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ABSTRACT: The recently developed NMR techniques enable
estimation of protein configurational entropy change from the change
in the average methyl order parameters. This experimental observable,
however, does not directly measure the contribution of intramolecular
couplings, protein main-chain motions, or angular dynamics. Here, we
carry out a self-consistent computational analysis of the impact of these
missing contributions on an extensive set of molecular dynamics
simulations of different proteins undergoing binding. Specifically, we
compare the configurational entropy change in protein complex
formation as obtained by the maximum information spanning tree
approximation (MIST), which treats the above entropy contributions
directly, and the change in the average NMR methyl and NH order
parameters. Our parallel implementation of MIST allows us to treat hard angular degrees of freedom as well as couplings up to
full pairwise order explicitly, while still involving a high degree of sampling and tackling molecules of biologically relevant sizes.
First, we demonstrate a remarkably strong linear relationship between the total configurational entropy change and the average
change in both methyl and backbone-NH order parameters. Second, in contrast to canonical assumptions, we show that the
main-chain and angular terms contribute significantly to the overall configurational entropy change and also scale linearly with it.
Consequently, linear models starting from the average methyl order parameters are able to capture the contribution of main-
chain and angular terms well. After applying the quantum-mechanical harmonic oscillator entropy formalism, we establish a
similarly strong linear relationship for X-ray crystallographic B-factors. Finally, we demonstrate that the observed linear
relationships remain robust against drastic undersampling and argue that they reflect an intrinsic property of compact proteins.
Despite their remarkable strength, however, the above linear relationships yield estimates of configurational entropy change
whose accuracy appears to be sufficient for qualitative applications only.

1. INTRODUCTION

Noncovalent interactions involving biomolecules are the basis
of a large number of fundamental biological processes including
transcription, translation, cell signaling, and many others.1 In an
isothermal−isobaric ensemble with a constant number of
particles (NPT), the Gibbs free energy change

Δ = Δ − ΔG H T Ssystem system system (1)

determines the probability of such an interaction to occur and
is thus of central importance. While the enthalpic (ΔHsystem)
contributions to the free energy change upon binding are well
understood and are frequently exploited in contexts such as
computational drug design,2−5 the entropic component of the
free energy change remains in the background. However, a
number of different fields ranging from bioengineering to
rational drug design would benefit strongly from a
comprehensive understanding of entropic contributions to
biomolecular interactions.3−5 Historically, the dominant
entropic term in biomolecular interactions has been attributed
to solvent entropy change,6 accounting for the hydrophobic
effect. However, recent experimental evidence,7−10 using NMR-

derived methyl order parameters11 to probe protein dynamics,
suggests that the change in protein configurational entropy can
be of comparable magnitude to solvent entropy change and,
thus, drastically influence the thermodynamics of binding.
While these pioneering studies have opened up experimental
access to protein configurational entropy change, they are
nevertheless fraught with several underexplored difficulties.
First, such approaches do not measure contributions from
coupled, correlated dynamics in proteins directly, but
reconstruct them from empirical, linear fits across sets of
reference proteins. While the necessary linearity of the coupling
corrections with the total configurational entropy change has
been demonstrated computationally in the case of torsional
side-chain rotamer degrees of freedom,12 its validity for other
contributions is still not clear. Second, the central assumption
behind the above approaches, i.e., that of a linear dependence
between the average NMR order parameter change and the
configurational entropy change, has been shown for several
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model potentials (e.g., refs 13−16), including the harmonic and
square-well potentials. However, a direct analysis from actual
simulations of the relationship between the change in the
average order parameters and the total configurational entropy
change, including all contributions, has never before been
carried out. This, in particular, concerns the contribution of the
potentially significant main-chain and angular dynamics,
although previous work has suggested that the two contribu-
tions may be negligible.10,12,17 Moreover, it is not clear how the
experimental configurational entropy change estimation is
affected by the fact that in the experiment only a limited
number of methyl order parameters can be measured, while, on
the other hand, they need to report on the collective behavior
of many more degrees of freedom. Finally, methyl order
parameters from soft side-chain torsions have been demon-
strated to be insensitive to the broadness of torsional energy
wells.12 While there is evidence that the associated vibrational
entropy could be more significant than originally proposed18 in
the case of side-chain burying19 and drug-like ligand binding,20

a direct examination of its overall impact in the case of a diverse
set of protein complexes is still missing.
Following these considerations, one would like to formulate a

strategy to simultaneously assess the impact of the above-
mentioned terms, analyze the quality of the linear relationships
involved, and potentially also identify novel experimental
proxies of configurational entropy. A promising approach in
this regard entails a self-consistent comparison between the
changes in different experimental observables and the total
configurational entropy change and its components, all derived
from the same protein ensembles generated using molecular
dynamics (MD) simulations. An analogous approach, employ-
ing MD ensembles to link the dynamical attributes of molecules
with experimental observables, was recently used in order to
quantify positional uncertainties, rather than configurational
entropy, in structures of small molecules derived from NMR-
crystallographic chemical shifts.24

In general, computational approaches for calculating
configurational entropy25−35 are capable of accounting for
couplings up to pairwise order. Furthermore, they are
independent of any empirical, a priori assumptions concerning
the relationship between the sampled parameters and
configurational entropy and can treat all contributions in the
system explicitly. Also, as configurational entropy is directly
calculated for the macromolecules alone, there is no need to
estimate the change in solvent entropy. While such approaches
may suffer from force field-related issues and incomplete
sampling, a self-consistent analysis of entropies and entropy
proxies on the same ensemble is likely to be highly informative
in any case.
A powerful approach for deriving configurational entropy

from simulated ensembles is the maximum information
spanning tree (MIST) approximation,29,36 a variant of the
mutual information expansion (MIE) method,30,31,33 which
unifies several advantages. First, by directly sampling probability
densities, MIST (as MIE) includes the contribution of
anharmonicities and nonlinear couplings up to second order
without any additional assumptions. Second, unlike MIE, MIST
yields a mathematically guaranteed upper bound to configura-
tional entropy and is less likely to overestimate the contribution
from pairwise couplings, which is directly related to its better
convergence behavior. Note, however, that for small molecules,
spurious coupling, especially relevant for the MIE approach, can
be suppressed,37 and, in this way, the MIE approach can
converge more readily to the final result than MIST.38

Furthermore, the direct sampling of probability densities up
to arbitrary spatial resolution, paired with high temporal
resolution of MD simulations, leads to a natural treatment of
vibrational entropy by MIST (as well as MIE). Last but not
least, separate contributions to the configurational entropy can
be extracted from the analysis, mostly without significant effort.
Our recent development of a parallel program suite for the

calculation of configurational entropy39 using both MIST and
MIE formalisms, canonically applied in bond−angle−torsion

Table 1. Simulated Protein Set: Molecule Names, Numbers of Atoms, PDB Codes, and Abbreviations

Name No. atomsa PDB codeb Complexc Short named Abbreviatione

PPIase A 1641 1W8V 1AK4 PPIA 1
PR160Gag-Pol 1408 2PXR 1AK4 gag-pol 2
Alkaline protease 4503 1AKL 1JIW aprA 3
Alkaline protease inhibitor 997 2RN4 1JIW aprI 4
Subtilisin Carlsberg 2433 1SCD 1R0R apr 5
Ovomucoid 498 2GKR 1R0R OM 6
Uracil-DNA Glycosylase 2333 1AKZ 1UGH UNG 7
Uracil-DNA Glycosylase inhibitor 788 1UGI 1UGH UGI 8
Micronemal protein 6 496 2K2T 2K2S MIC6 9
Micronemal protein 1 1226 2BVB 2K2S MIC1 10
Tsg101 protein 1480 1KPP 1S1Q TSG101 11
Ubiquitin 760 1UBQ 1S1Q UBQ 12a,b,c,d,ef

ESCRT-I complex subunit VPS23 1493 3R3Q 1UZX sst6 13
Ubiquitin 760 1UBQ 1UZX UBQ 14a,b,c,d,ef

gGGA3 Gat domaing 949 1YD8* 1YD8 GGA3 15
Ubiquitin 760 1UBQ 1YD8 UBQ 16a,b,c,d,ef

E3 Ubiquitin-protein ligase CBL-B 457 2OOA 2OOB CBLB 17
Ubiquitin 760 1UBQ 2OOB UBQ 18a,b,c,d,ef

aNumber of atoms in individual proteins. bPDB codes22,23 of individual proteins. cPDB codes of complexes. dShort names used in the text. eKey to
abbreviations used in Figure 4a and SI Figure 3 and SI Figure 7. fFor ubiquitin, five separate simulations were used to generate the plots, reflected as
the additional abbreviation tags a, b, c, d, and e. gThe constituent GGA3 Gat domain was extracted from the PDB structure of the 1YD8 complex and
named 1YD8*, accordingly.
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(BAT) coordinates,31,40−45 has now for the first time created an
opportunity for a self-consistent investigation of the relation-
ship between NMR methyl order parameter change and the
total configurational entropy change on a large set of simulated
protein complexes combined with exhaustive sampling. The
same approach can also be used to study the equivalent
relationship for other standard NMR proxies of protein
dynamics, e.g., backbone-NH order parameters. Indeed, NH
order parameters have been employed to assay configurational
entropy,46,47 but their application is less common in this
context. This is arguably due to the fact that they are
experimentally more difficult to capture as compared to methyl
order parameters. Importantly, there still does not exist a
consensus on the overall contribution of main-chain dynamics
on the configurational entropy change upon protein binding.
For example, a recent computational study of the bovine
pancreatic trypsin inhibitor protein has shown that this
contribution may be significant.38 On the other hand, another
computational study17 has shown that the majority of
backbone-NH order parameters in proteins fall into a relatively
narrow range, which could preclude their usage for assessing
changes in protein dynamics. Moreover, a recent experimental
study has suggested that the main-chain contributions to
configurational entropy change are relatively minor.10 In
principle, one could use the above approaches to link

configurational entropy with X-ray crystallographic B-factors
(i.e., Debye−Waller or temperature factors)48 as well, since in
the ideal case they also report on protein dynamics. We have
previously shown that within the quasi-harmonic (QH)
formalism,25−27,32,35,49 configurational entropy changes ob-
tained exclusively from calculated B-factors (ΔSBfact) display a
strong linear correlation with the change in their QH value.49

However, since the QH approximation exhibits several major
drawbacks50 (e.g., it assumes all potentials to be harmonic and
accounts only for linear pairwise couplings, yielding values
which are significantly higher than what is to be expected), the
latter observation has to be further investigated.
Here, for the first time, we present a large-scale, self-

consistent in silico comparison between the total MIST
configurational entropy change (ΔSMIST) and the change in
the average methyl order parameters (Δ⟨OCH3

2 ⟩), the average

backbone-NH order parameters (Δ⟨ONH
2 ⟩), or an entropy

estimate derived from crystallographic B-factors (ΔSBfact). The
analysis is performed on a set of 19 1-μs-long molecular
dynamics (MD) simulations of different proteins engaged in
the formation of nine different binary complexes (also
simulated for 1 μs). As free ubiquitin has been simulated five
times and participates in the formation of four simulated
complexes, this amounts to a total of 34 binding processes, i.e.,

Figure 1. Self-consistent comparison of protein configurational entropy changes and experimental proxies of protein dynamics. For every protein, we
independently calculate ΔSMIST and (a) Δ⟨OCH3

2 ⟩ and Δ⟨ONH
2 ⟩ or (b) ΔSBfact and correlate them against each other. (c) Compactness and (d)

fraction of methyl-bearing residues for proteins used in this study as compared to the analogous values for the representative set of 1109 complete
3D structures21 from the PDB22,23 (red distributions).
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transitions of a protein from a free to a bound state (Table 1, SI
Figure 1).
Here, we (1) provide an independent assessment of the

validity of a linear connection between the change in the
average NMR order parameters and the total configurational
entropy change for realistic proteins [Figure 1(a)], (2) analyze
different contributions to the total configurational entropy
change, (3) expand the set of possible experimental observables
to be used for protein configurational entropy estimation
[Figure 1(b)], and (4) gauge the impact of undersampling on
such estimation. Finally, with direct repercussions for these four
aims, we evaluate the expected accuracy of experimental
procedures based on linear relationships between the configura-
tional entropy change and different experimental observables,
with special attention to the impact of second-order couplings.
1.1. Physical Framework for Configurational Entropy

Analysis. To embed configurational entropy into a physical
framework, one starts from the following quasiclassical entropy
integral:51,52

∫ ρ

ρ

= −

×

S dq dq dp dp q q p p

h q q p p

R ... ... ( ... , ... )

ln[ ( ... , ... )]

N N N N

N
N N

1 3 1 3 1 3 1 3

3
1 3 1 3 (2)

Here, R denotes the gas constant, h the Planck constant, N
the number of atoms in the system, and ρ its phase-space
probability density function (pdf), while qi and pi denote the
spatial degrees of freedom and the canonically conjugate
momenta in Cartesian coordinates, respectively. Assuming a
Hamiltonian of the form

∑= +

= +
=

H U q q
p

m

U q q K p p

( ... )
2

( ... ) ( ... )

N
i

N
i

i

N N

1 3
1

3 2

1 3 1 3 (3)

where mi denotes the (3-fold repetitive) mass vector of the
system, and the pdf can be factorized into

ρ ρ ρ=q q p p q q p p( ... , ... ) ( ... ) ( ... )N N N N1 3 1 3 1 3 1 3 (4)

Then, eq 2 can be written in terms of spatial and momentum
entropy51 as

= +S S Ss m (5)

with

∫ ρ ρ= −S dq dq q q q qR ... ( ... )ln[ ( ... )]s N N N1 3 1 3 1 3 (6)

and

∫

∏

ρ

ρ

π

= −

×

= + ̅ −

̅ =
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

S dp dp p p

h p p

N
mk T h

m m

R ... ( ... )

ln[ ( ... )]

R
3

2
[1 ln(2 )] Rln( )

m N N

N
N

N

i

N

i

N

1 3 1 3

3
1 3

B
3

1

3 1/(3 )

(7)

Here, kB denotes the Boltzmann constant. For a molecule in
solution and referring to the entropy from the degrees of
freedom of the molecule only, the spatial entropy Ss is

canonically termed configurational entropy. Note that the
momentum entropy Sm in eq 7 is constant for fixed temperature
and atomic composition.51 To further evaluate Ss in eq 6, one
assumes a given concentration C° = 1/V° related to the
corresponding container volume V◦ for a single molecule. If
U(q1...q3N) in eq 3 is invariant under roto-translation, i.e., in the
absence of any external field, the pdf can be divided into factors,
which depend respectively on external and molecule-internal
coordinates (such as anchored Cartesian40,41 or BAT31,40−45

coordinates) only. Then, integration over the six external
degrees of freedom in eq 6 can be carried out analytically and Ss
evaluates to31,51,53

∫
π

ρ ρ

=

−

×

≡ +

◦

− −

− −

S V

dq dq J q q

q q q q

S S

R ln(8 )

R ... ( ... )

( ... )ln[ ( ... )]

s

N N

N N

2

1
int

3 6
int

1
int

3 6
int

1
int

3 6
int

1
int

3 6
int

conf
ext

conf
int

(8)

with J(q1
int...q3N−6

int ) being the part of the Jacobian dependent on
the chosen internal degrees of freedom only. At a concentration
of C° = 1/V° = 1 mol L−3, eq 8 defines the partial molar
configurational entropy. As the first term in eq 8 is constant, the
second term only is in literature frequently referred to as
configurational entropy. Considering these definitions and
assumptions, the following useful equation39 can be derived:51

Δ = Δ + Δ = Δ = Δ + Δ = ΔS S S S S S Ss m s conf
ext

conf
int

conf
int

(9)

This equation explains that under the conditions as defined
the total entropy change of a molecule is equal to its internal
configurational entropy change, computable from the pdf of
molecule-internal, spatial degrees of freedom only. Note that in
the quasiclassical formalism upon separation of spatial and
momentum degrees of freedom, as in (eqs 5−7), both
quantities necessarily bear unphysical dimensions due to the
form of the logarithmic term in eq 2. However, the problematic
terms cancel for entropy changes,51 and thus, eq 9 is valid for
entropy changes and for entropy changes only.

1.2. Introduction to the MIST Approximation. In
contrast to the original derivation29,36 and for the sake of
additional insight, we take a different approach here and
introduce the MIST approximation as an optimum approx-
imation to the MIE. If one defines generalized mutual
information (MI) terms I as31,54

∑ ∑= −
=

+

< <

I X X S X X( , ..., ) ( 1) ( , ..., )n
k

n
k

i i
i i1

1

1

... k

k

1

1
(10)

one can express the entropy as

∑ ∑= −
=

+

< <

S X X I X X( , ..., ) ( 1) ( , ..., )n
k

n
k

i i
i i1

1

1

... k

k

1

1
(11)

This expansion is known as the MIE. Note that for a single
random variable Xi we have I(Xi) = S(Xi). Also note that, for
example, a triplet MI term can be expressed using pairwise
terms.54

= + −I X X X I X X I X X I X X X( , , ) ( , ) ( , ) ( , )1 2 3 1 2 1 3 1 2 3
(12)
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Note that the third term on the right-hand side of eq 12
constitutes a pairwise MI. It is defined as

≡ + −I X X X S X S X X S X X X( , ) ( ) ( , ) ( , , )1 2 3 1 2 3 1 2 3 (13)

Pairwise MI is non-negative definite, and the following
equation holds:29,55

≥
−

I X X X I X X X( , ... ) ( , ... )i j j i j jn n1 1 1 (14)

The use of the indices jk here is intended to emphasize the
arbitrariness of ordering. Harvesting the above equations, we
can now introduce the principle behind the MIST approx-
imation in the case of an entropy of three degrees of freedom

= + + −

− − +

= + + − −

≤ + + − −

S X X X S X S X S X I X X

I X X I X X I X X X

S X S X S X I X X I X X X

S X S X S X I X X I X X

( , , ) ( ) ( ) ( ) ( , )

( , ) ( , ) ( , , )

( ) ( ) ( ) ( , ) ( , )

( ) ( ) ( ) ( , ) ( , )

1 2 3 1 2 3 1 2

1 3 2 3 1 2 3

1 2 3 2 3 1 2 3

1 2 3 2 3 1 2
(15)

Note that there was a choice in the case of the last two MI
terms, i.e., by performing the derivation slightly differently, one
could have also chosen − I(X1,X2) − I(X1,X3) or − I(X1,X3) −
I(X2,X3). As all of these choices constitute an upper bound to
S(X1,X2,X3), the lowest upper bound is optimal. Thus, the
choice in eq 15 was optimal if I(X1,X3) ≤ I(X1,X2) ∧ I(X1,X3) ≤
I(X2,X3). Applying the same principle consecutively, the MIST
approximation for a higher order pdf can be expressed using
marginal pdfs up to second order as29,36

∑

≤

= −
= ∈ −

S X X S X X

S X I X X

( , ..., ) ( , ..., )

[ ( ) max ( , )]

n n

i

n

i
j i

i j

1 MIST 1

1 {1,..., 1} (16)

Operationally, this equation is implemented through the
construction of the maximum spanning tree56 in order to
identify the pairwise MI terms. Importantly, the MIST
approximation is not restricted to configurational entropy29,36

and can be applied to arbitrary order, with each order
mathematically guaranteed to yield a more accurate result.
Finally, the approximation is guaranteed to provide an upper
bound to the exact entropy value.

2. RESULTS
2.1. Comparison of Changes in Configurational

Entropy and Experimental Measures of Protein Dynam-
ics. The simulated proteins and their complexes exhibit a
variety in size and secondary and tertiary structures as well as
biological function (Table 1, SI Figure 1). Additionally, they
comprehensively cover the typical ranges of protein compact-
ness [Figure 1(c)] and methyl-group abundance [Figure 1(d)].
In this sense, the simulated set can be seen as a representative
sample of typical protein binding processes. Employing this set,
we have correlated Δ⟨OCH3

2 ⟩, Δ⟨ONH
2 ⟩ and ΔSBfact against

ΔSMIST representing the total configurational entropy change
(Figure 2).
To account for artifacts resulting from the intrinsic difference

in the abundance of experimental probes, ΔSMIST and ΔSBfact
are normalized by 3N − 6, where N is the number of simulated
atoms in a given protein. Note that this is largely equivalent to
the experimentally applied χ-angle normalization10,12 as both
quantities are high-quality linear transformations of each other

with a small offset. On the other hand, order parameters are
averaged over all methyl and backbone-NH groups in the
protein, as performed previously.8,9 The great majority (31/34)
of binding processes in our set exhibit an increase in OCH3

2

upon binding, i.e., a decrease in the overall dynamics [Figure
2(a)], with only GGA3 (see Table 1 for abbreviations), aprA,
and UNG becoming marginally more dynamic upon binding on
average. More specifically, Δ⟨OCH3

2 ⟩ values span the range
between approximately 0 and 0.3, with the proteins exhibiting
the largest loss in dynamics being those with the highest
dynamics prior to binding (SI Figure 2). The values of ΔSMIST
upon binding range between 0 and −0.7 J K−1 mol−1 per degree
of freedom, corresponding to a substantial 500 kJ mol−1 of total
free energy change at 300 K for the most extreme example
(UGI forming a complex with UNG). In this case, the binding
partner balances the drastic configurational entropy loss by

Figure 2. Comparison between experimentally accessible measures of
protein dynamics and ΔSMIST. (a) Δ⟨OCH3

2 ⟩ vs ΔSMIST, (b) Δ⟨ONH
2 ⟩ vs

ΔSMIST, and (c) ΔSBfact vs ΔSMIST. All values reflect the entropy
changes upon complex formation, evaluated separately for each
individual protein. The ΔSMIST and ΔSBfact values are normalized by
the number of degrees of freedom in each protein (3N − 6, where N is
the number of atoms). For each comparison, we provide the least-
squares linear fit and the associated Pearson correlation coefficient R.
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increasing its own dynamics slightly (as can be seen from the x-
axis in SI Figure 3 together with the legend in Table 1).
Remarkably, ΔSMIST per degree of freedom exhibits a strong
linear relationship with Δ⟨OCH3

2 ⟩ with the absolute value of the
Pearson correlation coefficient R between the two of 0.95 and
no significant outliers over 34 binding processes [Figure 2(a),
ΔSMIST = (−2.09Δ⟨OCH3

2 ⟩ − 0.019)(3N − 6) J K−1 mol−1].
Notably, the value of the intercept of the linear fit between the
two variables represents only a minor fraction of the complete
range of fitted MIST values (0.019 vs −0.7 J K−1 mol−1, thus
approximately 3%); to a good approximation, ΔSMIST increases
in direct proportion with the change in Δ⟨OCH3

2 ⟩. Importantly,
the quality of this linear relationship is so good that it could, in
principle, allow one to estimate ΔSMIST directly from Δ⟨OCH3

2 ⟩.
Below we analyze how quantitative such an estimation could
be.
While methyl order parameters are considered to be good

reporters of local dynamics because of the relative mobility of
methyl groups,12 an advantage of backbone-NH order
parameters is that they are present in every residue in the

system. In contrast to the residue-specific inventory
approaches,57−59 the results presented in Figure 2(b) support
the utility of average backbone-NH order parameters for the
estimation of configurational entropy. Namely, Δ⟨ONH

2 ⟩ upon
binding appears to be a quality measure of configurational
entropy change, exhibiting a strong linear correlation with the
MIST values [ΔSMIST = (−2.04Δ⟨ONH

2 ⟩ − 0.007)(3N − 6) J
K−1 mol−1, Pearson R = −0.93] and a negligible y-axis intercept
as compared to the range of the studied entropy change values
[Figure 2(b)]. The interchangeability between the changes in
the average methyl and NH-backbone parameters in this
respect is certainly related to the fact that the two are closely
related (Δ⟨OCH3

2 ⟩ = 0.91Δ⟨ONH
2 ⟩ + 0.003, Pearson R = 0.91, SI

Figure 4); the average change in side-chain dynamics upon
binding appears to be an accurate predictor of the change in
backbone dynamics and vice versa. Note that a previous study17

has indicated that this is the case only for backbone-NH order
parameters below 0.8, and indeed, our values are well below
this limit (SI Figure 2). While both methods accurately predict
configurational entropy changes on their own, in the future, a

Figure 3. Dependence of the relationship between ΔSMIST and different entropy proxies on the completeness of the set of experimental reporters.
Distributions of Pearson correlation coefficients R between ΔSMIST, evaluated for the full set of degrees of freedom, and the undersampled (a)
Δ⟨OCH3

2 ⟩, (b) Δ⟨ONH
2 ⟩, or (c) ΔSBfact over the set of 34 binding processes. The degree of undersampling is given in the inset. Each distribution is

based on 1000 independent repetitions of the undersampling procedure. All values are based on the changes upon complex formation, evaluated
separately for each constituent and normalized by the number of degrees of freedom for ΔSMIST and ΔSBfact. The arrow marks the Pearson
correlation R when taking the full set of reporters into account. (d) Absolute values of the medians of Pearson R histograms as a function of the
degree of undersampling.
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combination of methyl and backbone-NH order parameters, as
proposed in ref 17 but not excluding further proxies, may prove
to be of significant value in fine-tuning experimental configura-
tional entropy estimation. This also motivates the discussion of
the results from the third, methodologically more distant, proxy
parameterthe crystallographic B-factors.
Under an important assumption that B-factors report

predominantly on local atomic motions, we have estimated
their values for our simulated ensembles from atomic-positional
root-mean-square fluctuations (RMSFs) after roto-translational
superposition, according to a standard formalism (eq 20, see
Section 5).49,60 Moreover, considering the nonlinear relation-
ship between B-factors and configurational entropy, we have
applied a QH approximation in Cartesian coordinates to
calculate ΔSBfact values, as performed previously,49 before the
comparison with the MIST values (eqs 18 and 19). Effectively,
our configurational entropies derived from B-factors corre-
spond to the Cartesian QH values in the absence of any
intramolecular couplings; i.e., they capture the situation in
which RMSF values report on the atomic positional variance
and all covariance terms are set to zero. Remarkably, despite
such a crude assumption, the derived configurational entropy

change values correlate closely with the MIST values, obtained
with a detailed treatment of anharmonicities and supralinear
pairwise correlations in BAT coordinates [Figure 2(c)], with a
Pearson R of 0.92 and only a handful of moderate outliers
(UBQ binding to either CBLB or GGA3). As expected, the
entropy changes derived from B-factors exceed the ΔSMIST
values by approximately 14-fold; i.e., correlations and
anharmonicities captured by the MIST formalism together
with the choice of the more decoupled BAT coordinate system
reduce the overall configurational entropy changes by a factor
of approximately 93% on the global scale across the full set of
simulated proteins.

2.2. Robustness to Undersampling. We have next
analyzed the robustness of the above correlations against
undersampling. The methyl order parameters, for example, are
not distributed perfectly uniformly in proteins. While on
average approximately 40% of residues contain a methyl group
[Figure 1(d)], their total abundance changes from protein to
protein, and they are, in general, difficult to measure to
completeness. It is, therefore, of direct practical significance to
know how large a subset of reporters of a given type is needed
to still provide useful information on the overall configurational

Figure 4. Error analysis. (a) Comparison of un-normalized ΔSMIST against the average methyl order parameters scaled by the respective number of
degrees of freedom. (b) Errors as the absolute value of the deviation along the y-axis from the linear regression in (a). (c) Relationship between
fractional coupling, |ΔSMIST−ΔS1D|/|ΔS1D|, and fractional error, |ΔSMIST

estim − ΔSMIST|/|ΔSMIST|, for all three experimental probes. For clarity, the range
of the graph has been truncated to show 91% of all of the data. The remaining outliers stem from vanishing denominators on both axes. The inset
shows the medians and the quartiles of fractional couplings and fractional errors for all three experimental probes. In panel (c), errors were estimated
based on the linear regressions given in Figure 2.
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entropy change. To address this challenge, we have selected at
random a subset of a given size of the experimental reporters in
question and then correlated the configurational entropy
changes derived from these probes with the MIST values
calculated using all degrees of freedom. By iterating this
procedure 1000 times, we have obtained 1000 Pearson R values
reporting on the overall impact of undersampling on configura-
tional entropy change estimation. In Figure 3, we show the
distributions of Pearson R values obtained at different levels of
undersampling for the three types of experimental probes in
question.
Remarkably, the above correlations appear to be extremely

robust against undersampling. In the case of both methyl and
backbone-NH order parameters [Figure 3(a) and (b)], a
correlation against the ΔSMIST values with the absolute value of
Pearson R at 0.9 is obtained already if one includes only 50% of
the total number of all available reporters (methyl and
backbone-NH order parameters, respectively) in each protein.
Even more impressively, by only selecting at random 5% of the
atoms in every protein, one is practically guaranteed to obtain a
correlation between ΔSBfact and the full ΔSMIST of approx-
imately 0.9 or higher [Figure 3(c)]. Interestingly, at
approximately 60% of all reporters of a given type or higher,
the order parameter-based approaches outperform slightly the
equivalent B-factor-based approach [Figure 3(d)]. One should,
however, remember that the order parameters even in the ideal
case report on a subsample of the total degrees of freedom only.
Thus, a direct comparison of the effects of undersampling in
the case of order parameters and B-factors may a priori be
biased. On the other hand, given that the number of atoms in a
typical protein is approximately 17 times larger than the
number of methyl order parameters, the order parameters
appear to provide a considerably higher quality measure of
configurational entropy changes as compared to crystallo-
graphic B-factors on an absolute per reporter basis. It should be
noted, however, that for NMR order parameters, the
distribution of slopes changes significantly upon undersampling
[SI Figure 5(a) and SI Figure 5(b)], which can be seen from
the width of the distributions. Also, the slopes are systematically
biased by the number of probes, i.e., the measured order
parameters. This is explained by the fact that the slope of a
linear fit can mathematically be expressed as the covariance
divided by the variance, two variables which are essentially
proportional to the inverse and the squared inverse of the
number of probes, respectively. Thus, in the case of
undersampling, the magnitude of calculated slopes will be
biased toward lower values. For crystallographic B-factors, the
situation is drastically improved [SI Figure 5(c)], simply by the
virtue of their abundance.
2.3. Expected Experimental Accuracy. The above results

demonstrate a remarkably strong linear relationship between
different experimental proxies and ΔSMIST normalized by the
number of degrees of freedom. However, in order to evaluate
the applicability of such linear relationships for deriving the
configurational entropy change in an experimental context, one
needs to assess the accuracy of the derived absolute
configurational entropy changes. Figure 4(a) shows the
analogue of Figure 2(a) for absolute entropy changes as
obtained by scaling the average methyl order parameters with
the respective number of degrees of freedom, thereby rendering
the entropy changes an extensive quantity. The respective
absolute error, i.e., the absolute y-axis deviation from the line of
the linear fit, is shown in Figure 4(b). As expected, Figure 4(a)

demonstrates a similarly high correlation as its intensive
analogue Figure 2(a). Importantly, however, the errors are
large in absolute terms and do not scale with the magnitude of
ΔSMIST. At a temperature of 300 K, the root-mean-square error
over all simulated binding processes amounts to a significant
value 59.5 kJ/mol. A similar situation is observed for backbone-
NH order parameters and crystallographic B-factors as well (SI
Figure 6 and SI Figure 7), with the root-mean-square errors of
57.3 and 56.1 kJ/mol, respectively. Taking this at face value,
these results suggest that regardless of the degree to which
dynamics of a protein changes upon binding or the choice of
one of the three experimental proxies discussed, an error of
about 60 kJ/mol is to be expected. Importantly, this value is
based on an idealized, self-consistent in silico analysis in which
one has control over all of the degrees of freedom and the
dynamics of the protein is fully known. It is likely that any
analogous experimental procedure would be associated with
even greater errors.
Intuitively, the most likely source of such large errors could

reside in the couplings between different degrees of freedom,
and this is why we have analyzed these terms in greater detail.
Reverting back to the estimates based on the linear fits given in
Figure 2, in Figure 4(c) we show the relationship between the
fractional error in the configurational entropy estimates |ΔSMIST

estim

− ΔSMIST|/|ΔSMIST| and the fractional contribution of coupling
terms to the absolute configurational entropy changes
|ΔSMIST−ΔS1D|/|ΔS1D|, where ΔS1D denotes the configurational
entropy change if one neglects all couplings (defined as mutual
information here). In general, the values of both the fractional
error and the fractional coupling are at or below ≈0.2 for the
majority of the cases (see below for details). Moreover, there is
a general trend in that large errors, and therefore large
deviations from linearity, are more common for systems that
exhibit a large change in couplings as compared to ΔS1D. This
trend seems to be valid for all three experimental probes. The
Figure 4 inset shows the median value over all studied systems
for the fractional coupling (9%) as well as the median fractional
errors for the estimates based on methyl order parameters
(12%), NH order parameters (20%), and B-factors (21%).
Errors normalized per degree of freedom are shown in SI
Figure 3. Overall, the average values of |ΔSMIST

estim − ΔSMIST|/(3N
− 6) across all simulated systems are 0.04, 0.052, and 0.056 J
K−1 mol−1 per degree of freedom for methyl, NH order
parameters, and B-factors, respectively. The average value of
ΔSMIST/(3N − 6) over all simulated systems is 0.275 J K−1

mol−1 per degree of freedom. At this point, it is important to
note that the absolute errors, which are indeed sizable, still
translate to relatively moderate fractional errors in the
contribution of the configurational entropy change to the
binding free energy change (≈10%−20%). Namely, entropic
and enthalpic free-energy terms usually represent large
quantities, which can strongly compensate each other and
result in the total binding free energy change that is less than
the aforementioned absolute errors.

2.4. Comparison of Coupling. As discussed above, a
major issue in configurational entropy estimation concerns the
degree to which coupled motions reduce the overall entropy
values. In agreement with our previous results,49 the pairwise,
linear intramolecular couplings, as estimated within the
framework of the QH approximation in Cartesian coordinates
on the present set, reduce the configurational entropy changes
by an approximately constant fraction of 80% (SI Figure 8). In
other words, configurational entropy changes obtained if one
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ignores the covariance terms within the QH approximation
(i.e., ΔSBfact) correlate linearly with the QH values obtained by
treating the covariances fully (ΔSQH), exhibiting a slope of
approximately 0.2 (SI Figure 8, ΔSQH = 0.21ΔSBfact − 814.9 J
K−1 mol−1, Pearson R = 0.89). On the other hand, in the case of
the MIST approximation in BAT coordinates, the inclusion of
correlation terms results in a much smaller correction to the
uncorrelated configurational entropy changes (Figure 5, ΔSMIST

= 0.87ΔS1D−101.5 J K−1 mol−1, Pearson R = 0.99), i.e., a
reduction of approximately only 13% on average. This, in
general, suggests that the contribution of coupling may be
surprisingly predictable, although individual proteins could
deviate from the typical behavior, as further discussed below.
Note, however, that in 53% of our simulated systems coupling
leads to a decrease in the uncoupled configurational entropy
changes (which are negative apart from PPIase A) as opposed
to an increase (in the case of absolute values, coupled motions
necessarily always decrease the entropy). Such a diverse
behavior was observed previously in several case studies.30,38

We find that for binding processes involving ubiquitin in
particular, coupling contributions tend to predominantly
increase the value of the total configurational entropy change
(65% of cases), thus counteracting the uncoupled entropy
changes. Other proteins exhibit the opposite tendency (79% of
cases decreasing). However, the magnitude of increasing
contributions is commonly larger, with only 47% of all cases
exhibiting an increase, yet the average reduction of the
magnitudes being 13% across the whole set (Figure 5).

3. DISCUSSION
The results presented herein provide a quantitative, self-
consistent foundation for exploiting NMR order parameters
and X-ray crystallographic B-factors for the determination of
configurational entropy changes in proteins. Specifically, our
results suggest that total configurational entropy changes
calculated within the MIST framework in BAT coordinates,
which takes into the account anharmonicity of the potentials
and linear and supralinear couplings up to pairwise order and
avoids spurious correlations induced by the usage of Cartesian
coordinates,61 exhibit a rather robust linear relationship with
the changes in the average NMR order parameters or the
quasiharmonic configurational entropy changes derived from B-

factors. What makes this finding particularly remarkable is that
the three experimentally derivable proxies of configurational
entropy change analyzed here include no direct information on
intramolecular couplings. We would like to suggest that this
robustness could be an intrinsic property of compact proteins
whereby the degree to which configurational entropy change is
reduced due to pairwise intramolecular couplings is on average
directly proportional to the entropy change due to the leading,
uncoupled terms. Indeed, our analysis(Figure 5) demonstrates
that the pairwise linear couplings in the case of the QH
approximation or full pairwise couplings in the case of the
MIST approximation reduce the respective ΔS values by on
average ≈79% in the QH and ≈13% in the MIST
approximation, yielding a high-quality correlation between the
uncoupled and the coupling-corrected values. While the full
QH changes are generally higher than the full MIST changes by
≈3 fold (SI Figure 9), the fractional difference of coupling
stems arguably from the different coordinate systems used, i.e.,
is due to the spurious correlations in Cartesians in the case of
the QH approximation.61

Further mechanistic insight concerning the above linear
relationships can be obtained by dissecting the total configura-
tional entropy change into its main components. In Figure
6(a), we show the results of such a dissection when it comes to
torsional and angular contributions and their mutual coupling
as well as main-chain and side-chain contributions and their
mutual coupling. We also show the contributions of the
uncoupled configurational entropy and the total configurational
MIST entropy with vibrations excluded by coarse-graining the
sampled probability distributions to three bins only. As
demonstrated in the case of side-chain contributions [Figure
6(a) inset], the relative magnitude of the contributing terms
was estimated from the slope of a linear fit against the total
configurational entropy change. Remarkably, all of the above
components exhibit strong linear relationships against the total
configurational entropy change as evidenced by the high
associated Pearson correlation coefficients. This is especially
true for the strongly contributing terms, which all exhibit
Pearson correlation coefficients ≥0.94. Overall, the coupling
contributions between torsional and angular terms as well as
those between main-chain and side-chain terms are rather
insignificant. On the other hand, our results strongly suggest
that the angular terms contribute ≈24% of the total
configurational entropy change and are thus far from negligible.
This is qualitatively supported by the findings of Gilson and co-
workers in the case of binding between the ubiquitin E2 variant
domain of the protein Tsg101 and an HIV-derived non-
apeptide.30 However, as compared to the latter case study
performed on an individual system, our results provide a
general statement across a large set of different binding
processes [Figure 6(a)].
As illustrated in Figure 6(b), our results also demonstrate

that different proteins may exhibit significantly different
behavior in this regard. While the two proteins shown in
Figure 6(b) exhibit almost the same total configurational
entropy change upon binding, its dominant components,
namely, those belonging to torsional, angular, and main-chain
and side-chain degrees of freedom, deviate by around 30 to 50
kJ mol−1. Interestingly, for these particular binding processes,
the conformational components with the vibrational contribu-
tion removed also deviate by 37 kJ mol−1. However,
considering the low impact of removing vibrations, as shown
in Figure 6(a), together with the high correlation observed, this

Figure 5. Effect of pairwise couplings in the MIST approximation.
Shown are configurational entropy changes upon binding for every
protein in the simulated set, whereby coupling corrections of pairwise
order are included on the y-axis and excluded on the x-axis. The values
are normalized by the number of degrees of freedom of the respective
molecules.
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clearly is not a general case but rather an isolated case. In order
to remove the vibrational contributions, configurational
probability distributions were coarse-grained by using only
three bins in our entropy calculations (see the Methods Section
for further discussion). A more rigorous separation20,62 of
conformational entropy from vibrational entropy is technically
impractical given the large-scale nature of the present analysis
(there is a fundamental arbitrariness in such a decomposi-
tion53,62 in any case). Also note that in the case of ubiquitin
binding one can even observe a different sign in angular
contributions depending on the nature of its binding partner.
When it comes to main-chain contributions, our findings are in
accordance with a recent computational study on bovine
pancreatic trypsin inhibitor,38 but they may appear to be at
odds with the recent findings by Wand and co-workers.10,12,17

However, the numerical analysis provided in ref 17 suggests
that the average NH-backbone order parameters correlate well
with the average side-chain methyl order parameters if their
value is below ≈0.8. As this is the case for all of our proteins (SI
Figure 2) and we indeed do observe a high quality correlation
(SI Figure 4), there is no contradiction. A follow-up
experimental investigation10 from the same group suggested
that the backbone contributions to configurational entropy may
be small, although difficulties in measurement have been
reported. Moreover, these studies have also suggested that the
angular contributions are small, but our analysis shows not only
that these contributions scales linearly with the total configura-

tional entropy change (as does the main-chain contribution)
but also that they are too large to be ignored.
Overall, our study supports the usage of the change in the

average methyl order parameters for estimating the configura-
tional entropy change by using a semiempirical fitting
procedure, as championed by Wand and others7−10,12 although,
as discussed below, the associated errors may be prohibitively
high. Importantly, although there exist terms which are not
directly probed by the side-chain methyl order parameters, they
are already indirectly fully accounted for by the applied linear
fit, which is the key element of the proposed ”entropy meter”.
In other words, the above linear relationships between the total
configurational entropy change and its different components
allow one to estimate the total configurational entropy change
from just a subset of the contributing degrees of freedom, such
as the side-chain torsional, vibration-less contributions probed
by the experiment. This important notion is supported further
by the results presented in Figure 6(c). There, we demonstrate
that by including successively more and more contributions to
the configurational entropy estimate, one obtains almost the
same slope as if directly calculating the slope between the
uncoupled, vibration-suppressed, side-chain torsional entropy
change and the total configurational entropy change. Crucially,
this transitivity of slopes is enabled by a high-quality linear
relationship at every step. Interestingly, the methyl order
parameters, however, report significantly better on the total

Figure 6. Contributions to the total configurational entropy change. (a) Average contributions across the whole protein set. Shown are the
magnitudes of the change in torsional (ΔSMIST

tor ), and angular (ΔSMIST
ang ) entropy contributions and their mutual coupling (−ΔIMIST

ang/tor) and main-chain
(ΔSMIST

mc ) and side-chain (ΔSMIST
sc ) contributions and their mutual coupling (ΔSMIST

mc/sc) as well as uncoupled entropy change (ΔS1D) and total
configurational MIST entropy with vibrations excluded by coarse-graining the sampled probability distributions to three bins only (ΔSMIST

3 bins). The
bars represent the value of the slope of the linear fit between the contributions in question and the total configurational entropy change, while the
values in parentheses indicate the associated Pearson Rs. The fitting procedure is illustrated for the case of the side-chain contribution in the inset.
(b) Absolute values of different entropic terms including temperature and no normalization for two different binding processes. (c) High-quality
linear relationships involved allow one to use the slopes of individual steps in order to estimate the full configurational entropy change ΔSMIST (top
arrow) starting from the vibration-suppressed, uncoupled torsional side-chain entropy, which is directly approximated by NMR methyl order
parameters. However, starting from the order parameter changes, such transitivity is broken.
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configurational entropy change than on the uncoupled,
vibration-suppressed, side-chain torsional entropy change.
It is likely, however, that the above linearities hold only for

proteins with a similar level of moderate compactness, such as
those in our present set [Figure 1(c)]. In order to address this
possibility, we have further investigated the binding between
ubiquitin and the highly dynamic UBM2 protein which was
previously shown to be of a significantly lower compactness as
compared to other proteins in our set.49 Five simulations were
run for both the UBM2 unbound state and the complex with
ubiquitin, yielding a total of 25 different values of ΔSMIST.
Indeed, as illustrated in SI Figure 10, we see a noticeable drop
in the quality of the linear fit for all three dynamics measures as
compared to Figure 2 and a marked change in slope in the case
of NH order parameters and B-factors. The high-quality
correlations are retained for all three dynamics proxies in the
case of the second binding partner ubiquitin, a compact, well-
folded protein (SI Figure 11), although the slopes for the NH
order parameter and the B-factor plots change in comparison to
those in Figure 2. This suggests that for increased precision the
linear relationships between ΔS and dynamic proxies should be
calibrated on a specific set of interest, as done previously.8,9

Interestingly, however, when comparing to the recent
experimental results obtained for calmodulin binding to
different helical peptides,10 whereby both calorimetric entropy
values, corrected for solvent contributions, as well as methyl
order parameters were determined, the computational slope we
fit in Figure 2(a) comes to within 20% from the experimentally
fitted value (SI Figure 12).
A previous computational study suggested the use crystallo-

graphic B-factors for the estimation of configurational entropy
changes.49 Here, using the advanced MIST approximation, we
are able to eliminate concerns about both the deficiencies of the
QH approach50 and the potential bias introduced by using the
same method for the prediction of coupled and decoupled
configurational entropy as was done previously. However, it
should also be stressed that B-factors are influenced by issues
such as rigid-body motions, crystal imperfections, and refine-
ment artifacts.63

Last but not least, it should be emphasized here that despite
the high-quality linear relationships presented throughout this
study, the magnitude of the expected experimental error is
significantly large for all three experimental proxies discussed.
At 300 K, one can expect an error of about 60 kJ/mol, which is
surprisingly independent of the magnitude of ΔSMIST. What is
more, this estimate should be considered to be a lower bound
on the errors one might see in an experiment, as here our
estimate is based on an idealized test case where one has
control over all degrees of freedom and the dynamics is known
exactly. In other words, in our computational analysis, the
simulated trajectories are fixed, and entropies as well as all the
proxy parameters are calculated self-consistently from the same
simulated configurations. In this context, it would be interesting
to see whether one of the entropy components analyzed in
Figure 6(a) could be mainly responsible for the expected error.
Unfortunately, correlating the deviation from linearity as in the
inset of Figure 6(a) against the error for methyl order
parameters in Figure 4(a) did not give any conclusive results
(see Table 2). Here, the Pearson R gives a measure of the
quality of the impact of a given contribution on the expected
measurement error, while the slope gives a measure of the
magnitude of the impact. Because of relatively low values of
Pearson Rs, however, it appears that the error cannot be

directly attributed to any specific contribution. Finally, the
situation is similar for backbone-NH order parameters and even
worse for B-factors (data not shown). Nevertheless, although
the expected accuracy of this recalibration method restricts its
usage to applications where a more qualitative rather than a
precise value is sufficient, its pioneering nature has enabled
basic experimental access to the thermodynamic measure of the
extent of protein dynamics, namely, configurational entropy.

4. CONCLUSIONS
By employing our newly developed parallel program suite,39 we
have carried out the largest-yet computational study of
configurational entropy using an advanced state-of-the-art
information theoretical method. Our results support the
pioneering NMR approaches8,9,12,64 for the determination of
configurational entropy from methyl order parameters, but the
expected accuracy of estimates obtained in such a way restricts
their usage to applications where qualitative analysis may be
sufficient. We have demonstrated that even in such cases it is
crucial to apply recalibration, as such a procedure naturally
includes coupling corrections as well as contributions from the
main-chain and angular degrees of freedom, which may be
significant. The reason that such recalibration can at all be
successful is a high-quality, unexpected linear relationship
between the full configurational entropy change and the
uncoupled side-chain torsional rotamer entropy change, directly
proxied by NMR methyl order parameters. Furthermore, the
set of experimental observables was expanded by the NMR NH
backbone order parameters and, remarkably, crystallographic B-
factors. We hope that the present work will contribute to a
more widespread development and application of experimental
methods for configurational entropy estimation in proteins. We
are convinced that such efforts will contribute to a deeper
understanding of configurational entropy in fundamental and
practical contexts alike.

5. METHODS
5.1. Molecular Dynamics Simulations. MD simulations

were performed as described previously39,49 using the
GROMACS 4.0.7 simulation package,65,66 the GROMOS
45A3 force field,67 and the SPC water model.68 Proteins were
placed in water boxes, together with the necessary number of
sodium or chloride counterions to reach neutrality, and
subjected to energy minimization, followed by heating to 300
K for 100 ps and subsequent unconstrained MD simulations.
The length of each MD trajectory was 1 μs, with the first 200 ns
treated as an equilibration period and the remaining 800 ns
analyzed. Simulations were carried out with a time step of 2 fs
using 3D periodic boundary conditions, in the isothermal−

Table 2. Effect of Different Configurational Entropy
Contributions on Estimated Error for Methyl Order
Parameters

Quantity Pearson R slope

ΔSMIST
tor −0.33 −0.59

ΔSMIST
ang −0.01 −0.03

ΔSMIST
ang/tor 0.33 6.63

ΔSMIST
mc 0.12 0.34

ΔSMIST
sc −0.14 −0.47

ΔSMIST
mc/sc −0.02 −0.13

ΔS1D −0.21 −0.57
ΔSMIST

3 bins −0.28 −0.76
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isobaric (NPT) ensemble with an isotropic pressure of 1 bar
and a constant temperature of 300 K, while system coordinates
were output every 1 ps. The pressure and the temperature were
controlled using the Berendsen thermostat and barostat69 with
1.0 and 0.1 ps relaxation parameters, respectively, and a
compressibility of 4.5 × 10−5 bar−1 for the barostat. Bond
lengths were constrained using LINCS.70 The van der Waals
interactions were treated using a cutoff of 14 Å. Electrostatic
interactions were evaluated using the reaction-field method,71

with a direct sum cutoff of 14 Å and relative permittivity of 61.
The PDB codes22,23 of the simulated complexes and their

constituents are 1UBQ, 1S1Q, 1KPP, 1UZX, 3R3Q, 1YD8,
2OOB, 2OOA, 1AK4, 2PXR, 1W8V, 1JIW, 2RN4, 1AKL,
1R0R, 2GKR, 1SCD, 1UGH, 1UGI, 1AKZ, 2K2S, 2K2T, and
2BVB. Note that for 1UBQ (ubiquitin), five separate
simulations were run. Furthermore, note that 1UBQ is a
constituent of the complexes 1S1Q, 1UZX, 1YD8, and 2OOB.
For the complex 1YD8, due to the lack of a separate structure,
the ubiquitin binding partner (human GGA3 GAT domain)
was extracted from the PDB structure of the complex and
equilibrated for an additional 500 ns. Further details are given
in Table 1.
Protein compactness was estimated as the ratio between the

protein solvent-accessible surface in the folded structure and in
the fully elongated structure.49

5.2. Maximum Information Spanning Tree (MIST)
Entropy Calculations. The configurational entropy was
evaluated by applying the MIST approximation.29,36 Entropy
calculations were carried out using the PARENT39 suite, a
collection of programs for the computation-intensive estima-
tion of configurational entropy by information theoretical
approaches using a parallel architecture. First, the trajectories
were converted from Cartesian to BAT coordinates.31,41−45

The PARENT core program was then employed in order to
yield 1D entropy values for all degrees of freedom in a given
system as well as 2D entropy values for all pairwise
combinations of degrees of freedom. Couplings of an order
higher than pairwise were neglected for reasons of computa-
tional feasibility. For sampling probability densities, 50 bins
were used in one-dimensional cases and 50 × 50 = 2500 in two-
dimensional cases. Using the obtained entropy terms, the
PARENT program suite was employed to apply the MIST
approximation29,36 to the full set of degrees of freedom by
constructing the maximum information spanning tree.
5.3. NMR Order Parameters. Adopting the “model-free”

formalism of Lipari and Szabo,11 generalized NMR order
parameters were extracted from MD trajectories using the
formula72−74

= ⟨ ⟩ + ⟨ ⟩ + ⟨ ⟩ + ⟨ ⟩ + ⟨ ⟩ + ⟨ ⟩ −O x y z xy xz yz
3
2

( )
1
2

2 2 2 2 2 2 2 2 2 2

(17)

Here, x, y, and z are the Cartesian coordinates of the bond
vector associated to the order parameter in unit length. The
overall tumbling (rigid-body rotation and translation) of the
molecule was separated from internal dynamics by subjecting
solute conformers to a least-squares superposition of all atoms
(the same for RMSF calculations).
5.4. Crystallographic B-Factor Entropy Calculations.

For the calculation of entropy values derived from B-factors, a
previously described procedure49 was applied. Atom-positional
Cartesian root-mean-square fluctuations (RMSFs) of all the
atoms in a given protein or complex were obtained by using the

program g_covar of the GROMACS65,66 simulation package,
with all nondiagonal elements of the variance-covariance matrix
discarded. The diagonal elements, representing the atomic x-,
y-, and z-RMSF values, were then inserted into the
formula26,35,49
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where

= ℏ
A

M k T RMSFi j
i i j

,
B , (19)

to obtain the configurational entropy neglecting all couplings in
the system. Here, R denotes the gas constant, kB the Boltzmann
constant, ℏ the reduced Planck constant, Mi the mass of the
atom i, T the system temperature, and RMSFi,j is the root-
mean-square fluctuation of the Cartesian coordinate j belonging
to atom i. It is calculated from the MD trajectory as

∑= Δ − ⟨ ⟩r n t rRMSF [ ( ) ]i j
n

i j i j, , ,
2

(20)

where ri,j denotes the Cartesian coordinate j from atom i, and
nΔt is the timestamp of the nth discrete frame in the MD
trajectory. The brackets ⟨⟩ denote averages over the whole
trajectory. For the calculation of configurational entropy values
from experimental B-factors, the relationships49
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were used. Here, Bi denotes the B-factor of atom i. The other
variables and constants are the same as in eq 18.

5.5. Vibrational Entropy Estimate. For a set of discrete
states, their entropy, in general, changes if one introduces new
states of nonvanishing probability to the system. For example,
the entropy of a uniform distribution strictly increases with the
number of states (Shannon’s second Axiom75). If, by analogy,
the number of bins of a discretized continuous probability
distribution (yielding discretized differential entropy28,51) is
increased, the entropy value is affected only if the fine-grained
probability distribution reveals additional features. To elaborate
on this property, the formula for the discretized differential
entropy is stated28

∑= −
Δ=

−

S p p
p

x
({ }) R lni

i

n

i
i

0

1

(24)

This expression differs from the entropy of a set of discrete
states by the inclusion of the inverse of the bin size Δx inside
the logarithm. Here, pi denotes the probability of the system to
be found inside bin i, n marks the total number of bins, and the
curvy brackets denote the set of all pi. R denotes the gas
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constant. Now, in order to increase the resolution of
discretization without adding new features to the probability
distribution, we define the following derived probability
distribution, which features additional fine-graining by a factor f.
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In other words, an increase in the degree of graininess does
not affect the value of entropy if no additional features are
introduced. Note that, for simplicity of notation, we have
neglected a Jacobian contribution here, which due to
nonlinearity could, in principle, affect the above result. The
Jacobian in BAT coordinates reads28,31,51
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2
2

2
3
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where b denotes bond lengths, θ angles between bonds and ψ
torsional angles, and N the number of atoms in the molecule.
Note that torsional angles do not contribute to the Jacobian,
although they constitute ≈74% of the configurational entropy
[Figure 6(a)]. Furthermore, bonds and angles between bonds
are rather stiff degrees of freedom, and additionally, the angles
enter the Jacobian inside a sine function. Thus the Jacobian
hardly adds a contribution to single molecule entropy changes
for most proteins.31 Another consideration is that the usage of
three bins will often split conformers apart, thus yielding a poor
estimate for conformational entropy. While this holds true,
small amplitude motions, i.e., vibrations, will still mostly be
efficiently suppressed. Thus, while a decrease in the number of
bins will not necessarily give a precise estimate of conforma-
tional contributions, we expect it to serve well for
demonstrating in a qualitative manner that fast vibrational
motions hardly contribute to configurational entropy changes
associated with protein−protein complex formation.
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