27	4.1% 3.5%	0.00 [-0.08, 0.08] 0.03 [-0.08, 0.14]	·
Patankar et al.28	1	51	0 5	52	6.3%	0.02 [-0.03, 0.07]	
Tefekli <i>et al.</i> ³⁶ Yoon <i>et al.</i> ³⁸	1 1	47 53		49 19	5.8% 6.2%	0.00 [-0.06, 0.06] 0.02 [-0.03, 0.07]	
	'						
Total (95%CI) Total events	29	796	8 13	62	100.0%	0.02 [0.00, 0.04]	•
Heterogeneity: Chi ² =		, df = 1		61);	₽ = 0%		-0.2 -0.1 0 0.1 0.2
Test for overall effect	: Z = 2	.51 (P	= 0.01)				Favours TURP Favours PKRP
TUR syndrome	TUI	RP	PKRF	5		Risk Difference	Risk Difference
Study or Subgroup					Weight	M-H, Fixed,95% CI	M-H, Fixed,95% CI
Bhansali <i>et al.</i> ²⁵	4	33		34	5.6%	0.12 [0.00, 0.24]	
De <i>et al.</i> ³⁷ Engeler <i>et al.</i> ³¹	0 1	35 101		35 11	5.9% 17.8%	0.00 [-0.05, 0.05] 0.01 [-0.02, 0.04]	-
Erturhan et al.27	2	129	0 12	20	21.0%	0.02 [-0.01, 0.04]	
Giulianelli <i>et al.</i> ³² Iori <i>et al.</i> ²²	2 0	80 26		30 - 27	13.5% 4.5%	0.03 [-0.02, 0.07] 0.00 [-0.07, 0.07]	
Kong et al.39	0	20 51		51	8.6%	0.00 [-0.04, 0.04]	- <u>+</u> -
Muslumanoglu et al.2		33		34	5.6%	0.00 [-0.06, 0.06]	<u> </u>
Nuhoglu <i>et al</i> . ²³ Patankar <i>et al</i> . ²⁸	0 2	30 51		27 52	4.8% 8.7%	0.00 [-0.07, 0.07] 0.04 [-0.02, 0.10]	
Seckiner et al.29	2	24	0 2	24	4.0%	0.08 [-0.05, 0.21]	
Total (95%CI)		593	5	95	100.0%	0.02 [0.01, 0.04]	•
Total events	13		0				
Heterogeneity: Chi ² = Test for overall effect				2); r	= 0%		
			0.000)				Favours TURP Favours PKRP
Clot retention Study or Subgroup		IRP Total	PKRF		Weight	Risk Ratio	Risk Ratio M-H, Fixed,95% CI
De et al.37	4	35		.35	36.5%	2.00 [0.39, 10.22]	
Erturhan et al.27	17	120	2 1	120	36.5%	8.50 [2.01, 35.99]	_ _
lori <i>et al.</i> ²² Patankar <i>et al.</i> ²ଃ	5 2	26 51		27 52	17.9% 9.0%	5.19 [0.65, 41.50] 5.10 [0.25, 103.61]	
Total (95%CI) Total events	28	232	5	234	100.0%	5.23 [2.14, 12.77]	-
Heterogeneity: Chi ² =		df = 3); P =	= 0%		
Test for overall effect	:: Z = 3	.63 (P	= 0.0003)			0.002 0.1 1 10 200 Favours TURP Favours PKRP
Urinary retention	TUF	RP	PKRF	5		Risk Ratio	Risk Ratio
Study or Subgroup							M-H, Fixed,95% Cl
Erturhan <i>et al.</i> 27 Iori <i>et al.</i> 22	5 0	120 26		20 27	33.1% 24.4%	2.50 [0.49,12.64] 0.35 [0.01, 8.12]	
Muslumanoglu et al.26	³ 1	33	1	34	16.3%	1.03 [0.07, 15.80]	
Nuhoglu et al.23	0	30	1 :	27	26.1%	0.30 [0.01, 7.09]	
Total (95%CI)		209		80	100.0%	1.16 [0.40, 3.39]	+
Total events Heterogeneity: Chi ² =	6	df – 3	(P - 0.54)	\· μ -	- 0%		
Test for overall effect),	- 070		0.005 0.1 1 10 200 Favours TURP Favours PKRP
Urithral stricture	TU		PKRF		Woight	Risk Ratio M-H, Fixed,95% Cl	Risk Ratio
Study or Subgroup I Autorino et al. ²⁴	2	31		32	2.7%	2.06 [0.20, 21.63]	M-H, Fixed,95% Cl
Bhansali <i>et al.</i> ²⁵	4	33	5 3	34	13.6%	0.82 [0.24, 2.80]	
Engeler <i>et al.</i> ³¹ Erturhan <i>et al.</i> ²⁷	1 2	101 120		111 120	1.3% 5.5%	3.29 [0.14, 79.96] 1.00 [0.14, 6.98]	
Kong et al. ³⁹	2	53		49	5.8%	0.46 [0.04, 4.94]	
Lv et al.34	9	136		93	27.5%	1.06 [0.46, 2.46]	
Muslumanoglu et al. ²⁶ Nuhoglu et al. ²³	⁵ 1 0	33 30		34 27	2.7% 4.4%	1.03 [0.07, 15.80] 0.30 [0.01,7.09]	
Seckiner et al.29	1	24	2 2	24	5.5%	0.50 [0.05, 5.15]	
Sinanoglu <i>et al</i> . ³⁵ Tefekli <i>et al</i> . ³⁶	3 1	85 47		80 49	22.8% 8.1%	0.35 [0.10, 1.28] 0.35 [0.04, 3.22]	
Total (95%CI) Total events	25	693	37	53	100.0%	0.76 [0.47, 1.23]	
Heterogeneity: Chi ² =	4.72,) (P = 0.9	1); <i>P</i>	= 0%		
Test for overall effect	: Z = 1	.10 (P	= 0.27)				Favours TURP Favours PKRP

Figure 5: Pooled estimates of adverse events.

-

3 months, 6 months and 12 months), Q_{max} (3 months, 6 months and 12 months), urinary retention rate, urinary stricture rate, irrigation volume in PKRP group were similar to those in TURP

group. PKRP may anticipatorily prove to be a reliable minimal invasive technique and an alternative electrosurgical procedure for treating BPH.

142

AUTHOR CONTRIBUTIONS

KW and YL contributed to the conception, design, acquisition, analysis and interpretation of data, drafting the manuscript, critical revision for important intellectual content. JFT participated in the design of the study and performed the statistical analysis. HYZ contributed to the acquisition of data. DFX and YF evaluated the results and supervised the project. All authors read and approved the final manuscript.

COMPETING FINANCIAL INTERESTS

All authors declare no competing interests.

REFERENCES

- Roberts RO, Jacobsen SJ, Jacobson DJ, Reilly WT, Talley NJ, et al. Natural history of prostatism: high American Urological Association Symptom scores among community-dwelling men and women with urinary incontinence. Urology 1998; 51: 213–9.
- 2 Roehrborn CG, McConnell J, Bonilla J, Rosenblatt S, Hudson PB, et al. Serum prostate specific antigen is a strong predictor of future prostate growth in men with benign prostatic hyperplasia. PROSCAR long-term efficacy and safety study. J Urol 2000; 163: 13–20.
- 3 Gu FL, Xia TL, Kong XT. Preliminary study of the frequency of benign prostatic hyperplasia and prostatic cancer in China. *Urology* 1994; 44: 688–91.
- 4 Plante M, Wachterman J, Perrapato S. Options for the treatment of benign prostatic hyperplasia. Crit Rev Eukaryot Gene Expr 2012; 22: 281–7.
- 5 Kumar R, Malla P, Kumar M. Advances in the design and discovery of drugs for the treatment of prostatic hyperplasia. *Expert Opin Drug Discov* 2013; 8: 1013–27.
- 6 Wasson JH, Reda DJ, Bruskewitz RC, Elinson J, Keller AM, et al. A comparison of transurethral surgery with watchful waiting for moderate symptoms of benign prostatic hyperplasia. The Veterans Affairs Cooperative Study Group on Transurethral Resection of the Prostate. N Engl J Med 1995; 332: 75–9.
- 7 Wei JT, Calhoun E, Jacobsen SJ. Urologic diseases in America project: benign prostatic hyperplasia. J Urol 2005; 173: 1256–61.
- 8 McVary KT, Roehrborn CG, Avins AL, Barry MJ, Bruskewitz RC, et al. Update on AUA guideline on the management of benign prostatic hyperplasia. J Urol 2011; 185: 1793–803.
- 9 Herrmann TR, Liatsikos EN, Nagele U, Traxer O, Merseburger AS. EAU guidelines panel on lasers, technologies. EAU guidelines on laser technologies. *Eur Urol* 2012; 61: 783–95.
- 10 Bostanci Y, Kazzazi A, Djavan B. Laser prostatectomy: holmium laser enucleation and photoselective laser vaporization of the prostate. *Rev Urol* 2013; 15: 1–10.
- 11 Lertakyamanee J, Ruksamanee EO, Tantiwong A, Boonsuk K, Nilpradab I, et al. The risk and effectiveness of transurethral resection of prostate. J Med Assoc Thai 2002; 85: 1288–95.
- 12 Mebust WK, Holtgrewe HL, Cockett AT, Peters PC. Transurethral prostatectomy: immediate and postoperative complications. A cooperative study of 13 participating institutions evaluating 3,885 patients 1989. J Urol 2002; 167: 999–1003.
- 13 Rassweiler J, Teber D, Kuntz R, Hofmann R. Complications of transurethral resection of the prostate (TURP) – incidence, management, and prevention. *Eur Urol* 2006; 50: 969–79.
- 14 Zhu G, Xie C, Wang X, Tang X. Bipolar plasmakinetic transurethral resection of prostate in 132 consecutive patients with large gland: three-year follow-up results. *Urology* 2012; 79: 397–402.
- 15 Simpson RJ. Benign prostatic hyperplasia. Br J Gen Pract 1997; 47: 235-40.
- 16 Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17: 1–12.
- 17 Kjaergard LL, Villumsen J, Gluud C. Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. *Ann Intern Med* 2001; 135: 982–9.
- 18 Moher D, Pham B, Jones A, Cook DJ, Jadad AR, et al. Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses? *Lancet* 1998; 352: 609–13.
- 19 Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719–48.
- 20 DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials* 1986; 7: 177–88.

- 21 Aurelio T. Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull 1999; 8: 15–7.
- 22 Iori F, Franco G, Leonardo C, Laurenti C, Tubaro A, et al. Bipolar transurethral resection of prostate: clinical and urodynamic evaluation. Urology 2008; 71: 252–5.
- 23 Nuhoglu B, Ayyildiz A, Karagüzel E, Cebeci O, Germiyanoglu C. Plasmakinetic prostate resection in the treatment of benign prostate hyperplasia: results of 1-year follow-up. Int J Urol 2006; 13: 21–4.
- 24 Autorino R, Damiano R, Di Lorenzo G, Quarto G, Perdonà S, *et al.* Four-year outcome of a prospective randomised trial comparing bipolar plasmakinetic and monopolar transurethral resection of the prostate. *Eur Urol* 2009; 55: 922–9.
- 25 Bhansali M, Patankar S, Dobhada S, Khaladkar S. Management of large (>60 g) prostate gland: plasmakinetic superpulse (bipolar) versus conventional (monopolar) transurethral resection of the prostate. J Endourol 2009; 23: 141–5.
- 26 Muslumanoglu AY, Yuruk E, Binbay M, Akman T. Transurethral resection of prostate with plasmakinetic energy: 100 months results of a prospective randomized trial. *BJU Int* 2012; 110: 546–9.
- 27 Erturhan S, Erbagci A, Seckiner I, Yagci F, Ustun A. Plasmakinetic resection of the prostate versus standard transurethral resection of the prostate: a prospective randomized trial with 1-year follow-up. *Prostate Cancer Prostatic Dis* 2007; 10: 97–100.
- 28 Patankar S, Jamkar A, Dobhada S, Gorde V. PlasmaKinetic Superpulse transurethral resection versus conventional transurethral resection of prostate. *J Endourol* 2006; 20: 215–9.
- 29 Seckiner I, Yesilli C, Akduman B, Altan K, Mungan NA. A prospective randomized study for comparing bipolar plasmakinetic resection of the prostate with standard TURP. *Urol Int* 2006; 76: 139–43.
- 30 Akçayöz M, Kaygisiz O, Akdemir O, Aki FT, Adsan O, et al. Comparison of transurethral resection and plasmakinetic transurethral resection applications with regard to fluid absorption amounts in benign prostate hyperplasia. Urol Int 2006; 77: 143–7.
- 31 Engeler DS, Schwab C, Neyer M, Grün T, Reissigl A, et al. Bipolar versus monopolar TURP: a prospective controlled study at two urology centers. Prostate Cancer Prostatic Dis 2010; 13: 285–91.
- 32 Giulianelli R, Albanesi L, Attisani F, Gentile BC, Vincenti G, et al. Comparative randomized study on the efficaciousness of endoscopic bipolar prostate resection versus monopolar resection technique 3 year follow-up. Arch Ital Urol Androl 2013; 85: 86–91.
- 33 Huang X, Wang L, Wang XH, Shi HB, Zhang XJ, et al. Bipolar transurethral resection of the prostate causes deeper coagulation depth and less bleeding than monopolar transurethral prostatectomy. Urology 2012; 80: 1116–20.
- 34 Lv L, Wang L, Fan M, Ju W, Pang Z, et al. Two-year outcome of high-risk benign prostate hyperplasia patients treated with transurethral prostate resection by plasmakinetic or conventional procedure. Urology 2012; 80: 389–94.
- 35 Sinanoglu O, Ekici S, Tatar MN, Turan G, Keles A, et al. Postoperative outcomes of plasmakinetic transurethral resection of the prostate compared to monopolar transurethral resection of the prostate in patients with comorbidities. Urology 2012; 80: 402–6.
- 36 Tefekli A, Muslumanoglu AY, Baykal M, Binbay M, Tas A, et al. A hybrid technique using bipolar energy in transurethral prostate surgery: a prospective, randomized comparison. J Urol 2005; 174: 1339–43.
- 37 de Sio M, Autorino R, Quarto G, Damiano R, Perdonà S, et al. Gyrus bipolar versus standard monopolar transurethral resection of the prostate: a randomized prospective trial. Urology 2006; 67: 69–72.
- 38 Yoon CJ, Kim JY, Moon KH, Jung HC, Park TC. Transurethral resection of the prostate with a bipolar tissue management system compared to conventional monopolar resectoscope: one-year outcome. Yonsei Med J 2006; 47: 715–20.
- 39 Kong CH, Ibrahim MF, Zainuddin ZM. A prospective, randomized clinical trial comparing bipolar plasma kinetic resection of the prostate versus conventional monopolar transurethral resection of the prostate in the treatment of benign prostatic hyperplasia. *Ann Saudi Med* 2009; 29: 429–32.
- 40 Yin L, Teng J, Huang CJ, Zhang X, Xu D. Holmium laser enucleation of the prostate versus transurethral resection of the prostate: a systematic review and meta-analysis of randomized controlled trials. *J Endourol* 2013; 27: 604–11.
- 41 Mohanty NK, Vasudeva P, Kumar A, Prakash S, Jain M, et al. Photoselective vaporization of prostate vs. Transurethral resection of prostate: a prospective, randomized study with one year follow-up. *Indian J Urol* 2012; 28: 307–12.
- 42 Xia SJ, Zhuo J, Sun XW, Han BM, Shao Y, et al. Thulium laser versus standard transurethral resection of the prostate: a randomized prospective trial. Eur Urol 2008; 53: 382–89.

