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Abstract

Original Article

Introduction

Radiation‑induced pneumonia  (RP) is a major adverse 
event following radiotherapy in patients with lung cancer. 
Intensity‑modulated radiation therapy  (IMRT) is a known 
promising treatment for reducing RP,[1] and the incidence of 
RP of grade ≥3 was lower with IMRT in a phase III study for 
locally advanced lung cancer.[2] Durvalumab after concurrent 
chemoradiation therapy for locally advanced nonsmall cell 
lung cancer  (NSCLC) has been established as the standard 
treatment;[3] however, patients with grade  ≥2 pneumonia 
after chemoradiation therapy are not eligible for durvalumab 
therapy. Therefore, providing radiotherapy that does not cause 
RP grade ≥2 is necessary.

Recently, machine learning techniques have been widely used 
to predict pneumonia.[4,5] Specifically, many studies have been 
conducted to predict pneumonia using chest X‑ray images 
with deep learning (DL) techniques or radiomics features.[6‑8] 

Moreover, a prediction model for RP after radiotherapy using 
computed tomography (CT) has been proposed.[9‑12] Predicting 
RP using DL models is useful in making treatment decisions.

The dose–volume histogram (DVH) of the lung is the most 
common indicator for reducing RP occurrence. A correlation 
between DVH parameters and RP occurrence exists, the 
most important of which is V20  (the volume of the lung 
parenchyma that received ≥20 Gy).[2,13‑15] To reduce the risk 
of developing grade ≥2 RP, V20 should be <30%–40%,[16,17] 
which is also adopted as a lung dose constraint in the National 
Comprehensive Cancer Network Guidelines. In addition, the 
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dose should be lowered as much as possible (e.g., V20 <20%) 
for patients with originally compromised lung function, 
such as malignant pleural mesothelioma, after extrapleural 
pneumonectomy.[18,19] Therefore, it is necessary to create a 
treatment plan that reduces V20 as much as possible based on 
previous studies using DVH analysis.

Specifically, because chest X‑ray images are the most 
frequently used and readily available radiological images, 
predicting V20 from these images is the simplest and most 
versatile method. However, to our knowledge, no studies have 
attempted this method. Thus, this study’s primary objective was 
to develop a DL model using chest X‑ray images to predict 
V20 of the lung following IMRT in patients with NSCLC. In 
addition, the secondary objective is to evaluate the prediction 
accuracy of the V20 using the DL model. Prediction of lung 
V20 promptly before treatment would be useful in selecting 
the optimal treatment technique. For example, if the predicted 
V20 is high, a preliminary decision can be made on whether 
to select a more advanced treatment technique  (e.g.,  tumor 
tracking or proton beam therapy). In addition, it might be 
possible to avoid unnecessary CT scans (i.e., a simulated CT 
was taken but the lung dose was unacceptable and no radiation 
therapy was given).

Methods

Patient and treatment planning
Patients who had histologically confirmed NSCLC, had 
been irradiated with 60 Gy using IMRT between June 2018 
and March 2022, and had undergone chest radiography 
on admission were included in the study  [Figure  1]. This 
study was approved by the institutional review board of our 
institution  (approval number: 2020‑1‑318). All patient data 
were fully anonymized, and all methods were performed 
in accordance with the relevant guidelines and regulations 
outlined by our institution.

Treatment planning
CT images were acquired using an Aquilion LB CT 
system (Canon Medical Systems, Tochigi, Japan) with a field of 
view of 550 cm × 550 cm, an image matrix of 512 × 512 pixels, 
and a slice thickness of 2.0 mm. For all patients, three scans of 
free breathing, inspiratory breathing, and expiratory breathing 
were performed, and the clinical target volume (CTV) was 
defined for all three phases according to the consensus 
guidelines.[20] The internal CTV (iCTV) was created by adding 
up the three CTVs, and a setup margin of 5 mm was added 
to the iCTV to create the planning target volume (PTV). The 
elective nodal region was not defined to prevent a pulmonary 
dose increase due to the extended radiation field.[21] To 
ensure consistency, target and normal tissue delineation were 
approved by an experienced radiation oncologist, according 
to the same treatment protocol for all patients.

The prescription dose for the PTV was 60 Gy in 30 fractions 
using the Varian TrueBeam system (Varian Medical Systems, 
Palo Alto, USA). The IMRT plans were created using one 
or two coplanar arcs with a photon energy beam of 6 MV 
by RayStation version  10.0  (RaySearch Laboratories AB, 
Stockholm, Sweden) using the calculation algorithm of the 
Collapsed Cone version  5.1. RaySearch Laboratories AB, 
Stockholm, Sweden). We calculated the lung dose parameters 
from the DVH of the treatment plan. All treatment plans were 
designed by medical physicists with ≥5 years of experience in 
IMRT planning and were of the highest quality with the normal 
lung, while other organs were at risk, dose values were kept 
as low as reasonably achievable.[22] These plans set the goals 
listed in Table 1.

Deep learning model
To construct and modify the DL model, a Windows PC with 
Intel Xeon 3.7 GHz, 32 GB RAM, and Neural Network 
Console (NNC) version 2.1 (Sony Corp., Tokyo, Japan) were 
used as a DL‑integrated development environment.

Figure  1: Selection of the study participants. 3D‑CRT: Three‑dimensional conformal radiotherapy, IMRT: Intensity‑modulated radiotherapy, 
NSCLC: Nonsmall cell lung cancer, SBRT: Stereotactic radiotherapy
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The convolutional neural network (CNN) architecture was used 
in this study [Figure 2], consisting of input, image augmentation, 
convolution, max pooling, rectified linear unit, batch normalization, 
affine, and Huber loss. Huber loss was calculated as follows:

( )
{ }δ δ





2 x - y , x - y < d
Huber loss = 

2 x - y - , otherwise
� (1)

where x is the predicted value and y is the true value.

All chest X‑ray images were automatically resized to 64 × 64 
pixels, and the format was changed from Digital Imaging and 
Communication in Medicine to Portable Network Graphics 
(8 bit). To reduce computational complexity, a resolution of 
64 × 64 pixels has been selected in accordance with previous 
studies.[23,24] The resizing of images was conducted using the 
resizing function of NNC.

Image augmentation was used to address the limited number 
of patient images when building the CNN. The image 

augmentation parameters in the CNN were as follows: 
minimum scale, 0.9, maximum scale, 1.1; image angle, 0.1°, 
aspect ratio, 1.1; and image distortion, 0.1. Image augmentation 
was randomly applied to the input image to increase the size of 
the training set without acquiring new images. The parameters 
of the convolution layer used to extract features from an image 
were a kernel matrix of 3 × 3 pixels and padding and strides of 
1. To reduce computational load and overfitting, max pooling 
was applied with 2 × 2 pixels. The rectified linear unit was 
used as a function, in which the output value was always 0 
when the input value of the function was ≤0, and the output 
value was the same as the input value when the input value 
was >0. Normalization was performed between the layers of 
the neural network using batch normalization.

Affine was used as fully connected layers that combined all 
input values to all output layers. Huber loss was employed as 
a loss function to detect small errors using the squared error 
and large errors using the absolute error. This approach allowed 
for enhanced robustness to outliers. The optimizer parameters 
of the CNN for DL were calibrated as follows: learning rate, 
0.001; optimizer, Adam (β1 = 0.9, β2 = 0.999); batch size, 8; and 
max epoch, 100. The computation time to execute the model 
is approximately 3 min.

Model evaluation and statistical analyses
The primary prediction outcome is V20. We developed the DL 
model using a four‑fold cross‑validation approach, according 
to a previous study.[25] Figure 3 provides a visual representation 
of the pipeline, outlining the modeling process and evaluation. 
We divided the total data from June 2018 to March 2022 as 
follows: the training cohort consisted of data from June 2018 to 
June 2021 and the test cohort consisted of data from July 2021 
to March 2022. The training cohort comprised 60 patients, 

Figure 2: Multilayer neural network for the convolution layers used in this study. The red figures indicate the output size for each layer. For example, 
at the bottom of the first input layer, the three figures indicate the number of colors and the size (height and width) of the input image

Table 1: Clinical goals of treatment planning

Structure Dosimetric 
parameter

Dose 
constraint

PTV D1% [Gy] <63
D98% [Gy] >57

iCTV D99% [Gy] >54
Spinal cord D0.03cc [Gy] <48
Normal lungs minus iCTV V20 [%] <35

V5 [%] <65
Mean dose [Gy] <20

Esophagus D0.03 [Gy] <66
Heart V45 [%] <35
Brachial plexus D0.03cc [Gy] <66
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randomly divided into four groups: patients 1–15, 16–30, 
31–45, and 46–60. A regression model was trained using three 
of these groups, and the performance of the trained model was 
assessed using the remaining group for validation. The model, 
utilizing X‑ray images and V20 in the training group, predicted 
and validated V20 values against the validation group. The 
secondary outcome is defined as the prediction accuracy of 
the DL model. The final predictive accuracy was the average 
value of the test data set. Furthermore, the prediction accuracy 
of the model was evaluated using the Pearson correlation 
coefficient, coefficient of determination (R2), root mean square 
error (RMSE), and mean absolute error (MAE). In addition, as 
in the previous study,[23] we use the model as a binary classifier 
to determine if a patient would potentially receive V20 >20% or 
not. The sensitivity, specificity, and diagnostic accuracy were 
calculated as follows:

( )Sensitivity = TP / TP+ FN � (2)

( )Specificity = TN / FP+TN � (3)

( ) ( )Diagnostic accuracy =  TP+TN / TP+TN + FP+ FN �(4)

where TP is the number of true positives, FN is the number 
of false negatives, FP is the number of false positives, and 
TN is the number of true negatives. In addition, the area 
under the receiver operator characteristic  (ROC) and the 
area under the curve  (AUC) were evaluated. Moreover, to 
investigate whether our DL model learns the size of lung 
tumors, we assessed prediction accuracy based on two factors: 

the primary tumor category (T2 ≤ or T3>, with sample sizes 
of 17 and 14) and the gross tumor volume (GTV). The test 
cohort’s median GTV was 42.0 cm3, divided into two groups: 
≤42.0 cm3 (sample size: 16) and >42.0 cm3 (sample size: 
15). We calculated the RMSE for each individual sample 
and evaluated the differences in prediction accuracy using 
the Mann–Whitney U‑test.

The prediction accuracy for V5 and mean lung dose (MLD) 
were also evaluated as secondary outcomes. Statistical analysis 
was performed using EZR version 1.36,[26] a graphical user 
interface for R (The R Foundation for Statistical Computing, 
Vienna, Austria).

Results

Dataset
Table 2 shows the characteristics of the patients in the training 
and test cohorts. In the test cohort, the median V20, V5, and 
MLD were 19.0%  (range, 4.9%–27.8%), 47.7%  (range, 
8.5%–59.2%), and 11.4 Gy (range, 2.9–16.2), respectively. 
Of the 91 patients, only 3 did not achieve the constraints of 
V5 shown in Table 1 (V5 = 75.5%, 67.1%, and 66.1%). Dose 
constraints other than V5 were met in all patients.

Model performance
The developed model showed that the median predicted 
V20 was 16.5%  (range, 8.2%–26.4%). Compared with the 
calculated V20, the median prediction difference was − 1.8% 
(range, −13.0%–9.2%). The Pearson correlation coefficient 

Figure 3: Four‑fold cross‑validation and test. The final predictive accuracy was calculated as the average value of the four models
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between the calculated and predicted V20 was 0.40 (P < 0.05). 
The R2, RMSE, and MAE values were 0.16, 5.4%, and 4.5%, 
respectively. Figure  4 shows the calculated–predicted plot. 
When binary classification was performed with V20 <20%, the 
model showed a sensitivity of 75.0% (6/8) (95% confidence 
interval [CI], 34.9–96.8), specificity of 82.6% (19/23) (95% CI, 
61.2–95.0), and diagnostic accuracy of 80.6% (25/31) (95% CI, 
62.5–92.5). Figure 5 shows the ROC curve for the predicted 
model. The AUC was 0.79 (95% CI, 0.60–0.97). The point 
at 19.7% was the best classification point, in which the sum 
values of the sensitivity and specificity were maximized. The 
Mann–Whitney U test results showed no significant difference 
in V20 prediction accuracy based on primary tumor category 
and GTV (P = 0.35 and 0.57, respectively).

In V5 and MLD, the median prediction difference was 
3.5%  (range, −15.0–37.6) and 0.6  Gy  (range, −4.0–5.3), 
respectively. The Pearson correlation coefficient, RMSE, 
and MAE for V5 were 0.20 (P = 0.28), 14.9%, and 11.4%, 

respectively, and those for the MLD were 0.21  (P = 0.26), 
3.2 Gy, and 2.7 Gy, respectively.

Discussion

In this study, a DL model was developed to predict V20 
using the chest X‑ray images of a patient. This model can 
predict V20 with a median difference of  −1.8%  (range, 
−13.0%–9.2%) and correlation coefficient of 0.40. To the best 
of our knowledge, only the study by Koide et al. predicted 
radiotherapy doses from X‑ray images, which predicted 
cardiac doses for deep inspiration breath‑hold  (DIBH).[23] 
Their model predicted the amount of change in cardiac dose 
when DIBH was performed  (correlation coefficient, 0.55). 
However, their model required frontal and lateral X‑ray 
images in two directions, patient age, and body mass index. 
In contrast, our model is simpler and requires only frontal 
chest X‑ray images. The ability to predict V20 before treatment 
planning will enable the selection of irradiation techniques for 
radiotherapy (e.g., tumor tracking and proton beam therapy). 
In addition, the dose to the normal lung should be reduced 
as much as possible, even if dose constraints are achieved. 
Dosage to the lung may be effectively reduced by referring 
to the V20 values predicted by the DL model together with the 
dose constraint values.

In contrast, we also found that the model’s forecasting 
accuracy is still problematic, with a large error range 
of −13.0% to 9.2%. This estimate could potentially depend 
on any variability in the patient’s inspiration percentage at 
the time of X‑ray and CT image acquisition. In particular, 
the contribution to the error is expected to be significant 
because treatment planning is based on free‑breathing 
CT images. CT imaging while monitoring the inspiratory 
rate using a respiratory monitoring system is expected 

Figure  4: Scatter plot of the predicted V20 and calculated V20  (solid, 
regression line; dotted, 95% confidence interval line) V20, volume of the 
lung parenchyma that received ≥20 Gy; r: Correlation coefficient

Table 2: Patient characteristics

Characteristic Training

(n=60)

Test

(n=31)

Total

(n=91)

Age
 Median [year] 70 72 71
 Range 39–85 34–87 34–87
Sex
 Male (%) 42 (70.0) 23 (74.2) 65 (71.4)
 Female (%) 18 (30.0) 8 (258) 26 (28.6)
Disease stage
 ⅢA (%) 22 (36.7) 9 (30.0) 32 (35.2)
 ⅢB (%) 21 (35.0) 11 (36.7) 32 (35.2)
 ⅢC (%) 8 (13.3) 7 (23.3) 15 (16.4)
 Other (%) 9 (15.0) 3 (10.0) 12 (13.2)
Tumor histologic type
 Squamous (%) 24 (40.0) 16 (51.6) 40 (44.0)
 Nonsquamous (%) 36 (60.0) 15 (48.4) 51 (56.0)
Gross tumor volume
   Size [cm3] 28.4 42.0 39.2
   Range 1.7–592.3 2.1–444.8 1.7–592.3
Combination therapy
   Chemotherapy (%) 58 (96.7) 29 (93.5) 87 (95.6)
   Immunotherapy (%) 40 (66.7) 19 (61.3) 59 (64.8)
Radiation pneumonia
   < Grade 2 (%) 41 (68.3) 24 (77.4) 65 (71.4)
   ≥ Grade 2 (%) 19 (31.7) 7 (22.6) 26 (28.6)
V20
 Median [%] 19.9 19.0 19.3
 Range 4.9–30.7 4.9–27.8 4.9–30.7
V5
 Median [%] 50.5 47.7 48.4
 Range 14.4–75.5 8.5–59.2 8.5–75.5
MLD
 Median [Gy] 12.8 11.4 12.1
 Range 3.7–17.7 2.9–16.2 2.9–17.7
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to improve accuracy. Furthermore, optimization of data 
augmentation is effective to ensure the robustness of 
the model[27] and the developed model will need to be 
re‑examined in the future. In addition, the prediction 
accuracy of the model was found to be not significantly 
different depending on tumor size. This suggests that this 
DL model may be applicable to smaller tumor diameters, 
such as in stereotactic radiotherapy.

The prediction accuracies of V5 and MLD were lower than 
V20. Specifically, the RMSE for V5 was 14.9%, which was 
worse than that for V20 (5.4%). The reason for this, besides 
the fact that this model is optimized for V20, may be that the 
5‑Gy region is more widely distributed due to leakage doses 
from the multi‑leaf collimator (MLC),[28] so prediction might 
be difficult. To increase the accuracy of V5, adding the number 
of beams, rotation angle, and MLC transmittance parameters to 
the input of the DL model may improve the prediction accuracy 
of low doses spreading away from the tumor. Because of the 
correlations between parameters such as V5, MLD, and RP 
occurrence,[29‑31] creating optimized models for V5 and MLD 
in the future is important.

Krafft et  al. reported that the addition of pulmonary 
radiomics features to a prediction model for RP using CT 
improved the mean AUC from 0.51 to 0.66 with respect 
to predicting RP grade ≥3.[9] Kawahara et al. reported that 
multi‑region radiomics analysis improved the accuracy 
of predicting grade  ≥2 RP  (mean AUC, 0.62–0.84).[12] 
Furthermore, Zhang et al. reported that by combining dose 
distribution maps with treatment planning CT images, they 
could predict postradiotherapy radiation pneumonitis with 

high accuracy  (AUC  =  0.7).[32] However, these models 
require CT images and specific regions of interest (ROI), 
which make segmentation time‑consuming and less 
convenient. In addition, these models cannot be used for 
the purpose of assessing the suitability of radiotherapy 
before treatment planning. In contrast, because the chest 
X‑ray DL model proposed herein does not require CT 
images or patient‑specific ROI, prediction is easier and less 
time‑consuming than when using CT images. Furthermore, 
by assessing the feasibility of radiotherapy based on V20 
values before obtaining a treatment‑planning CT scan, it 
may be possible to reduce unnecessary tests and costs. 
In addition, when a binary classification was performed 
with V20 <20% as the cutoff, the AUC was 0.79  (95% 
CI, 0.60–0.97), which is comparable to that in previous 
studies [Table 3]. The high AUC values suggest that when the 
developed model is used as a binary classifier, for example, 
even if the prepredicted values indicate V20 <20%, if the 
treatment planning system calculated values exceed 20%, it 
may contribute to further improvement in dose distribution. 
Although the developed model is not a predictive model for 
RP, V20 may be useful for predicting RP,[33,34] suggesting that 
the architecture of this model may be useful as a predictive 
model for future RP.

This study had some limitations. First, the proposed model was 
optimized to predict V20 rather than the RP. The predicted V20 
can be used to determine the feasibility of radical irradiation 
or to determine the application of techniques that reduce the 
lung dose compared to conventional IMRT. In contrast, models 
that directly predict RP may be more valuable for predicting 
patient prognosis. Second, the single‑center setting, small 
number of patients, lack of patients with V20 >35%, and varied 
patient backgrounds (such as concomitant therapy) are sources 
of bias. Future multicenter studies are required to reconstruct 
an RP prediction model.

Conclusions

Our DL model can predict V20 using chest X‑ray images 
and plays an important role in the early determination of 
patient treatment strategies. It may be useful for determining 

Figure  5: Receiver operating characteristic curves of the prediction 
models. When the cutoff was set as V20 <20%, the area under the curve 
score was 0.79. CI: Confidence interval

Table 3: Studies of deep learning models for predicting 
radiation therapy dose and clinical outcomes using digital 
imaging and communication in medicine images

References Endpoint DICOM images Performance 
metrics

Koide et al.[23] MHD X‑ray image
(frontal and lateral)

r=0.55
AUC=0.864

Krafft et al.[9] RP≥grade 3 CT image AUC=0.66
Kawahara et al.[12] RP≥grade 2 CT image AUC=0.84
Zhang et al.[32] RP≥grade 2 CT image AUC=0.7
This study Lung V20 X‑ray image

(frontal)
r=0.40

AUC=0.79
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the treatment plan for patients and eliminating the need for 
unnecessary CT scans by enabling early dose prediction. 
Determining the treatment strategy using the proposed 
model leads to a reduction in the occurrence of grade ≥2 RP 
and maximizes the chance to follow PACIFIC regimens, 
including consolidation durvalumab, following definitive 
chemoradiotherapy. However, further research is needed to 
verify the robustness of the model and to further build RP 
prediction models.
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