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ABSTRACT It has been shown that endocytic vesicles in BALB/c 3T3 cells have a pH of 5.0 (Tycko and 
Maxfield, Cell, 28:643-651). In this paper, a method for measuring the effect of various agents, 
including weak bases and ionophores, on the pH of endocytic vesicles is presented. The method is 
based on the increase in fluorescein fluorescence with 490-nm excitation as the pH is raised above 
5.0. Intensities of cells were measured using a microscope spectrofluorometer after internalization of 
fluorescein-labeled c~2-macroglobulin by receptor-mediated endocytosis. The increase in endocytic 
vesicle pH was determined from the increase in fluorescence after addition of various concentrations 
of the test agents. The following agents increased endocytic vesicle pH above 6.0 at the indicated 
concentrations: monensin (6 #M), FCCP (10 #M), chloroquine (140 #M), ammonia (5 mM), methyla- 
mine (10 mM). The ability of many of these agents to raise endocytic vesicle pH may account for 
many of their effects on receptor-mediated endocytosis. Dansylcadaverine caused no effect on vesicle 
pH at 1 mM. The observed increases in vesicle pH were rapid (1-2 min) and could be reversed by 
removal of the perturbant. This reversibility indicates that the vesicles themselves contain a mechanism 
for acidification. The increase in vesicle pH due to these treatments can be observed visually using an 
SIT video camera. Using this method, it is shown that endocytic vesicles become acidic at very early 
times (i.e., within 5-7 min of continuous uptake at 37°C). 

A wide variety of hgands, including certain hormones, serum 
proteins, bacterial toxins, lysosomal enzymes, and enveloped 
viruses, enter cells via receptor-mediated endocytosis (reviewed 
in references 1 and 2). For many of these ligands, the pathway 
of entry into the cell has been shown to begin with the 
concentration of occupied receptors over clathrin-coated pits, 
followed by entry into endocytic vesicles (1, 2). In several cases, 
there is evidence that receptors enter endocytic vesicles along 
with the ligand (3-5). 

Several workers have examined the effect of weak bases or 
ionophores on various steps in the receptor-mediated endocy- 
tosis pathway. A variety of  effects have been reported, includ- 
ing reduced rates of endocytosis (6, 7), inhibition of receptor 
recycling (8-11), recycling of intact ligand-receptor complexes 
to the surface (4), inhibition of diphtheria toxin toxicity (12), 
and reduction of virus infectivity (13). 

Since acidification is an early event in the endocytosis path- 
way (16), it is plausible that weak bases and ionophores could 
exert some of their effects by raising endocytic vesicle pH. To 
explore that possibility, I have directly measured the ability of 
several of these agents to raise endocytic vesicle pH. In general, 
the concentrations required to raise vesicle pH are similar to 
concentrations where various effects on the endocytosis path- 
way have been reported. The effects on vesicle pH are rapidly 
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reversible. A notable exception is dansylcadaverine which does 
not raise vesicle (or lysosomal) pH at concentrations far above 
those which inhibit endocytosis (7), recycling (10), or viral 
infectivity (13). 

The results presented in this paper indicate that vesicle 
acidification is a very early event after internalization and that 
endocytic vesicles contain a mechanism for regulating their 
internal pH. These results also indicate that acidification of 
endocytic vesicles may play a central role in the processing of 
many ligands and receptors. 

MATERIALS AND METHODS 

Mate r ia l s  

Monodansylcadaverine was obtained from Fluka, monensin from Calbi- 
ochem, and chloroquine diphosphate from Bochringer Mannheim. Carbonyl 
cyanide p-trifluoromethoxyphenylhydrazone (FCCP), methylamine, propyla- 
mine, and hexylamine were obtained from Sigma Chemical Co., St. Louis, MO. 
a2-Macroglobulin (aaM) and fiuorescein-labeled ~2M (F-a~M) were prepared as 
described previously (16). 

Cel l  C u l t u r e  

BALB/c 3T3 mouse fibroblasts were grown in Dulbecco-Vogt modified 
Eagle's medium (DME; Gibco, Grand Island Biological Co., Grand Island, NY) 
containing 10% (vol/vol) calf serum at 37°C in an atmosphere of 95% air and 5% 
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CO2. CeLls for binding studies were plated in 35 mm dishes (Falcon Labware, 
Oxnard, CA) or 24-weU plates (Costar, Data Packaging, Cambridge, MA). 
Cuhure dishes for fluorescence microscopy were prepared by punching 7-ram 
holes in 35-ram tissue culture dishes and attaching coversfips to the bottom 
surface using a rmxture of paraffin (Tissue-TeL Fisher) and petroleum jelly 
(Vaseline) (3:1, vol:vol) to form a watertight seal (15). The dishes were sterilized 
by ultraviolet irradiation. CeLls were plated at - 1  x 10 s cells/dish and were used 
2-4 d after plating. 

Quan titative Fluorescence Microscopy 
Fluorescence intensities were measured using a Leitz MPV Compact  micro- 

scope spectrofluorometer mounted on a Diavert microscope. A 75 W xenon lamp 
was used for epifluorescent illumination. The microscope was modified by 
inserting a beam splitter to allow simultaneous intensity measurement and 
observation using an image intensifier television camera. A standard Leitz 
fluorescein filter cube was modified by removing the excitation filter and placing 
either a 490 or a 450-urn narrow bandpass filter in the incident light path. The 
incident beam was centered and stopped down to a diameter of ~50 #m, and the 
position of the beam was noted on the video monitor. The measuring diaphragm 
was adjusted to a diameter slightly smaller (in the image plane) than the 
illuminated area. pH measurements on endocytic vesicles and lysosomes were 
made as described previously (16) using the ratio of fluorescein fluorescence 
intensities with 450 and 490-am excitation. 

To determine the effect of various agents on endocytic vesicle pH, cells were 
incubated with F-a2M (100/~g/ml) in DME for 14 min at 37°C. The cells were 
rinsed four times with warm DME and placed in 1 ml of measuring buffer (155 
mM NaCI, 5 mM KCI, 1 mM CaC12, 10 mM glucose, 20 mM HEPES, pH 7.4). 
The cells were immediately placed on the microscope stage and observed with a 
63 power, N.A. 1.3 objective, and a single cell, or a group of 2-4 cells, was 
centered (under bright field iUumination) in the measuring area. 

An initial intensity measurement was made using 490-am excitation and an 
illumination period of 0.1 s. Immediately after this measurement, 1 ml of 
measuring buffer containing the test agent was added to the dish. The medium 
was gently mixed with a Pasteur pipet, taking care not to move the dish. Intensity 
measurements were made 1, 2, and 3 min after addition of the test agent. After 
the third measurement, an  additional 1 ml of measuring buffer was added which 
contained methylamine hydrochloride (50 mM final concentration). [ntensity 
measurements were made 1, 2, and 3 min after adding the methylamine. The 
total time from the addition of  F-a2M to the final measurement did not exceed 
22 min. The total fluorescence illumination time was 0.7 s. The video system was 
used to check for movement of the cells after the initial measurement and to 
check for F-azM binding to extracellular debris in the measurement field. Video 
images were recorded, displayed, and photographed as described previously (16). 

Binding Studies 
a2M was iodinated by the chloramine-T procedure (17) to a specific activity 

of  2 × 10 ~ cpm//Lg. 1251-a2M was separated from Na lz~l by chromatography on 
a Sephadex G-25 column. Epidermal growth factor (EGF) was prepared by the 
method of Savage and Cohen (18). ~25I-EGF was prepared by the method of 
Carpenter and Cohen (19) with a s p  act of 4.1 x 104 cpm/ng.  Measuring buffer 
was adjusted to a range of pH values from 6.4 to 7.8 using HCI or NaOH. 
Confluent monolayers were rinsed with ice-cold measuring buffer and incubated 
on ice with ~zsI-a2M (3 aM) or ~2~I-EGF (2 nM) in measuring buffer with 1% 
bovine serum albumin. Incubations were continued on ice, with constant shaking, 
for 1 h (EGF) or 4 h (aeM). At the end of  the incubation, cells were rinsed four 
times with ice-cold measuring buffer and dissolved in 1 N NaOH. Radioactive 
counts were measured on a Beckman 4000 gamma counter (Beckman Instru- 
ments, Inc., Fullerton, CA). Nonspecific binding was determined by competition 
with excess a2M (2 mg/ml)  or EGF (2 #g/ml). All values were determined in 
quadruplicate. 

RESULTS 

The pH-dependence of the excitation profile of fluorescein 
makes it a very useful probe for measuring intracellular pH 
(14). Fig. 1 shows the pH dependence of  fluorescein labeled 
a2M (F-a2M) fluorescence using 450 or 490-am excitation in 
the instrument used for these studies. Between pH values of  
4.5 and 7.5, the fluorescence excited at 450 nm is relatively 
independent of pH, but the 490-nm fluorescence increases 
sharply with increasing pH. In a previous study (16), the ratio 
I45o/I49o was used to estimate the pH of  endocytic vesicles, and 
we obtained a value of 5.0 + 0.2 (SE) after a 15-min continuous 
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FIGURE 1 pH Depend- 
ence of F-a2M fluores- 
cence. Cells were incu- 
bated wi th F-a2M (100 

4 9 0  #g/ml)  in DME for 30 

rain at 37°C, rinsed, and 
fixed in 2% formalde- 
hyde. The cells were 
then equi l ibrated in 
buffers at pH 4, 5, 6, 7, 
and 7.5 in the presence 

0 of 10 mM methylamine. 
Fluorescence intensities 
were measured from 20 
cells in each dish wi th  
450 nm and 490 nm ex- 

5!0 6!0 7!0 citat ion. 

pH 

TABLE I 

Concentrations Required for Half-Maximal Increase in 490-nm 
Fluorescence 

Agent Co5" 

M 

Monensin 6 X 10 -6 
FCCP:~ 1 X 10 -s 
Chloroquine 1.4 x 10 -4 
A m m o n i a  5 X 10 -3  

P r o p y l a m i n e ,  b e x y l a m i n e ,  m e t h y l a m i n e  1 X 10 -2  

Dansylcadaverine >2 x 10 -a 

* The concentrations listed gave gl values of 0.5. ]-his corresponds to a rise in 
vesicle pH from ~5.0 to 6.2. Each value of Co.5 was obtained from 3-5 
concentration curves similar to those in Fig. 3. The range of values was 
approximately -+20% of the average values. 

:[: Unlike the other agents listed, FCCP at higher concentrations did not give 
AI values near 1 (see Fig. 3). The range of maximum values was 0.5-0.8 (five 
experiments). 

uptake and 5-min chase with F-azM. In that study, light and 
electron microscopy were used to demonstrate that a2M is in 
nonlysosomal structures at the time of measurement. 

To measure the effect of  various agents on endocytic vesicle 
pH, cells were incubated with F-a2M for 14 min, and then the 
effect of  the test agent on the intensity of  fluorescein emission 
with 490-am excitation was measured (see Materials and Meth- 
ods). Agents which raise endocytic vesicle pH should increase 
the fluorescence intensity, with the extent of  the increase 
dependent on the change in pH. We measured the fluorescence 
intensity (0.l-s illumination) on cells before and after the 
addition of various agents (listed in Table I). Within 1-2 rain 
after addition, the fluorescence reached a stable value. We then 
added a high concentration of methylamine (50 mM) to the 
cells to elicit a 'maximal' increase in the vesicle pH and again 
measured the intensity. The increase in intensity caused by the 
test agent was then compared to the increase caused in the 
same ceils by the high concentration of methylamine. The 
relative increase, AI, was defined as: 

h i  = ( I w ~  - I I n i t ) / ( g M a x  - -  I I n i t )  

where Irest is the stable intensity value after addition of the test 
agent, Iz,,it is the intensity before addition of the agent, and 
IMo~ is the intensity after addition of 50 mM methylamine. 

This procedure was chosen for several reasons. A microscope 
spcctrofluorometer was used because it allows one to observe 
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the cells as they are measured. Because of the pH dependence 
of fluorescein fluorescence, even a small amount of  F-a2M 
bound extracellularly to debris or dead cells would make a 
large contribution to the signal compared with F-a2M at pH 5. 
Any measurement based on small numbers of  ceils must be 
internally calibrated to avoid artifacts arising from cell-to-cell 
variability in a2M uptake (20). In our previous study, internal 
calibration was provided by using the ratio I45o/I49o which is 
independent of  total uptake. In the present study, internal 
calibration was provided by comparing the effect of the test 
agent to the effect of 50 mM methylamine on the same cells. 
The value of 4I  should be independent of total F-a2M uptake. 
The average value of IMax/Itnit was 1.7. Addition of the agents 
listed in Table I to cells which had not been incubated with F- 
a2M caused no change (±3%) in the cellular autofluorescence. 
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FIGURE 2 Time dependence and reversibility of monensin effects 
on endocytic vesicle pH. Cells were incubated with F-a2M (100 #g/ 
ml) for 14 min at 37°C, rinsed with measuring buffer, and placed on 
the microscope photometer. The intensity of a single cell was 
measured with 490 nm excitation, and monensin (10 #M final 
concentration) was added to the medium. The fluorescence inten- 
sity from the same cell was measured 1 and 2 rain after addition of 
monensin. The cells were immediately rinsed three times with 
measuring buffer without monensin, and two subsequent measure- 
ments were made from the same cell. The time scale in the figure 
starts with the addition of monensin. 
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Also, these agents do not, by themselves, change the fluores- 
cence of  F-a2M. An advantage of  the present method is that 
cellular autofluorescence, scattered light, and extraceUular F- 
a2M should all contribute equally in each intensity measure- 
ment. Therefore, these sources all cancel out in the evaluation 
of AI. A disadvantage is that pH values cannot be determined 
directly from AI. However, by using Fig. 1 and measuring the 
pH in the presence or absence of  50 mM methylamine, one 
can estimate the pH from AI. As previously described, the pH 
in endocytic vesicles is 5.0 (16). Using the same method (i.e., 
measuring I~o/hgo), a pH of 7.0 ± 0.2 was obtained in the 
presence of 50 mM methylamine. 

Ohkuma and Poole have measured intralysosomal pH in 
macrophages by placing a monolayer of cells in a modified 
fluorescence cuvette (14, 21). When measuring stable pH val- 
ues, they used the shape of the fluorescein excitation prorde, 
but for rapid time-dependent processes they measured changes 
in 1495. They reported essentially equivalent results with the 
two methods. They proposed that weak bases, such as chloro- 
quine or ammonia, raise lysosomal pH by diffusing across 
membranes as the uncharged species and binding protons 
within the acidic organelles. 

Time and Concentration Dependence 
Fig. 2 shows the effect of 10/~M monensin on the intensity 

of the fluorescence from F-azM in endocytic vesicles. The 
intensity rapidly increases to a new stable value, indicating a 
rise in the intravesicle pH. Removal of monensin from the 
medium by extensive rinsing returns the fluorescence intensity 
to approximately the initial value. For all of the agents tested, 
stable intensity values were obtained within 1-2 min after 
addition. The increase in fluorescence caused by addition of  
amines was also reversible (not shown). The rapid rise in pH 
and the rapid reversibility are in general agreement with results 
obtained in measurements of changes in lysosomal pH (14, 21). 

The concentration dependence of  AI for hexylamine and the 
proton ionophore FCCP are shown in Fig. 3. Curves similar to 
that shown for hexylamine were obtained for all of the agents 
listed in Table I except FCCP and dansylcadaverine, and the 
concentrations which gave AI = 0.5 are listed. The electrogenic 
proton ionophore, FCCP, produced only a partial increase in 
4I even at high concentrations (Fig. 3 B). Monensin, an elec- 
troneutral ionophore, gave AI values near 1.0 at concentrations 
>15 #M. For monodansylcadaverine, I found AI -- 0 for 
concentrations as high as 1 mM. This concentration is substan- 
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FIGURE 3 Concentration depend- 
ence of hexylamine and FCCP ef- 
fects on endocytic vesicle pH. Cells 
were incubated with F-~2M, rinsed, 
and placed on the microscope pho- 
tometer as described in Fig. 2. After 
the first intensity measurement, 
various concentrations of hexylam- 
ine (A) or FCCP (B) were added to 
the measuring buffer, and three in- 
tensity measurements were made 
at l-rain intervals. After the third 
measurement, 50 mM methylamine 
was added to the measuring buffer, 
and three more intensity measure- 
ments were made. A/, the relative 
increase in fluorescence with 490 
nm excitation, was calculated as 
described in text. 



tiaUy higher than the concentrations required to affect the 
behavior of several ligand-receptor systems (1, 7, 10, 13). A 
substantial rise in fluorescence excited at 490 nm was observed 
when 50 mM methylamine was added to cells in the presence 
of 1 mM monodansylcadaverine, indicating that dansyl fluo- 
rescence would not interfere with the detection of AI. Mono- 
dansylcadaverine (500 #M) also failed to raise lysosomal pH 
significantly in human fibroblasts (22) or in BALB/c 3T3 cells 
(not shown). 

In the presence of  50 mM methylamine, the pH of endocytic 
vesicles was 7.0 + 0.2 (3 experiments, 18 cells). I f  one takes this 
as the pH value when AI = 1.0 and used pH 5.0 for AI = 0 
(16), then using Fig. 1, one can estimate that AI = 0.5 corre- 
sponds to a pH value near 6.2. 

The increase in fluorescence intensity can be observed vis- 
ually as shown in Fig. 4. Fig. 4A and B show the increased 
emission from endocytic vesicles upon addition of 50 mM 
methylamine after a 15-min incubation in F-a2M. Fig. 4 C and 
D show that a similar increase can be observed after a 5-rain 
incubation, indicating that the endocytic vesicles are acidic 
within 5 min or less. Almost no bright spots could be observed 
on these cells before addition of methylamine. 

pH Dependence of ~2M and EGF Binding 

The pH dependence of  a2M and EGF binding is shown in 
Fig. 5. The pH dependence of EGF binding has been described 
previously (7). As seen in Fig. 5, both ligands bind poorly 

FIGURE 4 Effect of methylamine on fluorescence emission from endocytic vesicles. (A, B) Cells were incubated with F-~2M (100 
#g/ml) for 14 min at 37°C. The cells were rinsed with measuring buffer, and placed on the microscope. A single cell is shown 
before (A) and 1 rain after (B) addition of 50 mM methylamine to the measuring buffer. The plane of focus has been changed 
slightly between the two images because it was difficult to find bright spots to focus on before addition of methylamine. (C, D) 
Same as (A, B), but cells were incubated with F-a2M (300#g/ml) for 5 min at 37°C. Cshows two cells observed 7 min after the start 
of the incubation, and D shows the same cells l min later in the presence of 50mM methylamine. Under these conditions, 80% 
of the fluorescein fluorescence could be competed by unlabeled ~2M (5 mg/ml). Bar, 10 #M. x 1,500. 
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FIGURE 5 pH dependence of a2M and EGF binding. Cells were 
incubated at the indicated pH with 1251-oL2M (3 nM) or 12SI-FGF (2 
nM) on ice as described in Materials and Methods. At the end of 
the incubation, cells were rinsed with ice-cold binding medium, 
dissolved in 1 N NaOH, and the cell-associated radioactivity was 
determined. The data shown are corrected for noncompetible bind- 
ing. For a2M, the binding at pH 7.6 was 57 ng/mg cell protein, and 
for EGF the binding at pH 7.6 was 0.45 ng/mg cell protein. 

below pH 6.8. Addition of agents which raise the vesicle pH 
above 6.8 would be expected to reduce the dissociation of 
ligand-receptor complexes. 

DISCUSSION 

We have developed a microspe.ctrofluorometric method to 
measure the pH of endocytic vesicles which contain F-a2M. 
We have previously shown that in BALB/c 3T3 fibroblasts 
these vesicles have a pH near 5.0 after a 15-rain uptake and a 
5-min rinse. By observing the increase in F-a2M fluorescence 
after treatment with methylamine (Fig. 4) it is now clear that 
endocytic vesicles are acidic after a 5-min incubation and a 2- 
min rinse. It is possible that endocytic vesicles become acidic 
almost immediately after formation. The rate of reacidification 
after removal of monensin (Fig. 2) indicates that the vesicles 
are capable of  reaching pH 5 within 1 min or less. This rapid 
reacidification also indicates that the vesicles themselves con- 
tain a mechanism for regulating their internal pH. 

The agents listed in Table I have all been reported to affect 
one or more steps in the receptor-mediated endocytosis path- 
way. The results reported in the literature often seem contra- 
dictory, and it is difficult to make generalizations about the 
interpretations of the observations. Since entry into acidic 
vesicles is an early step, it is possible that raising the vesicle pH 
could be responsible for some or many of the observed effects. 
The measurements reported here can serve as a basis for 
determining whether it is reasonable to consider an increase in 
endocytic vesicle pH as the cause of the observed effects. 

Many enveloped viruses require an acidic pH for fusion with 
cell membranes and entry of the nuclear capsid (23). Several 
weak bases have been reported to block infectivity, and it has 
been suggested that this might occur by raising lysosomal pH 
(13). The concentrations of weak base required are generally 
consistent with the concentrations required to raise endocytic 
vesicle or lysosomal pH. However, monodansylcadaverine (500 
#M) blocks influenza virus infectivity at concentrations which 
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do not raise vesicle pH. It has also been reported that mono- 
dansylcadaverine blocks endocytosis of  vesicular stomatitis 
virus, and this inhibition was reported to occur by reducing the 
entry of virus into coated pits (23). This would be consistent 
with a mode of action for monodansylcadaverine other than 
raising pH. 

"Nicked" diphtheria toxin can penetrate plasma membranes 
at pH 5.0 (25), and it has been shown that diphtheria toxin 
enters the same endocytic vesicles as a2M (26). Weak bases and 
monensin (12) are known to inhibit the toxicity of  diphtheria 
toxin at approximately the concentrations which raise endo- 
cytic vesicle or lysosomal pH. 

In the case of the enveloped viruses and diptheria toxin, 
either the endocytic vesicles or lysosomes could be the site of 
cytoplasmic penetration. Since the endocytic vesicles are the 
first step on the pathway, they would seem a likely candidate 
for the site of penetration. Virus particles or toxin chains which 
did not escape from the endocytic vesicles would be delivered 
to lysosomes where they might penetrate into the cytoplasm 
before degradation. 

Many of the ligands which enter cells by receptor-mediated 
endocytosis are delivered to lysosomes, and many of the recep- 
tors are recycled to the plasma membrane. Several investigators 
have described the effects of the agents listed in Table I on 
various steps in the endocytosis pathway. The goal of  these 
previous studies has been to identify the step in the pathway 
which is sensitive to these agents and, eventually, to understand 
the underlying basis for the sensitivity. 

It is likely that at least some of the effects on endocytosis 
produced by the agents listed in Table I (except monodansyl- 
cadaverine) are due to an increase in endocytic vesicle pH. For 
example, it has been reported that ammonia blocks delivery of 
mannose-containing ligands to lysosomes in macrophages (4). 
Both monensin and chioroquine cause a loss of low density 
lipoprotein receptors from the cell surface, and this has been 
attributed to an inhibition of receptor recycling (9). 

Monodansylcadaverine has been reported to block the en- 
docytosis of a number of ligands, including epidermal growth 
factor (7), a2-M (24), 3,Y,5-triiodo-2-thyronine (27), and vesic- 
ular stomatitis virus (24). It has also been reported to reduce 
the number of surface a2-M receptors (10). From our results, it 
is clear that at the concentrations used (20-500 #M), monodan- 
sylcadaverine is not acting as a weak base to raise endocytic 
vesicle or lysosomal pH. In several cases (1, 10, 13, 28), it has 
been suggested that dansylcadaverine produces effects similar 
to other weak bases. Either monodansylcadaverine and the 
weak bases produce similar effects by different mechanisms, or 
the effects of both are not related to the ability to raise the pH 
of acidic organdies. 

There is growing evidence that exposure to an acidic envi- 
ronment is important for the processing of many ligands and 
receptors. Much of this evidence has been based on treatment 
of cells with agents which would be expected to raise the pH of 
acidic organelles. We have recently shown that the endocytic 
vesicles which are involved in uptake of many ligands are 
acidic. In this paper it has been shown that many of the agents 
which affect receptor-mediated endocytosis rapidly and revers- 
ibly raise endocytic vesicle pH at concentrations which affect 
endocytosis. These result are consistent with acidification of 
vesicles being an important processing step. It is important to 
realize, however, that these agents also may elicit effects at 
other sites, some of which are independent of their effects on 
pH. 
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