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Hypoxia is not only a prominent contributor to the heterogeneity of solid tumors but 
also a crucial stressor in the microenvironment to drive adaptations for tumors to evade 
immunosurveillance. Herein, we discuss the potential role of hypoxia within the micro
environment contributing to immune resistance and immune suppression of tumor cells. 
We outline recent discoveries of hypoxiadriven adaptive mechanisms that diminish 
immune cell response via skewing the expression of important immune checkpoint mol
ecules (e.g., cluster of differentiation 47, programmed death ligand 1, and human leu
kocyte antigen G), altered metabolism and metabolites, and pH regulation. Importantly, 
inhibition of hypoxic stressrelevant pathways can collectively enhance Tcellmediated 
tumor cell killing. Furthermore, we discuss how manipulation of hypoxia stress may 
pose a promising new strategy for a combinational therapeutic intervention to enhance 
immunotherapy of solid tumors.
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iNTRODUCTiON

To survive and grow, tumors insulate themselves with various layers of immunosuppressive stroma 
to locally disable and/or evade the immune system. It is known that the tumor microenvironment 
contributes to the heterogeneity of the tumor and supports tumor growth and resistance to systemic 
therapies (1). In solid tumors, a hypoxic area is a common structural characteristic and some tumor 
cells exist in a hypoxic environment, whereas some exist in a vascularized area with sufficient oxygen 
supply (2). Numerous studies have shown that hypoxia is strongly associated with lower overall 
survival and disease-free survival of various tumor types (3–5). Notably, hypoxic tumor cells are 
considered to be more aggressive and more resistant to conventional systemic therapies and radio-
therapy than non-hypoxic tumors (6, 7). Besides increasing the expression of various genes involved 
in angiogenesis and drug-resistance, hypoxia also promotes the selection of apoptosis-resistant 
clones and induces metastasis (8). Although the roles of hypoxic stress in the crosstalk among 
immune cells, stroma components, and tumor cells are not fully elucidated, it is widely appreciated 
that the hypoxic zone in solid tumors induces immune tolerance by impeding the homing of immune 
effector cells into tumors. Several regulatory mechanisms related to redundant levels of immune 
suppression and functional heterogeneity driven by hypoxia in the tumor microenvironment have 
been identified (9, 10).
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FigURe 1 | Regulation of HIF1α levels and downstream genes under normoxic and hypoxic conditions. Under normoxic conditions, HIF1α is hydroxylated and 
further undergoes degradation through an ubiquitinationdependent process mediated by VHL. Under hypoxic conditions, HIF1α is stabilized and forms a complex 
with HIF1β, which induces transcriptions of various genes involved in angiogenesis, epithelial–mesenchymal transition (EMT), metabolic reprogramming, and 
immune regulation.
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HYPOXiC RegULATiON OF THe 
eXPReSSiONS OF iMMUNOSUPPReSSive 
MOLeCULeS iN THe TUMOR

The key mediators of hypoxic signaling are hypoxia-inducible 
factors (HIFs). HIFs are a family of transcription factors consist-
ing of three alpha subunits, HIF-1α, HIF-2α, and HIF-3α that can 
heterodimerize with HIF-1β (11). HIF transcriptional activity is 
known to be oxygen-dependent. Under normoxic conditions, 
conserved proline residues on HIF-1α are hydroxylated by 
proly-4-hydroxylase (PHD), and the hydroxylated HIF-1α can 
be downregulated by ubiquitination and proteasomal degrada-
tion mediated by von Hippel−Lindau protein (11, 12) (Figure 1). 
Under hypoxic stress, induction and stabilization of HIF-1α and/
or HIF-2α lead to upregulation of transcription of numerous 
hypoxia-responsive genes related to metabolic and immune path-
ways, and resulting in modulation of both metabolism and immu-
nity of tumor and stromal cells (12, 13) (Figure 1). Particularly, 
hypoxia has been proven to contribute to increased angiogenesis 
through upregulation of interleukin 8 (IL-8), osteopontin, and 
vascular endothelial growth factor (13–17). Notably, hypoxic 
tumor microenvironment was correlated to a high expression of 
genes that promote epithelial–mesenchymal transition (EMT), 
including inhibitor of differentiation 2, snail 1 and 2 (SNAI1 
and SNAI2), transcription factor 3, transforming growth factor 

alpha, twist transcription factor (TWIST), vimentin (VIM), and 
zinc  finger E-box-binding homeobox 1 and 2 (ZEB1 and ZEB2) 
(18–22). Moreover, hypoxia has been shown to downregulate 
E-cadherin expression in tumors affecting cell–cell adhesion  
(22, 23). Recent evidence shows that the hypoxia-HIF-EMT 
niche is considered to support maintenance of cancer stem cells 
(24, 25). Hypoxic regions in tumors can lead to long-lasting HIF 
signaling, which is known to function as an oncogenic stimulus 
in some settings driving cancer development, invasion, immune 
suppression, and metastasis (25–27) (Figure 1).

In addition to tumor cells and stromal cells, the hypoxic regions 
in solid tumors have been found to be infiltrated by high levels 
of immunosuppressive cells, such as myeloid-derived suppressor 
cells (MDSCs), tumor-associated macrophages (TAMs), and 
T-regulatory (Treg) cells (10, 28). The mechanisms of recruitment 
and function of these immunosuppressive cells within the hypoxic 
tumor microenvironment have also been studied (29). Hypoxia 
has been shown to induce the production of stromal cell-derived 
factor 1α (SDF1α) by hypoxic tumor cells, which binds to C-X-C 
chemokine receptor type, IL-8, and IL-6, and directly regulates the 
function and differentiation of MDSCs within the tumor micro-
environment (30, 31). Moreover, MDSCs derived from hypoxic 
tumor regions show stronger immunosuppressive function than 
splenic MDSCs. The phenomenon is mostly due to the HIF-1α-
driven increased arginase activity and nitric oxide production of 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


3

Li et al. Hypoxia-Driven Immunosuppressive Metabolites in the Tumor Microenvironment

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1591

tumor MDSCs (32). Several studies have confirmed that hypoxia 
is strongly associated with the selective accumulation of Tregs 
in tumors, which not only suppress antitumor response but also 
promote neo-angiogenesis (33–35). The most direct evidence for 
hypoxia providing a tolerogenic tumor microenvironment for 
Tregs is the fact that hypoxia-driven HIF-1α strongly increases 
the expression of forkhead box P3 (Foxp3), which is a distinct 
marker and a master regulator in the development and function 
of Tregs (36–40). Tumor cells under hypoxia can also produce 
high levels of C-C motif chemokine ligand 28, which is an impor-
tant chemokine to selectively attract CXCR10-positive Tregs in 
tumors resulting in antigen tolerance and angiogenesis (34).

Beside regulation of immunosuppressive MDSCs and Tregs 
within the tumor, recent studies showed that hypoxia promotes 
immune evasion through HIF-1α-dependent upregulation of 
immune checkpoint proteins in tumors (26). Of interest, three 
important checkpoint molecules, such as cluster of differentiation 
47 (CD47), programmed death ligand 1 (PD-L1), and human 
 leukocyte antigen G (HLA-G), have been shown by multiple 
reports to be modulated by hypoxic conditions and to contribute 
to an immunosuppressive microenvironment in tumors.

Hypoxia-Driven CD47 expression  
in Tumors
Cluster of differentiation 47, also known as integrin-associated 
protein, has been identified as a membrane protein interacting 
with β3 integrin, thrombospondin-1, and signal regulatory 
protein-alpha (SIRPα) to regulate various important cellular 
functions, including cell migration, cytokine production, T cell 
activation, and cancer metastasis (41–45). Overexpression of 
CD47 has been found in a number of tumors, such as acute 
myeloid leukemia, non-small cell lung cancer, bladder cancer, 
non-Hodgkin’s lymphoma, and breast cancer (46–53). Based on 
the analysis of datasets derived from thousands of primary tumors 
of breast cancer patients, CD47 expression was not only signifi-
cantly correlated with patient survival but also correlated with the 
expression of HIF-1α targeting genes (53). A recent study from 
Semenza’s group showed that HIF-1α activated transcription of 
CD47 in mesenchymal triple-negative primary breast cancer cells 
(SUM159) and promoted the breast cancer stem cell phenotype, 
which further protected cancer cells from phagocytosis by bone 
marrow-derived macrophages (53). Thus, hypoxic cancer cells 
evade innate immunity through HIF-1α-dependent expression 
of CD47. CD47 is emerging as a negative checkpoint for innate 
immunity and subsequent adaptive immunity in tumors (54). 
One important mechanism for CD47-mediated immune evasion 
is that binding of CD47 to SIRPα, which is abundantly expressed 
on myeloid-linage hematopoietic cells such as TAMs and MDSCs, 
causes phosphorylation of the SIRPα ultimately resulting in deliv-
ering an anti-phagocytic signal (46, 48, 54, 55). The CD47–SIRPα 
axis not only directly functions as a negative checkpoint of innate 
immunity but also affects adaptive immunity. In a series of 
 studies, anti-CD47 blockade significantly increased the presence 
of IFN-γ-expressing antigen-specific CD8+ T cells and promoted 
T  cell-mediated destruction of tumor cells (56, 57). Thus, the 
CD47–SIRPα axis has become an attractive target for developing 

novel cancer immunotherapies, and anti-CD47 blockades are 
currently investigated by several clinical trials in various solid 
tumors (54) (Table 1).

Hypoxia-Driven PD-L1 expression  
in Tumors
One crucial mechanism by which cancer cells block antitumor 
immunity is through expression of PD-L1, which binds to the 
cell surface checkpoint receptor PD-1 on effector T cells to inhibit 
their activation (58). Accumulated studies confirm that hypoxia 
can strongly induce HIF-1α-dependent PD-L1 expression on 
tumor cells, macrophages, and dendritic cells (59–61). In human 
DU145 metastatic prostate and MDA-MB-231 metastatic breast 
carcinoma cells, hypoxia-induced expression of PD-L1 has been 
confirmed to be HIF-1α-dependent (59). The elevated expres-
sion of PD-L1 in cancer cells under hypoxic conditions leads to 
increased apoptosis of cultured cytotoxic T lymphocytes (CTLs) 
and Jurkat leukemia T cells (59). These observations indicate a 
mechanism by which hypoxic tumors upregulate PD-L1 expres-
sion on tumor cells to promote immune escape from CTLs. A 
study of B16-F10 melanoma-bearing mice models showed that 
hypoxia also selectively caused a rapid up-regulation of PD-L1 
on splenic MDSCs (60). The up-regulation of PD-L1 in MDSCs 
under hypoxia was confirmed to be dependent on HIF-1α but 
not HIF-2α (60). Blockade of PD-L1 under hypoxia enhanced 
MDSC-mediated T  cell activation and was accompanied by 
decreased production of IL-6 and IL-10 by MDSCs (60). The 
potential mechanism of hypoxic stress upregulating PD-L1 in 
tumors may rely on simultaneous binding of HIF-1α and pyruvate 
kinase M2 (PKM2) to hypoxia response elements (HRE) in the 
PD-L1 promoter (61). As shown in the study of O’Neill’s group, 
the inhibition of PKM2 by a small reagent or specific siRNA could 
lead to downregulation of PD-L1 expression on macrophages, 
MDSCs, and tumor cells (61). Thus, hypoxia can promote an 
immunosuppressive microenvironment by recruiting MDSCs to 
hypoxic regions and increase checkpoint PD-L1 expression on 
MDSCs and tumor cells. According to the study of a large number 
of malignant primary tumor tissues from pheochromocytomas 
and paragangliomas, PD-L2 expression but not PD-L1 expression 
is significantly associated with stronger hypoxia-driven HIF-1α 
and carbonic anhydrase 9 (CAIX) (62). These studies suggest that 
simultaneous blockade of PD-L1/PD-L2 along with inhibition 
of HIF-1α may represent a promising approach to enhance the 
activity of cytotoxic T cells.

Hypoxia-Driven HLA-g expression  
in Tumors
The non-classic major histocompatibility complex (MHC) class 
I molecule is known as an immune checkpoint molecule with 
specific relevance in cancer immunotherapy (63, 64). HLA-G 
is a crucial MHC-I molecule and plays an essential role in 
maintaining immune tolerance and inhibiting the functions 
of immunocompetent cells to support tumor cells escape from 
immunosurveillance (64). The immunosuppressive function of 
HLA-G is mediated by the direct binding of HLA-G to relevant 
inhibitory receptors. Three HLA-G receptors have been identified: 
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TAbLe 1 | List of drugs targeting A2A adenosine receptor (A2AR), cluster of differentiation 47 (CD47), and CD73 currently being investigated in clinical trials.

Target Drug(s) Details of drug ClinicalTrials.
gov identifier

Title First posted date Disease(s)

A2AR NIR178  
(in combination with 
PDR001)

NIR178: small molecule adenosine receptor 
antagonist

NCT03207867 A phase 2 study of NIR178 in combination  
with PDR001 in patients with solid tumors  
and nonHodgkin lymphoma

July 5, 2017 Solid tumors, nonHodgkin lymphoma

PDR001: antiPD1 monoclonal antibody

PBF509  
(in combination with 
PDR001)

PBF509: orally bioavailable  
A2AR antagonist

NCT02403193 Trial of PBF509 and PDR001 in patients  
with advanced nonsmall cell lung cancer  
(NSCLC) (AdenONCO)

March 31, 2015 Advanced NSCLC

CPI444  
(in combination with 
atezolizumab)

CPI444: orally bioavailable A2AR antagonist NCT02655822 Phase 1/1b study to evaluate the safety and  
tolerability of CPI444 alone and in combination  
with atezolizumab in advanced cancers

January, 14 2016 NSCLC, malignant melanoma, renal cell 
cancer triple negative breast cancer, 
colorectal cancer, bladder cancer, 
metastatic castrationresistant prostate 
cancer

Atezolizumab: fully humanized,  
engineered monoclonal antibody  
of IgG1 isotype against programmed  
death ligand 1 (PDL1)

CD47 Hu5F9G4 Hu5F9G4: monoclonal antibody  
against CD47

NCT02678338 CAMELLIA: antiCD47 antibody therapy  
in hematological malignancies

February 9, 2016 Acute myeloid leukemia, myelodysplastic 
syndrome

Hu5F9G4  
(in combination with 
azacitidine)

Hu5F9G4  
Azacitidine: chemical analog of cytidine

NCT03248479 Hu5F9G4 monotherapy or Hu5F9G4 in  
combination with azacitidine in patients with  
hematological malignancies

August 14, 2017 Acute myeloid leukemia, myelodysplastic 
syndromes

Hu5F9G4  
(in combination with 
cetuximab)

Hu5F9G4  
Cetuximab: epidermal growth factor receptor 
(EGFR) inhibitor

NCT02953782 Trial of Hu5F9G4 in combination with cetuximab  
in patients with solid tumors and advanced  
colorectal cancer

November 3, 2016 Colorectal neoplasms, Solid tumors

Hu5F9G4 Hu5F9G4 NCT02216409 Phase 1 trial of Hu5F9G4, a CD47targeting  
antibody

August 15, 2014 Solid tumor

Hu5F9G4  
(in combination with 
rituximab)

Hu5F9G4  
Rituximab: monoclonal antibody against 
CD20

NCT02953509 Trial of Hu5F9G4 in combination with  
rituximab in relapsed/refractory Bcell  
nonHodgkin’s lymphoma

November 2, 2016 Lymphoma, nonHodgkin lymphoma, 
large Bcell, diffuse indolent lymphoma

CC90002 CC90002: a monoclonal antibody  
against CD47

NCT02641002 A study of CC90002 in subjects with  
acute myeloid leukemia (AML) and highrisk  
myelodysplastic syndrome (MDS)

December 29, 2015 Leukemia, myeloid, acute myelodysplastic 
syndromes

CC90002 CC90002 and rituximab NCT02367196 A phase 1, Dose Finding Study of CC90002  
in subjects with advanced solid and  
hematologic cancers

February 20, 2015 Hematologic neoplasms

TTI621  
(in combination with 
rituximab or nivolumab)

TTI621: soluble recombinant  
antibodylike fusion protein,  
SIRPaFc
Rituximab
Nivolumab: human IgG4  
antiPD1 monoclonal antibody

NCT02663518 A trial of TTI621 for patients with hematologic  
malignancies and selected solid tumors

January 26, 2016 Hematologic malignancies solid tumor

(Continued)
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immunoglobulin-like transcript 2 (ILT2, CD85j) expressed by 
B cells, T cells, natural killer cells (NK cells), and myelomonocytic 
cells, ILT4 (CD85d) expressed by dendritic cells, monocytes, and 
macrophages, and KIR2DL4 (CD158d) expressed by NK  cells 
(65, 66). Through these inhibitory receptors, HLA-G can interact 
with B cells, T cells, NK cells, and antigen-presenting cells, and 
exert its immunosuppressive functions at different stages of the 
immune response (65, 66). HLA-G expression is very restricted 
in adult normal tissues, but is frequently induced in numerous 
malignant tumors, such as glioblastoma, melanoma, and cervi-
cal tumors, contributing to their immune escape (67–70). The 
expression of HLA-G on cancer cells is also found to associate 
with a higher tumor grade and poor prognosis, such as in primary 
and metastatic ovarian tumors and primary colorectal tumors 
(71–73). Several HREs have been identified in HLA-G promoter 
and non-promoter regions (74). Recent studies showed that the 
expressions of HLA-G mRNA and protein were upregulated 
in HLA-G-negative cancer cells via HIF-1α under hypoxic 
conditions (74–76). However, in cancer cells expressing HLA-G 
constitutively, hypoxia decreases HLA-G gene expression (73). It 
is still unclear why the expression patterns of HLA-G in HLA-G-
negative and HLA-G-positive cancer cells are so different upon 
hypoxic stress. Since HLA-G is considered an immune check-
point molecule, augmentation of HLA-G expression in hypoxic 
tumor cells may contribute to immunosuppression in tumors. Up 
till now, several reports showed that hypoxia upregulates HLA-G 
expression in human cancer cells, but very few studies have been 
published on the effects of hypoxia on other MHC-I molecules 
in tumors. A recent study showed that combining hypoxic stress 
and glucose deprivation increased surface expression of HLA-E 
in human and Qa-1 in mouse tumor cells (77). Further studies 
are needed to address how hypoxic microenvironment modulates 
MHC-I and MHC-II molecules in tumors.

HYPOXiA-DRiveN iMMUNOSUPPReSSive 
MeTAbOLiTeS

In order to support rapid growth of tumor cells, hypoxic signaling 
permits tumor cells to sense and adapt to low O2 stress and carbon 
source availability by re-programming their metabolism and gene 
expression via HIF’s transcriptional regulation. Under hypoxia, 
tumor cells switch to glycolysis to continue ATP production and 
prevent O2-dependent oxidative phosphorylation (78). Also, meta-
bolic intermediates from glycolysis can be utilized for the biosyn-
thesis of other macromolecules. HIF-1α plays a critical role in the 
glycolytic switch to increase glucose utilization in hypoxic tumor 
cells by upregulating the expression of glucose transporters and 
glycolytic enzymes, such as glucose transporters 1 and 3 (GLUT1 
and GLUT3), pyruvate dehydrogenase, lactate dehydrogenase A 
(LDHA), phosphoglycerate kinase 1, and hexokinases 1 (HK1) (78). 
The increase of these gene’s expressions alters glucose metabolism 
and prevents glucose entry into the tricarboxylic acid (TCA) cycle 
and reducing acetyl coenzyme A (CoA) production from pyruvate 
(78). Reprogramming glucose flux is considered as a major factor 
to shape the tumor microenvironment via increase of HIF-1α levels 
in rapidly growing tumor cells within hypoxic regions.
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FigURe 2 | Schematic representation of two major pathways of hypoxiadriven extracellular acidity by tumor cells. (1) Under hypoxic conditions, glucose goes through 
glycolysis and produces pyruvate, which is mainly converted to lactic acid by lactate dehydrogenase A (LDHA). Lactic acid is exported by MCT4 resulting in 
acidification of the tumor microenvironment. (2) Under hypoxic conditions, glutamine goes through tricarboxylic acid (TCA) cycle and releases CO2, which can be 
converted into HCO3

− and H+. HCO3
− is transported back to tumor cells by bicarbonate transporters (BT), and accumulation of extracellular H+ leads to tumor acidosis.
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Hypoxia-Driven Acid–base Regulation and 
Production of immuno-Modulatory Lactate
A notable feature of solid tumors is the presence of an acidic 
 extracellular tumor microenvironment mainly due to the produc-
tion of large amounts of acidic metabolites by glycolytic tumor 
cells (79). As a consequence of glycolysis, hypoxic tumor cells 
upregulate LDHA and convert pyruvate into lactic acid, which 
results in increased tumor acidosis (79–81). At the same time, 
tumor cells also adapt to intracellular acidification by enhancing 
export of lactate/H+. MCT1 and MCT4 are major players from 
the monocarboxylate transporter (MCT) family to preferentially 
transport lactate/H+ across the plasma membrane (82, 83). 
Noteworthy, MCTs are among those genes that are upregulated 
under hypoxic condition (82–84). The export of lactate/H+ by 
MCT has been found to not only contribute to the acidosis of 
tumor microenvironment but also to promote tumor cell metas-
tasis, angiogenesis, and suppressing immunosurveillance (82, 83).

In order to provide sufficient energy for rapidly growing 
tumors, cancer cells use substitute carbon sources, like glutamine, 
to promote the TCA cycle and maintain oxidative phosphoryla-
tion under hypoxic microenvironment (85, 86). Besides lactate, 
increased levels of CO2 generated by oxidative metabolism are 
another major source for tumor acidity. Indeed, CO2 produced by 
the TCA cycle and the pentose phosphate pathway under hypoxia 
can be hydrated by carbonic anhydrases (CA) and converted into 
bicarbonate (HCO3−) and protons (H+) (87, 88). To balance intra-
cellular acidosis in hypoxic tumor cells, the HCO3– are imported 
back into cells through bicarbonate transporters and anion 
exchange, but the H+ remains extracellularly and contributes to an 
increasingly acidic tumor microenvironment (88, 89). Carbonic 

anhydrase IX (CAIX) plays a key role in pH regulation in hypoxic 
cancer cells as its expression is induced by hypoxia via HIF-1α 
(89, 90). Together, the key pH regulatory components, such as 
MCT4 and CAIX, are upregulated in hypoxic tumor cells leading 
to the acidification of the tumor microenvironment (Figure 2).

Due to the limitation of technology to directly and accurately 
measure the pH within the hypoxic region of tumors, our current 
knowledge on the effects of cancer acidity on T cells is based on 
studies applying in vitro cultures to stimulate immune cells at low 
pH. Under low pH conditions (≤6.6), the secretion of IL-2, tumor 
necrosis factors, and IFN-γ was impaired in T lymphocytes upon 
stimulation with anti-CD3 antibody and phytohemagglutinin 
(PHA) (79, 91, 92). However, IFN-γ R2 chain (IFNR2) and 
CTLA-4 expressions were upregulated under the same condition 
which rendered tumor-infiltrating T  cells sensitive to negative 
regulatory signaling. Moreover, the cytotoxicity of antigen-
specific T cells appeared to be highly sensitive to low pH. In the 
in vitro study by Takahashi’s group, the cytotoxic activity of CD8+ 
CTLs decreased in a pH-dependent manner and the induction 
of functional CTLs were markedly inhibited under low pH (93). 
Tumor acidity also plays a critical role in assisting tumor cells 
escape from NK cell-mediated cytolysis. Several in vitro studies 
showed that the cytotoxic activities of NK cells and lymphokine-
activated killer (LAK) cells were markedly reduced under acidic 
conditions (79, 94–96). Indeed, NK activation and LAK genera-
tion by IL-2 were inhibited at an extracellular culture condition 
below pH 7.2 (97). Notably, the low environmental pH caused 
irreversible damage to NK and LAK cells resulting in a permanent 
decrease of the cytotoxic activity of these cells, which could not 
be recovered upon switching to higher pH culture medium (97).  
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FigURe 3 | Schematic representation of hypoxia upregulating immunosuppressive adenosine signaling pathway in cancer cells. Under hypoxic conditions, the 
upregulation of CD39 and CD79 expressions lead to increase of adenosine, which has been shown to have immunosuppressive effects on Teff, DC, and NK cells.
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A handful studies showed that tumor acidity contributed to the 
direct induction of a series of pro-inflammatory molecules in 
tumor-associated myeloid cells (79, 98). Extracellular acidosis 
has been shown to activate PI3K/Akt and ERK pathways and led 
to the stimulation of human neutrophils, which resembled the 
functional profile of MDSCs (99).

Although lactic acid is not the major contributor to the extracel-
lular acidification of tumors, more and more data underline the 
important role of lactate as a “signaling molecule” involved in regu-
lating cancer cell survival, proliferation, and metastasis (100, 101).  
Importantly, current studies indicate that lactate is emerging as an 
important immunosuppressive metabolite promoting escape of 
immune surveillance in hypoxic tumors (101). Lactate generated by 
hypoxic tumor cells was found to strongly inhibit the anti-tumor 
immune response via attenuating the cytotoxic activity of human 
CTLs (102, 103) and NK cells (104, 105). Previous studies also showed 
that lactate not only inhibited dendritic cells releasing cytokines but 
also impeded the differentiation and activation of monocyte-derived 
dendritic cells (106–109). A study using a pancreatic cancer mouse 
model further demonstrated that tumor-derived lactate could 
directly inhibit cytolytic function of NK  cells. Moreover, lactate 
could recruit and increase the number of MDSCs in tumor to indi-
rectly inhibit NK cytotoxicity (104). Lactate also acts as an important 
signaling molecule to promote the production of cytokines such 
as IL-23 and IL-6 contributing to tumor-associated inflammation  
(104, 109). Recently, lactate has been identified as a valuable 
prognostic marker of disease progression and poor patient survival 
especially in primary carcinomas, including cervical cancer, rectal 
adenocarcinoma, glioblastoma, and prostate cancer (110–117).

Hypoxia-Driven Production of 
immunosuppressive Adenosine
One important immunomodulatory metabolite which accumu-
lates in hypoxic tumors is adenosine. It is known that hypoxia can 

upregulate the expression of CD39 and CD73. Under hypoxia, 
the nucleotide metabolism mainly undergoes phosphohydrolysis 
via ectonucleoside triphosphate diphosphohydrolase CD39 that 
converts ATP/ADP to AMP. Then, 5′-ectonucleotidase CD73 
converts AMP to adenosine (118–120). The CD39–CD73-
adenosine signaling represents an important pathway to generate 
extracellular adenosine. Moreover, HIF-1α inhibits the intracel-
lular adenosine kinase to prevent re-phosphorylating adenosine 
to AMP resulting in elevated levels of intracellular adenosine. The 
high level intracellular adenosine is subsequently transported into 
extracellular space (120, 121). Hypoxia also enhances adenosine 
signaling by increasing the expression of A2A adenosine receptor 
(A2AR), which is a key G-protein coupled receptors conducting 
adenosine singling (121, 122). The adenosine accumulated in the 
tumor microenvironment acts as a negative regulator for both the 
activation and effector phases of the anti-tumor T cell response 
(123–126). The binding of adenosine to A2AR on T  cells can 
lead to T  cells apoptosis, which contributes to tumor immune 
evasion (125–127). Thus, the adenosine–CD73 axis represents a 
hypoxia-driven immunosuppressive mechanism in solid tumors 
(Figure 3). The high concentration of extracellular adenosine is 
usually present in cancer tissues, which is an important mediator 
in the alteration of immune cell functions to drive the immuno-
suppressive microenvironment in tumors (125, 128).

TARgeTiNg HYPOXiA-DRiveN 
MeTAbOLiC PATHwAYS TO eNHANCe 
THe eFFiCACY OF iMMUNOTHeRAPY  
OF TUMORS

As a hallmark of solid tumors, hypoxia is known to mediate 
aggressive, metastatic, and resistant characteristics. For a long 
time, hypoxia-relevant signaling pathways have been among 
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the most attractive therapeutic targets in cancer drug develop-
ment. Various approaches have been proposed to target hypoxic 
tumor cells, including hypoxia-activate prodrugs, gene therapy, 
recombinant anaerobic bacteria, small inhibitors specifically 
targeting HIFs, or targeting important downstream compo-
nents of hypoxic pathways such as, mTOR and URP pathways 
(129–131). These approaches have been comprehensively dis-
cussed in multiple reviews (129–131). Although much effort has 
been put into investigating drugs targeting hypoxic pathways in 
clinical trials; results have been generally disappointing (132, 
133). There is an urgent need to improve our understanding 
of the complexity of hypoxic pathways and their roles in solid 
tumors for drug development.

To date, there are no approved drugs that directly inhibit the 
HIF pathway. It is known that hypoxia-driven HIF-1 regulates 
a highly complex network involving multiple signaling cascades 
and overlapping mechanisms. The failure of clinical studies 
targeting hypoxic pathways in tumors may be partially due to the 
lack of specificity of inhibitors and redundancy in hypoxic signal-
ing/metabolism, which impede the efficacy of drugs. Most of the 
reported HIF-1 inhibitors were originally designed to target other 
molecules, and they were found to have HIF-1 inhibitory effect 
later. The development of specific inhibitors of HIF-1 represents a 
challenge, which is mainly due to the difficulty of targeting tran-
scription factors to selectively interrupt protein–DNA or protein–
protein interactions without affecting other pathways. Although 
it is assumed that hypoxic regions exist in most solid tumors, the 
inhibitors of HIF-1 or other hypoxia-relevant molecules may 
be less effective in the patients that do not have high levels of 
HIF-1. Therefore, the lack of specific patient selection may also 
contribute to the failure of those clinical trials of HIF-1 inhibitors, 
in which the selection of patients were not directly based on the 
HIF levels in tumors (129–133). The hypoxic microenvironment 
is considered to be a major contributor but not a driving force 
for tumor progression and metastasis. Thus, understanding the 
mechanism of hypoxic pathways and their interaction with other 
pathways in tumors is of particular importance. Future directions 
would be directed toward developing potent and more specific 
inhibitors targeting hypoxia-relevant molecules, which can be 
used in combination therapies and will hopefully overcome 
hypoxia-driven resistance.

Currently, one of the most promising treatments for metastatic 
melanoma and several other cancers is checkpoint blockade 
immunotherapy. In contrast to the direct cytotoxic effects of 
chemotherapy, checkpoint blockade relies on antigen-specific 
T cell responses by blunting tumor-induced immunoregulatory 
mechanisms. This form of treatment has provided durable, long-
lasting responses in many patients, largely due to the persistence 
and adaptability of the immune system. As summarized in previ-
ous sections, hypoxia plays a crucial role in immunoregulatory 
networks to promote an immunosuppressive tumor microenvi-
ronment. Interventions in several critical hypoxic axes emerge as 
promising adjuvants for a variety of immunotherapies.

One crucial enzyme mediating hypoxia-driven immunosup-
pression in solid tumor is CAIX. CAIX is upregulated by HIF-1α and 
represents a prototypic tumor-associated antigen. Overexpression 
of CAIX was found in metastatic renal cell carcinoma (RCC), 
and decreased CAIX levels are independently associated with 

poor survival in advanced RCC (134). A monoclonal antibody 
specifically targeting CAIX has been developed. In the study from 
Marasco’s group, human anti-CAIX mAbs not only inhibited CAIX 
enzymatic activity but also promoted immune-mediated killing of 
RCC by NK cell-mediated antibody-dependent cell-mediated cyto-
toxicity, complement-dependent cytotoxicity, and macrophage-
mediated antibody-dependent cell-mediated cytotoxicity. This 
study demonstrated that targeting CAIX could induce an immune 
response to inhibit CAIX-positive tumor growth in vivo through 
tumor infiltration of NK cells and activation of T cells (135). Thus, 
the anti-CAIX reagent presents a therapeutic potential for the 
unmet medical need of targeted killing of HIF-1α-driven CAIX-
positive RCC. Girentuximab has been developed as a chimeric 
monoclonal antibody drug specifically against CAIX. The current 
report from the phase 3 clinical trial of girentuximab in clear cell 
renal cell carcinoma (ccRCC) showed that participants treated with 
girentuximab had no statistically significant disease-free survival 
(hazard ratio, 0.97; 95% CI, 0.79–1.18) or OS advantage (hazard 
ratio, 0.99; 95% CI, 0.74–1.32) compared to the placebo group 
(136). Although girentuximab had no clinical benefit as adjuvant 
treatment for patients with high-risk ccRCC, it is still not clear 
whether girentuximab facilitates releasing the immunosuppression 
driven by hypoxic CAIX in tumors.

Although immune checkpoint blockade, such as anti-PD-1 
therapy, has led to dramatic responses in some cancer patients, 
overall response rates are still less than 30% (58), which likely 
reflects the fact there are multiple layers and redundant mecha-
nisms of immune evasion in solid tumors. Thus a single targeted 
therapy or immunotherapy is insufficient to restore antitumor 
immunity to clear various highly heterogeneous tumor cells. The 
hypoxia-dependent metabolic reprogramming also contributes 
to immune evasion, as T cells subjected to glucose deprivation 
(due to increased glucose uptake by hypoxic cancer cells) have 
diminished antitumor effector functions (26).

The binding of hypoxia-driven adenosine to A2AR could 
protect tumor cells from immune clearance by inhibiting T cells 
response. High level of A2AR expression has been confirmed in 
primary tumor tissues of head and neck squamous cell carcinoma 
(HNSCC), and it was significantly correlated with HIF-1α, CD73, 
CD8, and Foxp3 (137). Moreover, increased expression of A2AR on 
tumor infiltrating immune cells has been shown to correlate with 
advanced pathological grade, larger tumor size and positive lymph 
node status in primary HNSCC (137). The in vivo study of HNSCC 
mouse model showed that the A2AR antagonist, SCH58261, not 
only delayed the tumor growth but also significantly reduced the 
population of CD4+ Foxp3+ Tregs and increased the anti-tumor 
response of CD8+ T cells in HNSCC tumors (137). This preclini-
cal study indicates that A2AR blockade can be a potential strategy 
to enhance immunotherapy in HNSCC. Other key mediators in 
hypoxia-driven immunosuppression that also draw a great atten-
tion for drug development include CD73 and CD47. Multiple 
therapeutic approaches targeting A2AR, CD73, or CD47 are 
currently being investigated in clinical trials (Table 1). Given the 
unique roles of these targets in modulating immunosuppression 
within hypoxic tumors, the specific therapeutics targeting these 
are expected to work as potential boosters to synergize with other 
immunotherapies and offer opportunities to enhance anti-tumor 
activity of immune effector cells.
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