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The quality and quantity of training data are crucial to the performance of a

deep-learning-based brain-computer interface (BCI) system. However, it is not

practical to record EEG data over several long calibration sessions. A promising

time- and cost-efficient solution is artificial data generation or data augmentation (DA).

Here, we proposed a DA method for the motor imagery (MI) EEG signal called

brain-area-recombination (BAR). For the BAR, each sample was first separated into two

ones (named half-sample) by left/right brain channels, and the artificial samples were

generated by recombining the half-samples. We then designed two schemas (intra- and

adaptive-subject schema) corresponding to the single- and multi-subject scenarios.

Extensive experiments using the classifier of EEGnet were conducted on two public

datasets under various training set sizes. In both schemas, the BAR method can make

the EEGnet have a better performance of classification (p< 0.01). Tomake a comparative

investigation, we selected two common DA methods (noise-added and flipping), and the

BAR method beat them (p < 0.05). Further, using the proposed BAR for augmentation,

EEGnet achieved up to 8.3% improvement than a typical decoding algorithm CSP-SVM

(p< 0.01), note that both the models were trained on the augmented dataset. This study

shows that BAR usage can significantly improve the classification ability of deep learning

to MI-EEG signals. To a certain extent, it may promote the development of deep learning

technology in the field of BCI.

Keywords: brain-computer interface, electroencephalogram, motor imagery, deep learning, inter-subject transfer

learning, pre-training, data augmentation

1. INTRODUCTION

The brain-computer interface (BCI) is a communication control system directly established
between the brain and external devices (computers or other electronic devices), using signals
generated during brain activity (Wolpaw et al., 2000). Instead of relying on the muscles
and organs, the system directly builds communication between the brain and the machine.
Electroencephalogram (EEG) is one of the most common signals used for building a BCI
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system because of its cost-effectiveness, non-invasive
implementation, and portability. BCIs have shown potentials
in applying various fields such as communication, control, and
rehabilitation (Abdulkader et al., 2015).

Recent years have witnessed intense researches into different
types of BCI systems. According to the signal acquisition
method, BCI technology can be divided into three types: non-
implantable system, semi-implantable system, an implantable
system (Wolpaw et al., 2000). Non-implantable BCI systems
mainly use EEG to recognize human’s intention. According to the
signal generation mechanism, BCI systems can be divided into
induced BCI systems and spontaneous BCI systems. The induced
BCI systems are: steady-state visual evoked potentials (SSVEP)
(Friman et al., 2007; Ko et al., 2020), slow cortical potentials
(Beuchat et al., 2013), and the P300 (Yin et al., 2016; Yu et al.,
2017; Chikara and Ko, 2019), and the spontaneous BCI systems
are: motor imagery (MI) (Choi and Cichocki, 2008; Belkacem
et al., 2018; Chen et al., 2019; Wang et al., 2020).

The motor imagery (MI) BCI system’s framework is based
on the fact that the brain’s activity in a specific area will be
changed when the patients (or subjects) imagine moving any
part of their bodies. For example, when a person imagines
moving his/her right arm, there is a desynchronization of neural
activity in the primary motor cortex on the left side of the brain.
This desynchronization is called event-related desynchronization
(ERD), which can be observed in the EEG signals transitioning
from resting-state energy level to a lower energy level. The spatial
location, temporal onset, amount of decrease, and ERD’s stability
are all subject-dependent factors (McFarland et al., 2000; Lotze
and Halsband, 2006), bringing challenges for detecting changes
in MI’s neural activity.

In recent years, based on the considerable amount of
data and sophisticated model structure, deep learning has
been proved its strong learning ability to classify linguistic
features, images, and sounds (Zhong et al., 2015; Song et al.,
2017; Alom et al., 2018; Cooney et al., 2019). However, it is
difficult to collect sufficient data in practice due to the limited
available subjects, experimental time, and operation complexity
in BCI. This problem is pronounced in MI-based BCI. The
performance of deep neural networks (DNNs) is susceptible to
the number of samples. A small scale dataset often leads to poor
generalization during model training, reducing the decoding
accuracy (LeCun et al., 2015).

A feasible approach to improve deep networks’ performance
and to avoid the overfitting caused by lack of training data is
data augmentation (DA) methods (Salamon and Bello, 2017).
These methods augment training data by artificially generating
new samples based on existing data (Roy et al., 2019). Yin
and Zhang (2017) added Gaussian white noise to the EEG
feature vector to improve their deep learning model’s accuracy
on the classification task of Mental Workload (MW). Sakai
et al. (2017) shifted EEG trials in time axis and amplified the
amplitude to generate artificial EEG signals for augmentation.
The results showed that their augmentation method improved
the classification performance when the training set’s size was
20, but this method has no significant effect on the more
extensive training set. In another work, artificial EEG trials

were generated by segmentation and recombination in time and
frequency domains (Lotte, 2015), and the results were more
convincing. Other studies have used more advanced techniques
such as variational auto-encoders (VAE) (Aznan et al., 2019)
and generative adversarial networks (GANs) (Goodfellow et al.,
2014). However, tens of thousands of parameters in these
methods need to be trained using the original data, which creates
a certain degree of demand for the original data scale. It is a
conflict with our goal of data augmentation on a tiny training
set. Besides, the huge consumption of computing resources and
the difficulty of being reproduced are also their shortcomings,
although they have achieved a certain degree of success in some
aspects (Karras et al., 2017; Kodali et al., 2017).

We proposed a new motor imagery EEG DA method, called
Brain Area Recombination (BAR), which first decomposes the
training dataset from the left and right brains and reassembles
them into a new training dataset. Pre-training on the datasets
of other subjects is also a common way to solve the insufficient
training of deep neural networks (Fahimi et al., 2020). There are
two types of pre-training, one is to use the source subjects’ data
in the same dataset as the pre-training training dataset, and the
other is to use another dataset as the pre-training training dataset
(Xu et al., 2020). The first type of pre-training is used in our
study. Fortunately, experiments show that our method can be
well-embedded with the pre-training framework to improve the
deep learning network’s classification performance.

Compared with the methods above, the proposed BAR has the
following advantages:

(1) Low computational complexity;
(2) High and fixed expansion ratio;
(3) Great quality of new artificial samples.

This paper’s remainder is organized as follows: section 2
introduced the public dataset used in the study. Section 3
proposed a preliminary experiment and our method’s hypothesis
in detail and then introduced the method’s mathematical
definition. We used two common schemas to evaluate our
method and implemented the other two common DA methods
as a comparison. Experiment results were showed in section
4, which demonstrated that the proposed BAR had achieved
significant results. Section 5 presented the discussion. Section 6
concluded the study.

2. MATERIALS AND METHODS

2.1. Materials
Dataset 1: The first dataset was from BCI-Competition-III-IVa
and was collected in a cue-based setting. Only cues for the classes
“right” and “foot” are provided. This dataset was recorded from
five healthy subjects (aa, al, av, aw, ay) at 100 Hz. The subjects
sat in a comfortable chair with arms resting on armrests. The
timeline of the dataset was shown in Figure 1A. The raw data
were continuous signals of 118 EEG channels and markers that
indicate the time points of 280 cues. Each sample was segmented
from [0, 2.5] s by marks, then passed a band-pass filter (5-
order Butterworth digital filter with cut-off frequencies at [8,
30] Hz) to remove muscle artifacts, line-noise contamination,
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FIGURE 1 | Timeline of one trial in the dataset 1 (A) and dataset 2 (B).

and DC drifts. Under the condition that the positive sample and
the negative sample were balanced, 100 samples were randomly
selected as the training pool. The remaining samples were used as
the test samples. The details of the competition, including ethical
approval, and the raw data can be download from http://www.
bbci.de/competition/iii/.

Dataset 2: The second dataset was from BCI-Competition-
IV-1. The dataset was recorded from seven healthy subjects (a,
b, c, d, e, f, g), including four healthy individuals (named “a,”
“b,” “f,” “g”) and three artificially generated “participants” (named
“c,” “d,” “e”). 59-channel EEG signals were recorded at 100 Hz.
Two motor imagery classes were selected for each subject from
the three classes: left hand, right hand, and foot. The timeline
of the dataset was shown in Figure 1B. There were two subjects
(a, f) whose motor imaging tasks were different from the others,
so they were eliminated. Here we only used the calibration data
because of the complete marker information. Each sample was
segmented from [0, 2.5] s by marks, then passed a band-pass
filter (5-order Butterworth digital filter with cut-off frequencies at
[8, 30] Hz) to remove muscle artifacts, line-noise contamination,
and DC drifts. After preprocessing, we obtained 200 samples for
each subject. We randomly selected 100 samples as a training
pool and the rest as test samples, like dataset 1. The details of the
competition, including ethical approval, and the raw data can be
download from http://www.bbci.de/competition/iv/.

2.2. Methods
2.2.1. Core Assumption
Consider that we select two samples from the original samples
randomly, and take out the left brain part of the first sample
and the right brain part of the second sample, and recombine
these two parts together to form an artificial sample. This artificial
sample is still a normal EEG sample (1).

If xi, xj ∼ PMI−EEG, Then x̂ =

[

x
(R)
i

x
(L)
j

]

∼ PMI−EEG (1)

where xi, xj ∈ R
C×T , C is the number of electrodes, T is

the sample-points, PMI−EEG is the distribution of MI-EEG data.

x(R), x(L) ∈ R
C
2 ×T represent samples containing only the right

brain channels and the left brain channels, respectively.

2.2.2. Brain Area Recombination
Based on the assumption described in (1), we propose two similar
DA methods for single-subject and multi-subject scenes for EEG
of motor imagination. The whole framework of our proposed
method was shown in Figure 2.

For the single-subject scene, the data augmentationmethod is:

E
(s)
single

=

Nc
⋃

c=1

{x(R)|x(R) ∈ D(R)
s , y(x(R)) = c}

×{x(L)|x(L) ∈ D(L)
s , y(x(L)) = c} (2)

For the multi-subject scene, the data augmentation method is:

E
(s)
multi

=

Ns
⋃

i,j 6=s

Nc
⋃

c=1

{x(R)|x(R) ∈ D
(R)
i , y(x(R)) = c}

×{x(L)|x(L) ∈ D
(L)
j , y(x(L)) = c} (3)

where Ns and Nc represent the number of subjects and the
number of classification tasks, respectively. y(·) is a mapping to

get the label. s is the index of the subject. D
(R)
i and D

(L)
i represent

the training dataset from the right brain and the left brain for
the i-th subject, respectively. “×” was defined as the cartesian-
like product operator. For example, there are two matrix sets
A = {a1, a2},B = {b1, b2} and their product C = A × B =

{

[

a1
b1

]

,

[

a1
b2

]

,

[

a2
b1

]

,

[

a2
b2

]

}. Note that E
(s)
multi

does not contain any

sample from the s-th subject. In other words, it is a cross-subject
training dataset. Figure 2A represents the meaning of Equation
(2) and Figure 2B represents the meaning of Equation (3). The
zero midline electrodes are Fpz, Fz, FCz, Cz, CPz, Pz, POz, and
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FIGURE 2 | Illustration of the Equation (2) (A) and Equation (3) (B).

Oz in dataset 1. We alternately divide them into two sets in turn.
Specifically, Fpz, FCz, CPz, and Pz are selected to be the brain’s
left part, and Fz, Cz, Pz, Oz were are selected to be the brain’s
right part. In dataset 2, the zero midline electrodes are Fz, FCz,
Cz, CPz, and Pz. Fz, Cz, and Pz are selected to be the brain’s left
part. FCz and CPz were are selected to be the brain’s right part.

2.2.3. Noise-Added and Flipping
The problem we want to solve is data augmentation on a tiny
training dataset. Methods like GANs and VAEs having massive
parameters to be learned are not suitable for this situation.
Moreover, considering that the no-parameter (or few parameters)
methods will often achieve better results for this situation,
we selected noise-added and flipping methods for comparative
investigation (Lashgari et al., 2020). Concerning the noise-added
method, a Gaussian noise matrix with SNR (signal to noise ratio)
of 5 is calculated, and then this noise matrix is added to the
original sample. The rule of the flipping DA method is to reverse
each real sample in the time axis. Because the noise-added DA
method does not have a fixed expansion ratio constant, we have
implemented two versions of the noise-added DA method for
a more objective comparison. One implementation (version 1)
makes the noise-added DA method have the same expansion
ratio as the flipping DA method. The other implementation
(version 2) makes the noise-added DA method and the proposed
BAR DA method have the same expansion ratio constant.

2.2.4. The EEGnet
We use the end-to-end deep learning model, named EEGnet
(Lawhern et al., 2018). The EEGnet takes the EEG segments
as the input, passes them through three convolution layers for
feature extraction, and uses a fully connected layer to classify.
The first layer is a temporal convolution to learn frequency filters.
The second layer is a depthwise convolution layer. This layer
connects to each feature map individually and learns frequency-
specific spatial filters. The third layer is a separable convolution
layer. The separable convolution is a combination of depthwise
convolution, which learns a temporal summary for each feature
map individually, followed by a pointwise convolution, which
learns how to mix the feature maps optimally. All feature maps
are flattened and are fed into a fully connected layer. Full
details about the network architecture can be found in the open-
source project: https://github.com/vlawhern/arl-eegmodels. In
this study, we use the default hyperparameters provided by the
open-source project.

2.2.5. The Common Spatial Patterns Extraction
Due to the strong spatial distribution characteristics of motor
imagery EEG signals, a feature extraction method called
Common Spatial Patterns (CSP) is designed (Koles et al., 1990).
The CSP aims to construct spatial filters which can maximize the
variance of band-pass filtered EEG signals from one class and
minimize the variance of EEG signals from the other class (Lotte
et al., 2018). Formally, CSP uses the spatial filters w to assign a
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FIGURE 3 | Workflows for IS-schema and AS-schema. Panel (A) is the workflow of intra-subject-schema and panel (B) is the workflow of adaptive-subject-schema.

weight to each EEG sample channel. The w can be calculated by
extremizing the following function:

J(w) =
w′X′

1X1w

w′X′
2X2w

=
w′C1w

w′C2w
(4)

By maximizing Equation (4), we can calculate the spatial filter
focusing on class 1. Indeed, J(k × w) = J(w), with k a
real constant, means that the rescaling of the w is arbitrary.
To calculate the only maximizer, we need a condition that
w′C2w = 1. Using the Lagrange multiplier method, the
constrained optimization problem is equivalent to maximizing
the following function:

L(λ,w) = w′C1w− λ(w′C2w− 1) (5)

The filters w maximizing L can be calculated by setting the
derivative of L concerning w to 0:

∂L

∂w
= 2w′C1 − 2λw′C2 = 0

⇔ C1w = λC2w

⇔ C−1
2 C1w = λw

(6)

We obtain an eigenvalue problem in Equation (6). Therefore,
the spatial filters maximizing Equation (4) are the eigenvectors
of M = C−1

2 C1 which correspond to its largest eigenvalue.
Empirically, we select the eigenvectors corresponding to the top

k(k = 3) eigenvalues and concatenate them into a matrixW
(1)
Nc×k

.

This matrix can capture the three components that most relate
to class 1. For the class 2, we can swap the numerator and

denominator in the Equation (4) and repeat the above process.
Finally, we concatenate the two matrices together to obtain the

CSP-feature extraction matrixW =
[

W
(1)
Nc×k

,W
(2)
Nc×k

]

.

3. RESULTS

We designed two schemas to evaluate these DA methods. Both
schemas used the same deep learning model called EEGnet
(Lawhern et al., 2018). The setting of the dataset was different
between both schemas. In the first schema, referred to as intra-
subject(IS)-schema, each subject’s EEGnet was only trained on
the subject’s own dataset. In the second schema, referred to
as adaptive-subject(AS)-schema, each subject’s EEGnet should
be trained in two stages. In the first stage, named the pre-
training stage, the EEGnet should be trained on other subjects’
datasets. In the second stage, named the adaptive-training stage,
the EEGnet should be trained on the target subject’s dataset.
Figure 3 showed the two schemas’ workflow. We only used one
DA method in each experiment instead of experimenting with
multiple DA methods’ additive effects. Two DA methods (noise-
added and flipping) were implemented as reference methods
(Lashgari et al., 2020). The flipping DA method flipped each
sample along the time axis to generate a new sample. So this DA
method can only get a double-sized dataset. The noise-added DA
method added noise to each sample to generate new samples.
Since the noise-added DA method had no fixed expansion
factor, we implemented two versions with different expansion
factors for the more objective comparison experiments. We
repeated 10 times of experiments in each training set size for a
specific subject.
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FIGURE 4 | Average subjects performance on different size of training dataset in the IS-schema and AS-schema from dataset 1 (A) and dataset 2 (B) was plotted.

The red line with “NONE” in (A.1,A.2,B.1,B.2) indicates the case that the training set was not augmentated. The lines with “NOISE” and “NOISE_EX” represent version

1 of noise-added method and version 2 of the noise-added method, respectively. The green line and red line with the prefix “ADA_” in (A.3,B.3) represent

AS-schema’s accuracies. The blue line and yellow line in (A.3,B.3) represent IS-schema’s accuracies.
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FIGURE 5 | Individual result in IS-schema (A) and AS-schema (B). Note that the green bar (“CSPSVM”) in (A) is the traditional classifier’s result using the BAR

method. The bar named “NOISE” represents the version 2 of noise-added method.
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TABLE 1 | Paired-sample t-test result on the test accuracy in Figures 4A.1,B.1.

Dataset 1

FLIP NOISE NONE NOISE_EX

BAR 1× 10−4 2× 10−3 1× 10−5 2× 10−3

Dataset 2

FLIP NOISE NONE NOISE_EX

BAR 1× 10−4 8× 10−6 6× 10−7 2.6× 10−3

TABLE 2 | Paired-sample t-test result on the test accuracy in Figures 4A.2,B.2.

Dataset 1

FLIP NOISE NONE NOISE_EX

BAR 2× 10−4 2× 10−3 4× 10−3 5× 10−2

Dataset 2

FLIP NOISE NONE NOISE_EX

BAR 9× 10−5 3× 10−4 6× 10−7 1.2× 10−3

TABLE 3 | Paired-sample t-test result on the test accuracy in Figure 5.

IS-schema

FLIP NOISE NONE CSPSVM

BAR 3× 10−3 7.2× 10−3 3× 10−4 1.5× 10−2

AS-schema

FLIP NOISE NONE

BAR 2.3× 10−2 9.9× 10−4 5.2× 10−3

3.1. IS-Schema Performance
There were multiple subjects in each dataset. For the sth
subject, we first randomly selected some samples to construct
the original-training dataset Ds. The augmentation methods
were applied to the Ds in turn to construct the corresponding
augmented training datasets. The EEGnet was trained on these
training datasets separately and was tested on the testing dataset.
To test the proposed BAR’s sensitivity to the training dataset’s
size, we conducted extensive experiments on different training
dataset sizes. For a specific subject, we repeated the experiment
10 times on a specific training set size from 10 to 100 and
then took the averaged accuracy as the final one. The results
of those experiments were plotted in Figures 4A.1,B.1, 5A.
Figures 4A.1,B.1 shown the performance of each DA method
under different training set sizes. This performance was the
average result of all subjects. For dataset 1, as the size of the
training set increases, all DAmethods’ performance is improving,
but our BAR method is always ahead of other methods by
about 3%, except for the case where the training set size is

10. Figure 5A shown the performance of each DA method on
different subjects. These accuracies come from the averaged
accuracy of all experiments. For a specific subject, we run many
experiments on different training set sizes from 10 to 100, and all
accuracies are averaged to be the final one. A paired-sample t-test
was used to measure the significance of our proposed BAR, and
the results were shown in Tables 1, 3. The test results were p <

0.005 between the referenced methods and the proposed method.

3.2. AS-Schema Performance
In the AS-schema: For each subject, we selected the same samples
randomly from other subjects to construct the training dataset.
In this schema, two training sets were needed, and the EEGnet
was trained on them as Figure 3 shows. The first dataset was
a cross-subject dataset which is constructed by (3) for the sth
subject. The second dataset was constructed by (2), which was
the same as the training dataset in the intra-subject schema.
For the flipping method, we first mix the source subjects’ data
and then flip each sample in this mixed dataset to obtain a
new artificial sample. For the noise-added method, we have
two versions of strategies. Version 1: We first mix the source
subjects’ data and then add gaussian noise to each sample in
this mixed dataset to obtain a new artificial sample. Version 2:
We randomly select an original sample with replacement from
the source subjects’ mixed data and add Gaussian noise to it
to obtain a new artificial sample. Repeat the process until the
original samples, and the artificial samples are equals to the
augmented dataset by the BAR. To investigate our proposed
BAR’s performance in different sizes of selected samples for each
subject, we run the adaptive-subject experiment many times in
each size of selected samples. The result was demonstrated in
Figures 4A.2,B.2, 5B. Figures 4A.2,B.2 shown the performance
of each DA method under different training set sizes. This
performance was the average result of all subjects. For dataset 1
and dataset 2, as the training set size increases, all DA methods’
performance increases, but our BAR method has always been
ahead of other methods except for a few cases. Figure 5B shown
the performance of each DA method on different subjects. These
accuracies come from the averaged accuracy of all experiments.
For a specific subject, we run a lot of experiments on different
training set sizes from 10 to 100, and all accuracies are averaged
to be the final one. A Paired-sample t-test was used to measure
our proposed BAR’s significance, and the result was shown in
Tables 2, 3. The test results were p < 0.05 between the referenced
methods and the proposed method.

3.3. EEGnet vs. CSP-SVM
The CSP-SVM, a traditional classifier for MI-EEG signals, does
not support the AS-schema. Therefore, we can only compare
the performance of EEGnet and CSP-SVM in IS-schema. The
results were plotted in Figure 6. The training set and testing
set were the same as those used by EEGnet. In Figure 6A, our
BAR method enabled EEGnet to obtain a huge improvement in
classification performance compared to CSP-SVM. In Figure 6B,
the improvement of classification performance was not obvious,
but it still exceeded the performance of traditional CSP-SVM.
This showed that our method can enable deep learning models
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FIGURE 6 | EEGnet vs. CSP-SVM on dataset 1 (A) and dataset 2 (B).

FIGURE 7 | The red points were artificial samples by the proposed BAR and the blue ones were sampled from the recording process. The star points (“*”) and circle

points (“o”) represent the first class and the second class samples, respectively.

to be more fully trained, whether the quality of the dataset was
poor or better, and the classification performance exceeded the
traditional method CSP-SVM’s.

3.4. Data Visualization
It is interesting to visualize the locations of the EEG trials
generated by our proposed BAR. We used t-Stochastic Neighbor
Embedding (t-SNE) (Maaten and Hinton, 2008), a non-
linear dimensionality reduction technique that embeds high-
dimensional data in a two-or-three-dimensional space, to show
and compare the original EEG trials and generated EEG trials
in the intra-subject schema. Figure 7 shows the result of t-SNE
on augmented training dataset from each subject, where the size
of the training set we used is 20. An overall characteristic can
be found that BAR’s generated EEG trials may not be scattered
far away from the original EEG trials. Note that the subject d
and subject e are artificially generated “participants.” So that the
artificial samples closely surround real samples, which is slightly
different from other subjects’.

3.5. Experimental Setup
We used ubuntu 18.04.5 LTS with a GPU TITAN V as the
experiment platform. We chose 60 epochs determined by our
iterated experiments for early stopping. We set the batch size
to 16. Adam optimizer was used in all experiments with lr =

0.001,β1 = 0.9,β2 = 0.999.

4. DISCUSSION

This article developed a new DA method to generate artificial
EEG data from the recorded samples. These artificial data can
be used to supplement the training set, which can improve the
EEGnet’s decoding accuracy. The human brain is composed of
two parts, the left hemisphere and the right hemisphere. Many
studies have shown cooperative relationships between brain areas
under specific tasks (Rubinov and Sporns, 2010). We believe that
the motor imagery induced EEG patterns contain three parts:
the left hemibrain independent component, the right hemibrain
independent component, and the left and right brain cooperative
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components. Moreover, our data augmentation method may
strengthen the left and right brain collaboration components
through channel-level reorganization and constructs its more
robust training samples. We designed two schemas toward
two application scenarios: single-subject scenario and multi-
subjects scenario. We have demonstrated that the augmented
datasets significantly improved the performance of detection
in deep-learning-based MI-BCI systems. Furthermore, we
reimplemented the noise-addedmethod and the flippingmethod,
known as common DA methods for time series data (Wen et al.,
2020). The results showed that the proposed BAR significantly
outperformed them in the MI-EEG classification task. Although
the final binary classification accuracy has not improved much, it
is a reliable improvement because it passed the t-test.

Merely expanding the size of the training dataset can improve
the classification performance of the deep learning network. To
get a more objective conclusion, the expansion ratio of the noise-
added DA method was set to be the same as our proposed
BAR’s. Moreover, the results were plotted in Figure 4, which
illustrated that with the help of our proposed BAR method,
the EEGnet had been more fully trained to achieve the best
classification performance. We found that as the size of the
training set increases, the classification accuracy of deep learning
increases very quickly at the beginning. After a certain threshold,
the increase rate will slow down. In the Figures 4A.1,A.2 the
threshold is 20. In the Figures 4B.1 the threshold is 40. In the
Figure 4B.2 the threshold is 70.

The flipping method destroyed the time-domain
characteristics of EEG signals. Comparing Figures 4A.1,A.2,
we found that the performance of the flipping method had
dropped. In these two schemas, the only difference was that
EEGnet was pre-trained in the mixed dataset of multiple subjects
in the second schema. The spatial distribution characteristics
of datasets mixed by multiple subjects would be reduced by
the differences between subjects (Ang et al., 2008). Therefore,
training EEGnet on a multi-subject mixed data would force the
model to pay more attention to temporal features. However, the
temporal features had been destroyed by the flipping method’s
operation in the time axis. EEGnet would perform worse in the
AS-schema if the flipping DA method was used. This result was
also consistent with prior knowledge that the two important
dimensions of motor imaging EEG signal characteristics were
space and time (Sakhavi et al., 2018).

The noise-added method was difficult to tune. We
implemented two versions for the comparative experiments.
One version had the same expansion ratio as the flip method,
and the other version had the same expansion ratio as our
proposed BAR method. In our experiment, the noise-added
method was not adjusted to the optimal state. The tuning process
of the noise-added method was complicated and required
massive experiments. There were too many factors affecting
the noise-added method’s performance, such as the type of
noise distribution, the signal-to-noise ratio, and the ratio of the
generated data volume, original data volume, etc.

The BAR may promote the application of advanced DA
methods such as GANs in the BCI field. After long-term
development, the Generative Adversarial Network had evolved

various variants, improving the training process’s stability and
the diversity of the generated samples (Goodfellow et al., 2014;
Radford et al., 2015; Isola et al., 2017). Nevertheless, its essence
was still a deep generative model that contained two deep
modules (generator and discriminator), which included massive
parameters to be learned (Gui et al., 2020). To obtain a generator
with superior performance, a certain amount of data was needed
to support generator and discriminator adversarial training. Still,
the motivation for data augmentation in the BCI field was that
we did not have enough real training data. This was a conflict.
Therefore, when the original dataset’s size was very small, using
advanced methods such as GAN for data augmentation was not
a good choice. However, our method was parameterless, and
experiments proved that it can still enhance the deep-learning-
based classifier under a small training set size. So, we want to say
that our method may help GANs to improve their performance.
In other words, the BARmay be a parameterless DAmethod that
can assist the parameterized DA method.

Although AS-schema was dependent on the dataset, the DA
method we proposed can improve the deep learning model’s
classification performance. The viewpoint that AS-schema was
dependent on the dataset can be understanding by comparing
the red line and the orange line in Figures 4A.3,B.3. As can
be seen from Figure 4, the data quality of dataset 1 was better
than that of dataset 2. The improvement effect of AS-schema
on the dataset recorded from the high-quality subjects was
more obvious. With the augmentation of our method, the deep
learning model can improve the dataset with many poor subjects,
which can be seen in Figure 4B.3. On dataset 1 with the better
overall quality, our method can further improve the classification
performance of deep learning models. The green line beat the
others in Figure 4A.3.

DA method was not effective for CSP-SVM (traditional
methods), but it was effective for EEGnet (deep learning
methods). Two facts may explain the phenomenon. The
perspective of features: In the traditional CSP-SVM framework,
the features are extracted by the CSP algorithm. Although These
features are highly explainable, they are too simple to reflect
the data’s original appearance. However, the deep-learning-
based classifier is an end-to-end method, and the features are
automatically learned from the massive training samples. These
features, which are learned by many samples, often reflect more
information of the original data. The perspective of non-linear
fitting ability: The non-linear fitting ability of the SVM comes
from the kernel function. Choosing a suitable kernel function
is very dependent on experience (Cortes and Vapnik, 1995).
However, the non-linear fitting ability of the deep-learning-
based classifier is automatically learned from themassive training
samples. Many facts have proved that data-driven non-linear
expression capabilities are often better than that of manually
selected kernel functions in recent years.

An interesting phenomenon discovered by comparing
Tables 1, 2 was that the significance of the proposed BAR was
reduced in dataset 1. The reason for the result may be that the
size of the training set was enough to train a good neural network
in the AS-schema. In the pre-training stage, our neural network
was first trained on data from other subjects. The amount of data
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in this stage was large enough to make the neural network to
converge to a not bad point. So the effect of our proposed BAR
will be reduced in the pre-training schema.

This article has several limitations that call for future
investigation. (1) For multi subjects, we use the pre-training
pipeline, which is an approach relying on experience stem
from natural language processing (NLP) (Xipeng et al., 2020).
Experiments show that this pipeline is not completely suitable
for the BCI field. It is worth seeking the best way to transfer
knowledge from other subjects to the target subject. (2)
Influenced by the phenomenon of ERD and ERS, we choose
the left brain part and the right brain part as the region to
be divided and be recombined. Although we demonstrate this
divided approach’s effectiveness by extensive experiments, the
optimal dividend approach is a crucial problem for the channel-
wise-recombined DA method. (3) Through a large number of
artificial samples obtained by the BAR in a short time, these
samples have a large number of redundant samples. They contain
countless repetitive information, which will significantly reduce
the training speed of the model. Selecting high-quality samples
from artificially generated samples has become a problem,
which would become a potential application scenario for active
learning (Settles, 2009). These questions will guide our next
research direction.

5. CONCLUSION

In this study, a data augmentation method (denoted as BAR)
based channel-level recombination was proposed for MI-BCI
systems. In our method, to obtain an augmented training set,
we divided each sample into two samples according to the brain
region to which the channel belongs and then regroup them
in the same category. After that, the EEGnet was trained on
the augmented training set. Two common DA methods were
implemented as comparisons in two training schemas to verify
the proposed BAR method. All comparative experimental results
passed the paired-sample t-test, which fully demonstrated our
proposed BAR’s effectiveness. At the same time, we found that

AS-schema was dependent on the dataset. It performed well on
dataset 1 but badly on dataset 2. One possible reason was that
dataset 2 was of poor quality, and AS-schema did not apply. How
to match the AS-schema with a poor quality dataset will be our
next research direction. In bad situations, our method can still
improve the decoding performance of deep learning models. The
proposed BAR may promote the application of deep learning
technology in BCI systems.
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