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Abstract: Trigeminal neuralgia (TN) is a complex orofacial pain syndrome characterized by the
paroxysmal onset of pain attacks in the trigeminal distribution. The underlying mechanism for this
debilitating condition is still not clearly understood. Decades of basic and clinical evidence support
the demyelination hypothesis, where demyelination along the trigeminal afferent pathway is a major
driver for TN pathogenesis and pathophysiology. Such pathological demyelination can be triggered
by physical compression of the trigeminal ganglion or another primary demyelinating disease, such
as multiple sclerosis. Further examination of TN patients and animal models has revealed significant
molecular changes, channelopathies, and electrophysiological abnormalities in the affected trigeminal
nerve. Interestingly, recent electrophysiological recordings and advanced functional neuroimaging
data have shed new light on the global structural changes and the altered connectivity in the central
pain-related circuits in TN patients. The current article aims to review the latest findings on the
pathophysiology of TN and cross-examining them with the current surgical and pharmacologic
management for TN patients. Understanding the underlying biology of TN could help scientists and
clinicians to identify novel targets and improve treatments for this complex, debilitating disease.
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1. Introduction

Trigeminal neuralgia (TN), previously known as tic douloureux, is a chronic neuro-
pathic pain syndrome characterized by recurrent unilateral lancinating facial pain limited
to the distribution of the trigeminal nerve dermatome [1]. It is a debilitating condition with
severe pain and an unpredictable course that negatively impacts patients [2–4]. Patients
with TN are often anxious about pain episodes, which discourages them from performing
basic daily routines such as talking, eating, brushing teeth, and even participating in social
activities. Overall, patients with TN undergo a significant amount of stress, which may
lead to anxiety and depression, resulting in poor quality of life [5–10].

Traditionally, TN has been a clinical diagnosis, based on patient-reported symp-
toms [11]. However, advancement in clinical and basic science research has led to a deeper
understanding of TN anatomy, pathophysiology, and symptomatology, which has helped
to delineate the different subtypes of the disease. Most recently, the International Headache
Society (IHS) and International Association for the Study of Pain (IASP) established a new
classification system for TN, which includes subtypes of classical TN, secondary TN, and
idiopathic TN [1]. This classification scheme aims to incorporate the current understanding
of the pathophysiology of the disease with decades of clinical experiences to better aid
physicians in effectively diagnosing TN subtypes and thereby guiding treatments based on
the diagnosis.
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The current article aims to review our current understanding of the basic mechanism
of the disease and cross-examine these new data with the disease symptomatology and the
current management strategies. Lastly, the outlook for future research and clinical practice
will also be briefly discussed.

2. Clinical Features
2.1. Epidemiology

The recurring, episodic, and unpredictable clinical course of TN makes it difficult to
determine the exact incidence of the disease. The estimated incidence of TN ranges from
4.3 to 26.8 per 100,000 person-years, with a lifetime prevalence of 0.03% to 0.3% [2–4,12,13].
Although the causes are not fully elucidated, the incidence of TN in women is higher
than men, and the average age of onset is 53, with the most affected ages between 37 and
67 [3,12–15]. Most cases of TN are sporadic without apparent risk factors. However, there
have been a few reports of familial TN [16,17], which have led to investigations of the
possible genetic and molecular basis to the pathophysiology of TN.

2.2. Symptomology

TN can be debilitating because it causes a significant amount of pain in the orofacial
region that is often disabling to the patient. The paroxysmal electric or stabbing pain
attacks are transient and episodic, lasting less than 10 to 15 s [14,18,19]. These attacks are
usually unilateral, although there are rare cases where the bilateral trigeminal nerves are
involved [4,14,20]. The most affected branches of the trigeminal nerves are the maxillary
(V2) and the mandibular (V3) branch, or a combination of the two, with the ophthalmic
branch (V1) rarely affected [4,15,21]. A refractory phase of the pain-free period will follow
after a series of pain attacks, although the length of the refractory period varies amongst
patients [14]. Interestingly, recent studies revealed that 30 to 49% of patients endorsed a
concomitant continuous dull, throbbing, and burning pain, with an onset of 1.5 years after
the initial symptoms [15,19].

One of the major reasons why TN is debilitating is that normal daily activities can
trigger severe pain. The most frequent triggering factors were touching the face, talking,
chewing, or brushing teeth [5,10]. Although TN is known to be precipitated by innocuous
stimuli, a study showed that a few percent of patients reported unusual trigger maneuvers,
including flexing the trunk, contact with hot or cold food/water, speaking loudly, and
turning of the eyes [5]. About a third of patients experienced autonomic symptoms, such
as conjunctival tearing or injection on the ipsilateral side during TN attacks [14,18]. Other
symptoms include edema and local flushing in the distribution of the trigeminal nerves that
are affected [19]. Unsurprisingly, TN can impose significant psychosocial stress on patients
and negatively impact their quality of life. Many patients suffering from TN endorse higher
rates of anxiety and depression [6,9].

2.3. Clinical Classifications

TN-related symptoms have been described in historical documents as early as in the
sixteenth century [22]. It was not until the late 20th century that the disease was further
subclassified based on its attack characteristics into typical TN and atypical TN [23,24].
Typical TN was described as sharp, electrical, paroxysmal, and primarily located in the
V2 and V3 regions of the trigeminal nerve, whereas atypical TN was dull, constant, and
located in all three divisions (Table 1). However, it was challenging to guide treatment
based on this classification scheme. Fortunately, the classification of TN has since evolved
as our understanding of TN also broadened significantly with scientific advances within
the past decades.
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Table 1. Comparison of TN Classifications.

Classifications ICHD-3/IASP Typical vs. Atypical TN by
Rasmussen Burchiel Classifications

Characteristic

The classification was developed
based on consensus between the
International Headache Society

(IHS) and the International
Association for the Study of Pain
(IASP) to create a classification of

TN that is more universally
accepted among clinicians

and academics.

The first classification that
attempted to further

subclassify TN based on its
attack characteristics in 1990

The classification by Burchiel et al.
categorized seven types of TN

based on the pain characteristic or
its associated eliciting event in

order to provide a framework to
better diagnose and treat different

types of TN.

Subclassifications

- Classical TN *—typical
symptomatic TN due to

neurovascular compression of
trigeminal nerve evidenced by

imaging (MRI) or surgery
- Secondary TN—typical

symptomatic TN caused by an
underlying disease, other than the

neurovascular compression,
which includes Multiple Sclerosis,

space-occupying lesions
including cerebellopontine angle,

AV malformation or fistula,
skull-base bone deformity,

connective tissue disease, and
genetic causes of neuropathy

- Idiopathic TN *—symptomatic
TN with neither MRI nor
electrophysiological tests

revealing significant
abnormalities, suggesting TN

without obvious or visible
etiologies that are not fully

understood yet
* Classical and Idiopathic TN are
also sub-categorized as “purely

paroxysmal” or “with
concomitant continuous pain” in
an effort to address the timing of

pain attacks.

- Typical TN: pain described
as sharp, electrical,

paroxysmal, and mostly
located in the V2 and V3
regions of the trigeminal

nerve
- Atypical TN: pain described
as dull, constant, and located

in all 3 divisions

- TN type I—sharp, electrical
shock-like, episodic pain due to

neurovascular compression of TN
- TN type II—aching, throbbing,
burning, constant pain >50% of

the time
- TN due to injury—Trigeminal
neuropathic pain (unintentional)

e.g., facial trauma
- Trigeminal deafferentation pain

(intentional) e.g., post-surgical
- TN secondary to
multiple sclerosis

- Infection-related postherpetic TN
- Atypical somatoform facial pain

Comments

- Most recent classification for TN
(published in 2018)

- Requires imaging and/or
electrophysiological findings for

subclassification diagnosis
- Helps guide further treatment
modalities (medical vs. surgical)

- This classification was too
broad to guide specific

treatment based on symptoms
alone.

- This classification attempts to
guide differential diagnosis by

using objective and reproducible
criteria.

- Requires further studies to verify
clinical utility

The rapid technological development of magnetic resonance imaging (MRI) has helped
identify some of the appreciable anatomical changes in TN, which facilitated the new clas-
sification scheme [25]. High-resolution images revealed that neurovascular compression at
the trigeminal nerve root entry zone correlates strongly with TN symptoms and anatomical
nerve changes such as nerve atrophy, dislocation, indentation, or flattening [26,27]. Similar
anatomical changes are also observed in TN associated with other primary demyelinat-
ing disorders [28–31]. To create a classification of TN that is more universally accepted
among clinicians and academics, both the International Headache Society (IHS) and the
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International Association for the Study of Pain (IASP) incorporated these observations and
published new classifications in 2018 [1,32,33]. They currently describe TN as a disorder
presented with recurrent abrupt-onset unilateral brief electric shock-like pains triggered
by innocuous stimuli that limit the distribution of one or more divisions of the trigeminal
nerve [1]. They further classified TN into three subgroups (e.g., classical, secondary, and
idiopathic TN) based on anatomical and electrophysiological findings (Table 1).

In addition to the IHS and IASP classifications, other groups also independently
published classifications of TN-related facial pain. For example, Burchiel and colleagues
classified facial pain syndromes into seven categories to help develop a framework to
better diagnose and treat different types of TN based on the pain characteristic or the
inciting event. Burchiel’s classification includes TN type I (sharp, electrical shock-like,
episodic pain due to neurovascular compression of TN), TN type II (aching, throbbing,
burning, constant pain >50% of the time), TN due to injury (e.g., trauma, post-surgical
pain), TN secondary to multiple sclerosis, infection-related postherpetic TN, and atypical
somatoform facial pain [34,35]. This unique classification scheme aims to personalize
treatment recommendations based on accurate patient history, although further studies are
required to verify its clinical utility.

3. Pathophysiology of Trigeminal Neuralgia
3.1. Compression of the Trigeminal Nerve Root

Classical TN is defined by focal neurovascular compression of the trigeminal nerve
structure, usually occurring at the junction of the peripheral trigeminal nerve and root
by vasculatures at the prepontine cistern within the Meckel’s cave [1,36]. While direct
contact with arteries or veins on the trigeminal nerve root is the most common compressive
mechanism, other space-occupying lesions, such as arteriovenous malformation, aneurysm,
vestibular schwannoma, meningioma, and other types of cysts and tumors can also lead
to trigeminal nerve compression [1,27,37–41]. While direct compression on the trigeminal
nerve root has long been hypothesized to be the primary trigger for classical TN, the
cascade of reactions that follows and the fundamental mechanism through which they lead
to TN symptoms are still not well understood.

Histological examinations of the trigeminal nerve in classical TN patients have pro-
vided clues on the pathogenesis of the disease. Compression of the trigeminal nerve is
associated with a significant level of myelin erosion and disintegration from inflamma-
tion, particularly at the nerve indentation area [42–46]. This structural abnormality is
related to pathologic demyelination and remyelination of the injured nerve, a common
feature in humans with peripheral nerve compression and animal models of chronic nerve
compression [47–51]. Furthermore, Devor and colleagues reported Schmidt-Lanterman
incisures in trigeminal nerve root biopsies from TN patients, consistent with a pathologic
increase in metabolic demand for myelin sheath growth and maintenance found in chronic
nerve compression [52,53]. Finally, there is evidence of axonal dystrophy and Schwann cell
damage associated with trigeminal nerve compression [45,51,54–56].

Subsequently, these compression-related structural changes trigger several crucial
downstream effects that play an important role in developing TN symptoms. Dysregulation
of voltage-gated sodium (Nav) channels is functionally linked to TN [57]. Both preclin-
ical animal models of classical TN and biopsies from TN patients showed a significant
upregulation of Nav1.3 [58–60]. While Nav1.3 is an embryotic channel type normally
suppressed in adults, its overexpression has been associated with several neuropathic
pain conditions [61,62]. Electrophysiological recording of Nav1.3 demonstrated rapid and
persistent channel activations in response to electrical stimulation [63]. This unique channel
mechanic of Nav1.3 could be a major contributor to the enhanced sensitivity and ectopic
impulse generation in a compressed trigeminal nerve.

In contrast, downregulation of Nav1.7 in the trigeminal nerve root is found in TN
patients and preclinical TN models [58–60]. Nav1.7’s channel mechanic is characterized by
fast inactivation and slow recovery, making it resistant to repetitive action potentials [64].
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Furthermore, Nav1.7 can respond to graded potentials while in its prolonged close-gated
inactivated state, which functionally translates it into a threshold channel [64]. Therefore,
decreased Nav1.7 expression in the context of Nav1.3 upregulation could further increase
neuronal excitability and impair normal nociceptive responses in TN. Upregulation of other
Nav channels, such as Nav1.1, has recently been shown to associate with the hyperactivity
of the trigeminal nerve in a chronic constricted nerve injury model in rodents [65]. However,
the precise mechanism of these Nav channel dysregulations and dysfunctions contributing
to symptomatic TN need to be further characterized. Additionally, hyperexcitability in
trigeminal neurons secondary to the dysregulation of the resting potential mediated by
the voltage-gated potassium channel has been identified in preclinical models of classical
TN [66]. Lastly, Gupta and colleagues demonstrated significant apoptosis and persistent
downregulation of myelin-associated glycoprotein in Schwann cells following chronic nerve
compression injury [49,67]. Given Schwann cells’ ability to inhibit axonal growth via their
expression of myelin-associated glycoprotein, loss of such intrinsic growth regulation could
lead to the axonal sprouting seen in classical TN [45,51,54,55,68]. Indeed, this compression-
induced axonal pathology provides the mechanistic basis for nerve regeneration techniques,
such as type-I collagen implantation, as a potential treatment for TN [69].

The channelopathies and pathologic changes in the architectures of afferent neurons
subsequently result in functional hyperexcitability of the trigeminal nerve observed in
TN. Indeed, recording of trigeminal nerve roots in models of classical TN demonstrated
ectopic generations of action potentials and prolonged after-discharges in demyelinated
neurons [70–73]. These ectopic discharges are thought to be further amplified and spread
through ephaptic cross-talking between demyelinated fibers, even between functionally
distinctive neurons (e.g., A-beta afferents and nociceptive C-fibers) [74–77]. Taking these
data together, Devor and colleagues proposed the “ignition hypothesis” to provide a
pathophysiological explanation for the clinical characteristics of classical TN [78]. Briefly,
demyelination and hyperexcitability of trigeminal neurons following neurovascular com-
pression decrease the triggering threshold for activation of sensory afferents. During a
paroxysmal attack in TN, a normally innocuous stimulus on the triggering area would
lead to amplified trigeminal afferent inputs by the means of prolonged discharges and
ephaptic cross-talks between the demyelinated axons. Such an attack could slowly subside
if the offending stimulus is removed or the triggering threshold is raised, such as through
pharmacological blockade of dysfunctional channels or functional recovery after vascular
decompression surgery [78].

3.2. Primary Demyelinating Diseases

Although neurovascular compression accounts for most TN cases, primary demyeli-
nation disorders, such as multiple sclerosis, can also lead to TN symptoms. It has been
well documented that patients with MS are at a higher risk of developing neuropathic
pain and are estimated to be twenty times more likely to develop TN than the general
population [79,80]. Pathological examinations and radiological evidence from MS patients
with TN have demonstrated significant inflammatory demyelination at the trigeminal
nerve root [28–30,81,82]. Concurrent neurovascular compression on the trigeminal nerve in
MS patients could accelerate demyelination through both mechanical and inflammatory
mechanisms, which lead to TN symptoms [83,84]. These observations lead to the theory
of demyelinating plaque formation at the trigeminal nerve root being the main cause of
TN symptoms in MS patients through a similar mechanism as in compression-related
TN [29,83].

However, it has also been speculated that central demyelinating lesions can also
independently lead to TN. Intrapontine demyelination along the trigeminal afferent and
the trigeminal nucleus has been associated with TN symptoms in patients with MS or a
brainstem infarction [31,85–90]. Although neurovascular compression is occasionally found
concurrently in these patients [83,84], demyelination of the primary trigeminal afferent
intrapontine trigeminal nucleus alone is sufficient to lead to TN [91]. Furthermore, at
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least a subset of these patients with comorbid TN and MS had lesions in second-order
sensory neurons in the brainstem ipsilateral to the affected side, which are thought to cause
trigeminal pain and other facial sensory disturbances [29,92].

3.3. Sensitization and Dysfunction of Central Pain-Related Circuits

Central sensitization is a process through which the nociceptive system becomes
hyperexcitable or a state of hyperexcitability, and it has been implicated in various chronic
pain conditions [93,94]. With the advancement of electrophysiological and advanced
functional imaging techniques, researchers are now able to closely examine the sensitization
of central nociceptive and affective processing in patients with classical or idiopathic TN.

Amplified nociceptive signal transmission is found in TN patients. In a series of elec-
trophysiological recordings in TN patients with concomitant chronic facial pain, Obermann
and colleagues demonstrated that pain-related evoked potentials are significantly aug-
mented in all trigeminal divisions on both symptomatic and non-symptomatic sides [95].
This finding suggests that sensitization of the trigeminal pathway as well as the supraspinal
pain-modulating circuits may be an important part of TN pathophysiology.

Functional imaging data in TN patients has also helped further delineate the involve-
ment of pain-related supraspinal structures. Unsurprisingly, painful attacks in TN patients
lead to increased activity in the trigeminal nuclei, thalamus, and somatosensory cortices—
areas that are classically associated with pain-related sensory processing [96]. Moreover,
multiple vital structures related to pain modulation, emotion, and memory are also ac-
tivated during the attacks. These structures include the anterior cingulate cortex, insula
cortex, prefrontal cortex, hippocampus, limbic system, and the brainstem pain-modulation
system [96,97]. Sensitization in some of these structures has been implicated in other
chronic pain conditions [93,94,98,99]. Furthermore, structural and functional neuroimaging
data revealed significant alterations in functional connectivity of the frontal-limbic circuit
and a gray matter reduction in pain-modulating, sensory-motor, and affective circuits in TN
patients compared with healthy subjects [97,100]. Interestingly, these pathological changes
are often reversed after successful treatments, suggesting changes in these circuits not
only link to the characteristic pain symptoms but also the psychocognitive aspect of the
disease [96,97].

4. Treatment
4.1. Medical Therapies
4.1.1. Maintenance Therapy

Anticonvulsant medications form the mainstay of medical therapies for TN. Of these,
the best evidence exists for carbamazepine, which has been found to be effective in multi-
ple randomized controlled trials [101–103]. Oxcarbazepine, a structural analog of carba-
mazepine, is also considered an effective first-line medical treatment [104]. Targeting the
channelopathy seen in TN, carbamazepine and oxcarbazepine are both Nav blockers aiming
to stabilize hyperexcited neuronal membranes and reduce ectopic nociceptive signaling.
Despite their effectiveness, the use of both medications is often limited by their side effects,
which include drowsiness, dizziness, rash, ataxia, elevated liver enzymes, hematologic
dyscrasias, and hyponatremia. A recent study demonstrated that oxcarbazepine might be
better tolerated than carbamazepine, although any side effects may be seen with either
medication [105].

If the first-line anticonvulsants are ineffective or poorly tolerated, other anticonvulsive
agents, including lamotrigine, gabapentin, and pregabalin, can also be considered as second
agents or as monotherapy [104]. Lamotrigine, another Nav blocker, has demonstrated an
analgesic effect in a small group of patients with refractory TN when added as a second
agent [106]. The evidence for using gabapentin, a voltage-gated calcium channel blocker,
in TN was summarized in a meta-analysis comparing it with carbamazepine [107]. With
sixteen Chinese studies included, this meta-analysis provides low- to moderate-quality
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evidence that gabapentin may be as effective as carbamazepine while generally being better
tolerated with fewer side effects [107]

Trigger point injections have also been explored as a maintenance strategy. For exam-
ple, when used in conjunction with gabapentin, injection of ropivacaine, a local anesthetic,
into facial TN pain trigger points has been shown to provide lasting pain relief for at least
28 days [108]. Multiple randomized controlled trials have demonstrated that injection of
botulinum toxin A, a neurotoxin derived from the bacteria Clostridium botulinum, is an
effective maintenance treatment for TN [109–112]. By injecting the toxin directly into the
trigger points, it is thought to produce a lasting analgesic effect via lesioning the hyperac-
tive fibers in the affected trigeminal branches [112,113]. Single treatments have been shown
to significantly improve anxiety, depression, sleep, pain, and the number of attacks per day
for up to 12 weeks [111,114]. However, due to its neurotoxic and paralytic effect, patients
often report facial asymmetry with dynamic movement and facial edema after botulinum
toxin injections [111].

Lastly, manual acupuncture and electroacupuncture, based on traditional Chinese
medicine concepts, could be effective adjunct therapies for TN [115]. It was hypothesized
that stimulation of peripheral acupuncture points leads to central nociceptive modulation
and upregulation of the endogenous opioid system [115,116]. However, it is important
to note that high-quality clinical evidence supporting these techniques is still lacking. A
recent meta-analysis of 33 randomized controlled trials in China found mixed results for
the use of acupuncture in TN [117]. Most of the trials included in the meta-analysis found
that acupuncture techniques effectively reduce TN pain attack intensity and recurrence rate
and may even be synergistic when combined with carbamazepine, an anticonvulsant [117].
However, the authors caution against the widespread use of acupuncture for TN due to
the subpar quality of the currently available trials [117]. Indeed, the clinical application of
acupuncture outside of China remains controversial. Most clinical trials are limited by their
small sample size, non-blinding design, short follow-up period, and non-standardized
measurement of outcomes. Furthermore, critics of acupuncture argue that trials conducted
in China might have an inherent cultural bias favoring the technique and could be dif-
ficult to control [115]. Thus, establishing reliable basic science models for acupuncture
and conducting large-scale multi-region trials with standardized outcome measurements
and long-term follow-up could help delineate the mechanism and better characterize the
therapeutic effects of acupuncture as a treatment for TN.

4.1.2. Abortive Therapies

In addition to maintenance therapies, other drugs have been studied for use as abortive
treatment during acute pain attacks. An intranasal spray of 8% lidocaine has also shown
statistically significant pain reduction for four hours in patients with second-division
TN [118]. Intravenous phenytoin, yet another Nav blocker, demonstrated an acute response
rate of 89% in a retrospective cohort, including classic, idiopathic, and secondary TN [119].
Fosphenytoin, a prodrug of phenytoin, has similarly shown positive results in aborting TN
exacerbations in small case reports [120,121].

4.2. Procedural Interventions
4.2.1. Neurological Surgeries

Microvascular decompression (MVD) is considered the first-line surgical procedure for
patients with clear neurovascular compression etiology determined by imaging [122,123].
It has a well-established record of a favorable outcome, with an approximately 70% pain-
free rate after the first two years post-surgery [123–125]. Surgical technique is also being
improved over time. In a recent prospective cohort study, Mizobuchi and colleagues
demonstrated complete pain relief in 80% of patients at three years follow-up, with their
higher success rate attributed to transposing the causative vessel away from the trigeminal
nerve with a prosthesis, rather than interposing a prosthesis between the vessel and
nerve [126]. The authors in the same study also observed that an arterial compressive
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pattern better predicted a successful response when compared to patterns of compression
due to venous structures or arachnoiditis [126].

For those without neurovascular compressions, particularly when MVD is initially
intended but compression is not observed intraoperatively, open interfascicular neurolysis
can be considered [127]. This technique aims to induce micro-trauma in the hyperactive
trigeminal nerve by dividing the nerve longitudinally into multiple fascicles, which is
thought to interrupt abnormal nociceptive transmissions and induce remyelination in the
trigeminal system [127–129]. Although multiple retrospective studies have shown long-
term symptom relief in 70–90% of the patients by this technique, the broad application of
open neurolysis is limited by its invasive nature, along with the retrospective design and
the small sample size of the supporting clinical studies [127,129–131].

Additional to the open surgical approaches, minimally invasive stereotactic radio-
surgery (SRS), such as Gamma Knife and Cyberknife, which involves the application of
ionizing radiation to the trigeminal nerve, is a viable alternative therapeutic option for TN.
The exact mechanism of pain relief in SRS is unknown. Still, it is thought that targeted
ionizing radiation damages sodium channels on the trigeminal fiber, which interrupts
afferent sensory transmission [132]. Although SRS is less effective in producing lasting pain
relief than MVD, it has been shown to be associated with fewer complications [133–135]. It
also appears that SRS can be safely repeated for recurrent TN pain [136].

4.2.2. Percutaneous Techniques

When a patient cannot tolerate neurological surgery or presents without underly-
ing vascular compression, percutaneous interventions can be offered. These techniques
can be subclassified into radiofrequency thermal ablation, balloon compression, and
chemical rhizotomy.

Percutaneous thermal rhizotomy with radiofrequency ablation (RFA) was first intro-
duced by Sweet and colleagues. They hypothesized that carefully graded increments of
heat could selectively damage smaller myelinated and unmyelinated fibers that are respon-
sible for pain transmission, since the non-nociceptive A-beta fibers are relatively protected
from heat due to their heavier myelin sheaths [137]. They reported a 91% rate of immediate
pain relief, with a recurrence rate of 22% in patients followed over 2–6 years [137]. This
finding was later confirmed by a retrospective cohort analysis of 1000 consecutive patients
who underwent RFA, which showed a 94.8% immediate response rate, allowing for dis-
continuation of medical treatment, with an 18% recurrence rate over an average follow-up
of 9 years [138]. However, 20% of patients in that study developed corneal reflex impair-
ment, with six patients having keratitis that required surgery due to either tarsorrhaphy
or enucleation [138]. RFA is also associated with an increased risk of pain recurrence and
postoperative facial anesthesia compared to MVD [139]. Interestingly, it has been suggested
that RFA is equally effective for patients with and without neurovascular compression,
making it a viable option for those patients who are not candidates for MVD [140].

Percutaneous balloon compression (PBC) is another technique that aims to treat TN
by lesioning afferent fibers at the level of the Gasserian ganglion. A recent retrospective
study suggested a first-time success rate of 89% after PBC, with 76% of patients able to
titrate off pain medicines [141]. Data from the past two decades support PBC as an effective
therapy by showing it to be equally effective as other techniques [104,123,124,142–144].
Unfortunately, PBC is associated with an inconsistent recurrence rate, ranging from 19 to
59%, although repeat procedures do appear to be nearly equally efficacious [141,145]

Lastly, percutaneous glycerol rhizotomy relies on the chemical ablation of pain-
transducing nerve fibers. It carries a similar success rate to other percutaneous techniques
but can have a recurrence rate of up to 50% by three years post-procedure [146]. Similarly,
repeat procedures have also been safe and effective [147].
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5. Conclusions and Future Directions

In the past three decades, significant progress has been made to understand the
pathophysiology of TN. The demyelination-induced trigeminal hyperexcitability theory
has offered a critical mechanistic basis for the diagnosis and the implementation of current
medical therapies (e.g., anticonvulsants, antidepressants), surgical procedures (e.g., MVD,
Cyberknife, and Gamma Knife), and percutaneous techniques (e.g., RFA, PBC, glycerol
rhizotomy) for TN. However, several crucial observations related to disease classification,
diagnosis, and treatment efficacy have left some aspects in the current explanation of TN
pathophysiology rather unsatisfying.

It has been increasingly recognized that TN’s etiology is likely multifactorial in many
patients. Only a small percentage of TN patients present with demonstrable compression
or morphological changes in the trigeminal nerve, and neurovascular compression does
not always translate to disease [27,148,149]. Furthermore, most patients present with a
normal physical and neurological exam, and there is a lack of reliable biomarkers for the
disease [14,55,150,151]. Thus, such complex disease presentation makes accurate diagnosis
of TN difficult for some patients and may even challenge the utility of the current clas-
sification scheme [152]. Lastly, TN often recurs with increasing resistance to therapies
over time [153]. Conventionally, procedural interventions will be offered when medical
therapies fail, but there is little data to guide decisions on the timing of this decision. Even
though, based on a few studies, surgical and minimally invasive interventions appear to
have a promising track record in providing relief, they are also known to accompany a
varying degree of complications and recurrence [151].

Therefore, the lack of complete understanding of TN’s complex etiology, pathogenesis,
and pathophysiology poses a challenge for clinicians and basic scientists in discovering tar-
geted therapies for patients. Future studies focusing on investigating the basic mechanism
for TN, such as genetics, molecular biology, electrophysiology, and functional imaging
could further improve the precision of diagnosis and therapies for patients suffering from
this debilitating disease.
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