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SUMMARY

Complex traits such as cardiovascular diseases (CVD) are the results of compli-
cated processes jointly affected by genetic and environmental factors.
Genome-wide association studies (GWAS) identified genetic variants associated
with diseases but usually did not reveal the underlying mechanisms. There could
be many intermediate steps at epigenetic, transcriptomic, and cellular scales in-
side the black box of genotype-phenotype associations. In this article, we present
a machine-learning-based cross-scale framework GRPath to decipher putative
causal paths (pcPaths) from genetic variants to disease phenotypes by inte-
grating multiple omics data. Applying GRPath on CVD, we identified 646 and
549 pcPaths linking putative causal regions, variants, and gene expressions in
specific cell types for two types of heart failure, respectively. The findings sug-
gest new understandings of coronary heart disease. Our work promoted the
modeling of tissue- and cell type-specific cross-scale regulation to uncover mech-
anisms behind disease-associated variants, and provided new findings on the mo-
lecular mechanisms of CVD.
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INTRODUCTION

Genome-wide association studies (GWAS) helped reveal the genotype-phenotype relations by finding as-

sociations between single-nucleotide polymorphisms (SNPs) and disease or trait (Edwards, 2005; TheWell-

come Trust Case Control Consortium, 2007), but suffered from two limitations: 1) owing to the linkage

disequilibrium (LD) structure in the human genome, many significantly associated SNPs identified by

GWAS are tag SNPs rather than causal SNPs (Ding and Kullo, 2007; MacArthur et al., 2014; Stram, 2004);

2) GWAS studies only detect ‘‘black box’’ associations between genotype and disease phenotype and

cannot explain how these SNPs influence disease risk (Neumeyer et al., 2020).

Inside the ‘‘black box’’ associations, the genotype-to-phenotype regulations are usually cross-scale multi-

step processes. Frommicro to macro, there are multiple levels of phenotypes: 1) molecular phenotype, the

direct effect of a molecular-level variant (Wierbowski et al., 2018), such as transcriptome factor (TF) binding

efficiency and change in gene expression; 2) cellular phenotype, the conglomerate of multiple cellular pro-

cesses involving gene and protein expression that result in the elaboration of the particular morphology

and function of a cell (Sul et al., 2009), which can appear as different cell types and specialized pathways;

and 3) clinical phenotype (simply referred as phenotype), observable characteristic or trait of a disease for a

given individual. It can be morphology, physiological properties, or behavior. The genotype-to-phenotype

regulation process can involve many intermediate steps in different phenotype levels at epigenetic, tran-

scriptomic, and cellular scales (MacRae and Vasan, 2016; Wang et al., 2018a).

Several works tried to open the ‘‘black box’’ behind genotype-phenotype associations. Integrating GWAS

summary statistics with multi-omics data, researchers tried to find functional variants (Amlie-Wolf et al.,

2018; Kircher et al., 2014; Li et al., 2020; Lu et al., 2017; Ritchie et al., 2014; Ward and Kellis, 2016) and dis-

ease-related cell types or driver cell types (Calderon et al., 2017; Gasperi et al., 2021; Shang et al., 2020; The

Brainstorm Consortium et al., 2018; Watanabe et al., 2019). These works moved steps further—from GWAS

associations to functional interpretations, which deepened our understanding of heredity and molecular

mechanisms in diseases. But to the best of our knowledge, there is still few work that can link multiple steps

together to achieve the whole regulation path from genotype to phenotype.
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Take cardiovascular diseases (CVD) as an example. CVD is a broad class of diseases that involve the heart or

blood vessels (Geneva: World Health Organization, 2011). It is the leading cause of death globally (Geneva:

World Health Organization, 2011), and genetic factors contribute greatly to it (Kathiresan and Srivastava,

2012; Khera and Kathiresan, 2017). In coronary heart disease, for example, the heritability was estimated

to be between 40 and 60% (McPherson and Tybjaerg-Hansen, 2016; Vinkhuyzen et al., 2013); in patients

with dilated cardiomyopathy, 25-30% were estimated to have familial influence (Burkett and Hershberger,

2005; Grünig et al., 1998; Hershberger and Siegfried, 2011; Michels et al., 1992; Rosenbaum et al., 2020).

Although GWAS have found a large number of genomic variations associated with different types of

CVD, the underlying mechanisms are still unclear, hindering scientists’ effort in finding medical solutions

at the clinical level (Mattson and Liang, 2017). Closing the gap between genotype and clinical phenotype

should be the future of cardiovascular genetics and genomics research and would be essential for precision

medicine (MacRae and Vasan, 2016).

In this work, we explicitly defined one type of gene regulation path that depicts the impact of non-coding

variants on chromatin accessibility, downstream gene expressions in specific cell types and on the disease

phenotype, and designed an interpretable computational framework Gene Regulation Path (GRPath) to

decipher such paths. In the framework, we incorporated GWAS summary statistics, tissue expression quan-

titative trait loci (eQTLs), whole-genome sequencing (WGS), RNA sequencing (RNA-seq), single-cell RNA

sequencing (scRNA-seq) data and individual-level disease phenotype information, and utilized statistical

modeling and machine learning techniques to find the paths. Applying the framework to two CVD sub-

types, heart failure caused by dilated cardiomyopathy (dHF) and by coronary heart disease (cHF), we iden-

tified a set of multi-step regulation paths underlying dHF and cHF. Some findings were well supported by

evidence in the literature, and some suggested new discoveries on previously unknown molecular mech-

anisms of the disease. The work provides new understandings of putative regulation paths of CVD, and

demonstrated the potential of unfolding multi-step tissue- and cell type-specific regulation paths inside

the genotype-phenotype association black boxes by mining data of multiple types in the public domain.
RESULTS

Modeling the gene regulation process

We proposed an interpretable computational framework GRPath to model the multi-layer gene regulation

process that links genetic variants, chromatin accessibility, gene expression, cell type, and disease pheno-

type (Figure 1A). This framework first identified putative causal regions (pcRegions) and putative causal var-

iants (pcVariants) of disease from personal genomes, transcriptomes, and clinical phenotypes, then added

putative causal genes (pcGenes) and cell types into the link by incorporating eQTLs and scRNA-seq data

(STAR Methods, Figure S4). Through this framework, we obtained putative gene regulation paths in the

form of ‘‘pcRegion-pcVariant-pcGene-noteworthy cell type-disease phenotype’’ (Figure 1B).

To study themechanisms of CVD, we collected relevant omics data includingGWAS, GTEx, and scRNA-seq

data.
Genome-wide association studies summary statistics

There are overall 340 statistically significant SNPs under the term ‘‘cardiovascular disease’’ or ‘‘cardiovas-

cular disease risk factors’’ in GWAS summary statistics downloaded from GWAS Catalog v1.0 (Buniello

et al., 2019). These SNPs are significantly associated with CVD, but may not be the causal variants.
GTEx

In GTEx v7, there are 357 donors with RNA-seq data obtained from heart tissue (left heart ventricle or atrial

appendage). Each donor was also provided with WGS data and disease phenotype information. In addi-

tion, GTEx calculated single-tissue cis-eQTLs from corresponding WGS and RNA-seq data as well.
Single-cell RNA sequencing

We collected scRNA-seq data of dHF and cHF from the work of (Wang et al., 2020), which include smooth

muscle cells (SMCs), endothelial cells (ECs), fibroblasts (FBs), macrophages (MPs), and cardiomyocytes

(CMs) in the left ventricle and left atrial appendage. After quality control, there are 7,418 cells from normal

heart samples, 2,728 cells from dHF samples, and 1,386 cells from cHF samples remaining.
2 iScience 25, 104790, August 19, 2022
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Figure 1. The multi-layer genotype-to-phenotype gene regulation process and the cross-scale gene regulation path

(A) Gene regulation process along genetic variants, chromatin accessibility, gene expression, cell type, and disease state.

(B) Putative gene regulation path in the form of ‘‘pcRegion-pcVariant-pcGene-noteworthy cell type-disease phenotype’’ illustrated by the hierarchical multi-

layer structure.
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We performed the GRPath analysis of CVD based on the data described above. The modeling procedure

can be divided into three major steps. First, we predicted heart-tissue-specific openness scores for quan-

tifying the chromatin accessibility state of pre-defined regulatory elements (REs) in the genome (STAR

Methods). Second, we defined 338 candidate genomic regions (each 200 kb in size) for CVD according

to GWAS summary statistics, and further identified pcRegions and top-ranked pcVariants within (STAR

Methods). Third, we found target genes of the pcVariants, which we named as pcGenes, and incorporated

scRNA-seq data of a CVD subtype (dHF or cHF) to obtain the most noteworthy cell type for each pcGene in

the disease (STAR Methods). Through this model, we identified pcRegions and pcVariants for CVD in step

two, pcGenes and noteworthy cell types in step three, and corresponding regulation paths for the two CVD

subtypes.

pcRegions, pcVariants, and pcGenes of cardiovascular diseases

First, we introduce the pcRegions, pcVariants, and pcGenes found for CVD. We defined regions that show

statistically significant influence on CVD risk as ‘‘pcRegions,’’ and variants in these regions with relatively

high causal effects on CVD risk as ‘‘pcVariants’’ (STAR Methods). In GTEx population, 192 of the 338 candi-

date genomic regions were identified as pcRegions, with FDR<13 10�9. Specifically, 100 of them are alter-

nate-allele-pathogenic regions (Table S1), where alternate alleles of top-ranked variants in this region in-

crease the overall disease risk; 92 of them are reference-allele-pathogenic regions (Table S2), where

reference alleles of top-ranked variants in this region increase the overall disease risk (Figure 2A).

We identified pcGenes of the pcVariants by referring to cis-eQTLs in heart tissues. We define the genes

whose expressions are significantly associated with variation at a pcVariant as ‘‘pcGenes.’’ In the 192

pcRegions, we found 295 and 249 pcGenes in alternate- and reference-allele-pathogenic regions,
iScience 25, 104790, August 19, 2022 3
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Figure 2. pcRegions and pcGenes of CVD

(A) the distribution of alternate- and reference-allele pathogenic regions on different chromosomes.

(B) Venn plot for the number of pcGenes in the two types of pcRegions, which share 17 pcGenes. Top-20 significant GO enrichment terms (FDR<0.05) for the

CVD pcGenes in (C), alternate-allele-pathogenic regions and (D), reference-allele-pathogenic regions.
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respectively, with 17 genes overlapping (Figure 2B). After that, we performed enrichment analysis on these

pcGenes. Analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed that the

pcGenes in alternate- and reference-allele-pathogenic regions are both significantly enriched in choles-

terol metabolism (hsa04979) (FDR<0.02). Analysis of Gene Ontology (GO) showed that there are 40 and

26 significant enrichment terms for pcGenes in the two scenarios, respectively (FDR<0.05) (Figures 2C

and 2D). They have 9 shared enrichment terms, all of which are related to lipids or lipoproteins metabolic

processes such as triglyceride-rich lipoprotein particle remodeling (GO:0034370), plasma lipoprotein par-

ticle organization (GO:0071827), and triglyceride catabolic process (GO:0019433), whose close associa-

tions with atherosclerosis have been well studied (Ishibashi, 2001; Libby et al., 2019; Musunuru and Kathir-

esan, 2016). In addition, pcGenes in the two types of regions also have their unique functions. It is worth

noticing that in alternate-allele-pathogenic regions, the pcGenes are specially enriched in cyclic-nucleo-

tide-related processes such as cyclic purine nucleotide metabolic process (GO:0052652) and cGMP biosyn-

thetic process (GO:0006182), where genes ADCY6, NPR2, NPPA and NPPB that are not pcGenes in refer-

ence-allele-pathogenic regions participate. Likewise, pcGenes in reference-allele-pathogenic regions are

uniquely and significantly enriched in terms relative to foam cell differentiation, for example, macrophage-

derived foam cell differentiation (GO:0010742), where pcGenes NR1H3, APOB, LPL, ITGB3, CETP, and

SELENOK participate. These results suggested that although there are large overlaps in the biological pro-

cesses and functions that the pcVariants in alternate- and reference-allele-pathogenic regions are involved

in, the two types of regions have different power over certain functions.

Noteworthy cell types and gene regulation paths for dilated cardiomyopathy

The above analysis was based on heart tissues, whereas the roles of different heart cell types in CVD were

still unclear. Thus, after obtaining pcRegions, pcVariants, and corresponding pcGenes, we tried to identify

the most noteworthy cell types for these pcGenes, and reveal the complete gene regulation paths

regarding pcRegion, pcVariant, pcGene, the most noteworthy cell type and disease phenotype in a

more specific CVD phenotype.
4 iScience 25, 104790, August 19, 2022
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Figure 3. pcPaths for dHF and cHF

pcPaths from (A) alternate-allele-pathogenic regions and (B) reference-allele-pathogenic regions in dHF, or from (C) alternate-allele-pathogenic regions and

(D) reference-allele-pathogenic regions in cHF. There are 5 layers in the paths. From top to bottom, each layer contains nodes representing pcRegions,

pcVariants, pcGenes, cell types, and disease phenotype, respectively.

(A and D) showcase examples of the pcPath ‘‘rs604723 surrounding region-rs604723-ARHGAP42-SMCs-dHF’’ in dHF and ‘‘rs1912483 surrounding region-

rs2292867-ITGB3-MPs-cHF’’ in cHF.
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Here, we first focused on dHF. We performed quality control, normalization, highly variable genes selec-

tion, batch correction, and integration for scRNA-seq data of SMCs, ECs, FBs, MPs, and CMs from 7,418

normal and 2,728 dHF cells. Of the top-2000 highly variable genes, 44 genes were among the found

pcGenes, which we named as highly variable pcGenes. We then identified the most noteworthy cell type

for each highly variable pcGene with the highest AUROC in a classification-basedmethod (STARMethods).

Linking the pcVariant, the corresponding pcGenes, and the most noteworthy cell type, we obtained 646

putative causal paths (pcPaths) in the form of ‘‘pcRegion-pcVariant-pcGene-cell type-disease’’ for dHF.

Among them, 293 paths were derived from variants in alternate-allele pathogenic regions and 353 were

from reference-allele-pathogenic regions (Figures 3A and 3B, Table S3).

To better focus on and interpret some key regulatory genes and regulation paths, we performed GO

enrichment analysis on the 44 highly variable pcGenes, and narrowed down to 8 that are involved in the

23 significant enrichment terms (FDR<0.05) (Figure 4C). We then analyzed the corresponding pcRegions

and cell types regarding the 8 genes (Figures 4A and 4B), and focused on the gene ARHGAP42. ARHGAP42

is involved in top-ranked biological process ‘‘negative regulation of systematic arterial blood pressure

(GO:0003085)’’ in the enrichment analysis. Its pcRegion that was centered around SNP rs604723 also has

relatively high significance, ranking 25 among the 100 alternate-allele-pathogenic regions, and the central
iScience 25, 104790, August 19, 2022 5
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Figure 4. Overview of the key regulation paths in dHF and detailed explanation of an example

(A) Interaction between the 8 highly variable pcGenes and their corresponding pcRegions. The ribbon width represents combined influence of the

significance of the pcRegion and the number of eQTLs that are pcVariants of the respective gene in that region. Thicker ribbon means higher significance of

the corresponding region and more pcVariants of the gene.

(B) Interaction between the 8 highly variable pcGenes and the 5 heart cell types. Thicker ribbon represents higher AUROC.

(C) Interaction between the 8 highly variable pcGenes and the 23 significantly enriched GO terms. Thicker ribbon represents higher significance of the

corresponding GO term. The same gene in (A-C) is in the same color.

(D) An example of the complete genotype-to-phenotype gene regulation process regarding rs604723, SRF binding, ARHGAP42, SMCs, blood pressure, and

dHF: T allele at rs604723 promotes SMC-specific SRF binding, which increases ARHGAP42 expression. Upregulation of ARHGAP42 helps lower blood

pressure, and thus reduces the risk of dHF.
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SNP rs604723 itself was found to be a CVD pcVariant. Furthermore, ARHGAP42 has the highest AUROC in

SMCs (0.986 G 0.002).

Linking the key components together, we obtained a pcPath ‘‘rs604723 surrounding region-rs604723-

ARHGAP42-SMCs-dHF’’ (Figure 3A), which was very well supported by previous findings (Bai et al., 2017;

Kasper et al., 1994; Messerli et al., 2017). The SNP rs604723 (chr11:100,610,546, GRCh37/hg19) is located

on the first intron of ARHGAP42 (chr11:100,558,019-100,864,672). Its reference (minor) allele is T, and alter-

nate (major) allele is C. Bai et al. showed that T allele at rs604723 increases ARHGAP42 expression by pro-

moting a TF—serum response factor (SRF) binding to its located 600 bp DNase hypersensitivity site, and

this process is specific to SMCs (Bai et al., 2017). ARHGAP42 is involved in the Rho GTPase RhoA signaling

pathway, where the upregulation of this gene helps lowering blood pressure, which in turn decreases the

risk of dilated cardiomyopathy (Kasper et al., 1994, p. 67; Messerli et al., 2017) (Figure 4D). Our more

detailed computational results further confirmed the knowledge suggested by the literature (Bai et al.,

2017). From scRNA-seq data of normal and dHF samples, we observed that compared with SMCs in the

dHF status, the ARHGAP42 expression level was higher in normal SMCs. However, the result would be
6 iScience 25, 104790, August 19, 2022
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opposite if combining all cell types together (Figure S1A), which can be confirmed by GTEx bulk RNA-seq

data (Figure S1B). This provided strong evidence that the increase of ARHGAP42 expression level in dHF

hearts is specific for SMCs. Combining the above data and knowledge, we summarize the gene regulation

process regarding rs604723, ARHGAP42, SRF binding, SMCs, blood pressure, and dHF as follows: minor T

allele at rs604723 promotes SRF binding to its located region, which is specific to SMCs. This in turn in-

creases the ARHGAP42 expression level in SMCs, which helps lowering blood pressure, thus reducing

the risk of dHF.

The other 7 highly variable pcGenes involved in the significant enrichment terms also proved to be highly

relevant for the cardiovascular system. For example, the genesNPPA andNPPB are widely used diagnostic

and prognostic biomarkers for a spectrum of CVD (Chow et al., 2017; Goetze et al., 2020; Knowlton et al.,

1995; Lee et al., 2019; Man et al., 2021; Ponikowski et al., 2016; Sergeeva et al., 2016; Warren et al., 2011).

They are involved in a series of cardiac biological processes such as cardiac development and cardiorenal

homeostasis and are implicated in response to cardiac injury and stress, especially in heart failure and car-

diac hypertrophy (Chow et al., 2017; Knowlton et al., 1995; Lee et al., 2019; Man et al., 2021; Matsuoka et al.,

2014; Ponikowski et al., 2016; Warren et al., 2011). Another gene, WNT3, participates in the Wnt signaling

pathway, which is quiescent under normal conditions, but activated on pathological stress of the heart,

such as chronic afterload increase (Malekar et al., 2010). The activation of Wnt signaling is critical for mal-

adaptive cardiac hypertrophy and cardiomyopathy (Malekar et al., 2010).
Noteworthy cell types and gene regulation paths for coronary heart disease

Next, we focused on the other CVD subtype—cHF. Similarly, we analyzed scRNA-seq data of 7,418 normal

cells and 1,386 cHF cells, and identified 39 pcGenes among the top-2000 highly variable genes. From these

39 highly variable pcGenes, we obtained 549 pcPaths for cHF, with 229 paths derived from variants in alter-

nate-allele pathogenic regions and 320 from reference-allele-pathogenic regions (Figures 3C and 3D,

Table S4). We further performed GO enrichment analysis on the 39 genes, and narrowed down to 11 highly

variable pcGenes involved in the 29 significant enrichment terms (FDR<0.05) (Figure 5C).

One of the highly variable pcGenes, ITGB3, particularly attracted us. ITGB3 participates in the macro-

phage-derived foam cell differentiation (GO:0010742) pathway, in which the CVD pcGenes in reference-

allele-pathogenic regions were previously found to be enriched. From the AUROC results, we

found that ITGB3, indeed, has the highest score in MPs (0.971 G 0.005), closely followed by SMCs

(0.970G 0.003) and other cell types (<0.940) (Figure 5B). Furthermore, the related pcRegion of ITGB3

centered around SNP rs1912483, and it ranked 38 among the 92 reference-allele-pathogenic regions (Fig-

ure 5A). Together, these findings suggested pcPaths for cHF regarding the pcVariants in rs1912483 sur-

rounding region, ITGB3, and MPs. This path has not been as systematically studied as the one found for

dHF. It may reveal new biological insights. We, therefore, proposed hypothetical explanations for it by

combining the computational results with current knowledge.

Five pcVariants (rs2292867, rs2292866, rs3785872, rs12940207, rs11868894) were found in the rs1912483 sur-

rounding region, one of which is rs2292867. The SNP rs2292867 (chr17:45357489 C>T) is an intron variant

located on the 2nd intron of ITGB3 (+26.3 kb of TSS). According to HaploReg v4.1 (Ward and Kellis, 2016),

this locus is predicted as an enhancer regulatory element in heart tissues. We can see that its variation from

reference allele C to alternate allele T would increase the binding affinity of the transcriptional activator

POU2F2 that binds to this position on the negative strand, according to the position weight matrix

(PWM). Hi-C datasets in the heart left ventricle and macrophage further confirmed the active interaction

between rs2292867 and ITGB3 promoter region (Leung et al., 2015; Phanstiel et al., 2017; Wang et al.,

2018b) (Figures S2A-S2B). These evidences suggested that the SNP rs2292867 located region should func-

tion as an enhancer regulatory element that actively interacts with the ITGB3 promoter region. The T allele

at rs2292867 increases the ITGB3 expression level by increasing the transcriptional activator POU2F2 bind-

ing affinity (Figure 5D).

We further inferred the relationships between ITGB3, MPs, and cHF. It has been demonstrated that macro-

phage b3 integrin (ITGB3) suppresses the expression of TNFa, which impairs IL-6 cytokine and inflamma-

tion caused by hyperlipidemia (Schneider et al., 2007). Transplantation with b3-deficient marrow could in-

crease mice atherosclerosis (Schneider et al., 2007). Another study reported that ITGB3 is critical for

regulating SMC proliferation and clonality, which is closely related to atherosclerosis development
iScience 25, 104790, August 19, 2022 7
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Figure 5. Overview of the key regulation paths in cHF and the detailed explanation of an example

(A) Interaction between the 11 highly variable pcGenes and their corresponding pcRegions. The ribbon width represents combined influence of the

significance of the pcRegion and the number of eQTLs that are pcVariants of the respective gene in that region. A thicker ribbonmeans higher significance of

the corresponding region and more pcVariants of the gene.

(B) Interaction between the 11 highly variable pcGenes and the 5 heart cell types. A thicker ribbon represents higher AUROC.

(C) Interaction between the 11 highly variable pcGenes and the 29 significantly enriched GO terms. A thicker ribbon represents higher significance of the

corresponding GO term. The same gene in (A-C) is in the same color.

(D) Example of a proposed pcPath regarding rs2292867, ITGB3, MPs, and cHF: alternate allele T at rs2292867 promotes transcriptional activator POU2F2

binding, which increases ITGB3 expression. Upregulation of ITGB3 in MPs protects against atherosclerosis progression by suppressing TNFa expression,

impairing IL-6, inhibiting SMCs migrating into the plaque, and reduces the risk of cHF.
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(Misra et al., 2018). Their experiments showed that ITGB3-deficient MPs induce multiple SMCs to migrate

into a plaque; SMCs, then, clonally expand within the plaque with limited migration, which accelerates

atherosclerosis progression (Misra et al., 2018). Associating these two studies with the reports that IL-6

stimulates smooth muscle cell migration (Chava et al., 2009; Ikeda et al., 1991; Lee et al., 2012;

Wang and Newman, 2003), we inferred that the upregulation of ITGB3 gene in MPs decreases TNFa

expression and inhibits IL-6. This impairs the migration and proliferation of SMCs, delays atherosclerosis

progression, and thus reduces the risk of cHF (Figure 5D). The scRNA-seq data of normal and cHF samples

support this explanation: MPs in normal samples have higher ITGB3 gene expression levels compared with

MPs in cHF samples (Figure S2C).

In summary, we proposed the pcPath ‘‘rs1912483 surrounding region-rs2292867-ITGB3-MPs-cHF’’ for cHF

(Figures 3D and 5D): the alternate allele T at rs2292867 enhances the binding affinity of POU2F2 transcrip-

tional activator, which increases ITGB3 gene expression level. Then, the upregulation of ITGB3 in MPs
8 iScience 25, 104790, August 19, 2022
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inhibits IL-6 cytokine and thus restricts the proliferation andmigration of SMCs. This process delays athero-

sclerosis progression and reduces the risk of cHF.

Except for ITGB3, 10 other highly variable pcGenes are also involved in the significant enrichment terms. It

is worth noticing that NPPA, NPPB, APOE, and APOC1 are actively involved in both dHF and cHF. Espe-

cially,APOE has higher AUROC in ECs in cHF (0.981G 0.003) than that in dHF (0.960G 0.004), which is prob-

ably because APOE modulates EC functions that are more important to coronary heart disease than to

dilated cardiomyopathy. Studies found that APOE is central to the transport and metabolism of lipids,

which is closely related to atherosclerogenesis (Huang and Mahley, 2014; Marais, 2019; Satizabal et al.,

2018). It plays a novel role in modulating the cav-1-eNOS interaction in ECs, which is associated with a num-

ber of CVDs such as atherosclerosis and hypertension (Yue et al., 2012). The APOC1 gene is located very

close (�5 kb downstream) to the APOE gene. It is also involved in lipoprotein metabolism andmight inhibit

the APOE-mediated uptake of very-low-density lipoprotein particles (Zhou et al., 2019; Shachter, 2001).
DISCUSSION

GWAS revealed the genotype-phenotype associations but was lack of functional interpretations. In this

work, we proposed a cross-scale computational framework GRPath to open the ‘‘black box’’ associations

between genotype andmulti-layer phenotypes. Starting from personal genomes, GRPath links genetic var-

iants, chromatin accessibility, gene expression, cell type, and individual-level disease state together, and

can uncover putative gene regulation paths of a specific disease in the form of ‘‘pcRegion-pcVariant-

pcGene-noteworthy cell type-disease phenotype’’ paths. It bridges the gap between statistical associa-

tions and biological mechanisms and can be used to study heredity and micro-to-macro mechanisms of

complex diseases with strong genetic effects.

We showcased the use of GRPath on CVD, a disease where genetic factors contribute greatly. We revealed

a list of pcRegions, pcVariants, and pcGenes of CVD, and identified 646 and 549 pcPaths for two CVD sub-

types dHF and cHF, respectively. We studied two example paths in detail. One example is the ‘‘rs604723

surrounding region-rs604723-ARHGAP42-SMCs-dHF’’ path which can be well validated by existing works.

The other is a new discovery on the putative path for cHF involving rs1912483 surrounding region,

rs2292867, ITGB3, and MPs. The findings illustrated the power of the proposed method and brought

new understandings of the possible mechanism underlying the studied disease.

The example paths we analyzed focused only on highly variable pcGenes in significantly enriched GO

terms. There can be multiple regulatory paths in which the highly variable pcGenes may not be enriched

for a specific GO annotation. For example, USP36 is a highly variable pcGene for cHF, and it has the highest

AUROC in ECs. It has been reported that USP36 might be related to the formation of a circular RNA

hsa_circ_0003204. The circRNA influences the development of atherosclerosis as it functions through the

miR-330-5p/Nod2 axis that promotes oxidative stress and apoptosisand worsens endothelial cell injury

induced by low-density lipoprotein (Zhang et al., 2021). Our analysis showed that the SNP rs1057040, a

pcVariant in rs1044486 surrounding region, may affect the expression of USP36 and hsa_circ_0003204

through TF binding (Figure S3). Further investigation on the ‘‘rs1044486 surrounding region-rs1057040-

USP36-ECs-cHF’’ path should be able to bring new biological insights.

The regulatory paths we found can explain possible biological mechanisms that cause the associations be-

tween genotypes and the disease phenotype. However, stringent causality cannot be established based

only on the static data collected from multiple studies. Mendelian randomization (MR) methods have

been used to identify possible causal genes for GWAS results, but they were not designed to unfold the

black-box, and they have either the tissue non-specificity problem or interpretability problem (Burgess

and Thompson, 2015; Neumeyer et al., 2020). Our framework, on the other hand, can be specified to dis-

ease-relevant tissues. Each step in the inference process was transparent and interpretable. Moreover, our

framework may capture some cohort-specific signals derived from personal genomes, which may be

missed by summary-data MR methods.

The cross-scale computational framework we proposed can be applied to any diseases that have genetic

effects. To use GRPath, users should prepare GWAS SNPs of the disease, personalized chromatin open-

ness scores from disease-relevant tissues and corresponding donor disease phenotypes, tissue-eQTLs,

and scRNA-seq data from disease and control samples. Taking these data as input, GRPath can then
iScience 25, 104790, August 19, 2022 9
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predict putative gene regulation paths for the disease. The source code and usage description of GRPath

are freely available online.
Limitations of the study

There are several aspects that our work can be further improved. In the current work, we only considered

one type of gene regulation path through gene expression. But phenotypes can be affected by many other

biological processes such as DNA methylation, histone modification, alternative splicing, and so forth.

These factors should be considered in future versions of GRPath models. Another limitation of the current

work is that the data we used were unpaired. Being able to utilize scattered data frommultiple sources is an

advantage of the proposed method, but if we can use data collected from better-coordinated studies, the

findings can be more accurate. Another aspect that can further improve the method is to decipher the link

between gene expression properties in cells and the disease phenotype. Ideally, we should be able to

quantify the deviations of certain types of cells from their normal states and model the quantitative influ-

ences of such deviations on the disease phenotypes. This would require the complete characterization

of molecular and functional features of all major types of cells, which is the goal of building comprehensive

cell atlases of healthy references (Chen et al., 2021; Regev et al., 2017).
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Predict heart-specific openness scores

Since GTEx did not provide chromatin accessibility information, we need to first predict chromatin acces-

sibility state from current WGS and RNA-seq data. Li et al. predicted openness scores of 2,965,129 REs by

first training a regression model based on paired RNA-seq and ATAC-seq data from the ENCODE project,

then applying the trained model on GTEx samples (Li et al., 2020). Each RE was a 500 bp genomic region

centering around a peak from ENCODE project, and its corresponding background was a 1 Mb genomic

region centering around the same peak. The openness score was a continuous value, quantifying the rela-

tive openness of a 500 bp peak region compared with its corresponding 1 Mb background region. We

applied this model on 635 GTEx heart samples from 357 donors, and obtained the predicted openness

scores. More specifically, we constructed an average TF expression profile for each of the two tissue types

(left heart ventricle or atrial appendage), and then combined with the WGS to predict accessibility for each

sample in each donor.

Decide pcRegions and pcVariants for CVD

The second step was to decide pcRegions that contain pcVariants of CVD, instead of regions that are just

associated with CVD. This step was further separated into some sub-steps. We first defined some candi-

date genomic regions according to prior knowledge. Then, we randomly separated the labeled donors

into two groups to evaluate the causal effect of variants in each candidate genomic region as well as the

causal effect of these candidate genomic regions on CVD. Finally, we repeated the random sampling pro-

cess, and defined pcRegions and pcVariants.

Define candidate genomic regions

There are 340 SNPs significantly associated with CVD according to GWAS summary statistics. We first

expanded each SNP to a 200 kb region centering around it, and then selected regions containing variants

that are cis-eQTLs in heart left ventricle or atrial appendage. There were 338 candidate genomic regions

that satisfied the above criteria, and we regarded them as candidate genomic regions for further analysis.

We used web-based software biomaRt (Durinck et al., 2009) to convert human reference genome version in

GWAS from GRCh38 to GRCh37 to be compatible with GTEx samples.

Evaluate causal effects of variants in each candidate genomic region

After we defined candidate genomic regions, we quantified and prioritized the causal effect of the variants

on CVD. We used Python packages numpy (Harris et al., 2020), pandas (McKinney, 2010) and scikit-learn

(Pedregosa et al., 2011) in this part.

First, we selected a subset of donors for this task. We referred to ‘‘DTHCOD’’ (the direct cause of death) and

‘‘DTHDUCOD’’ (the first underlying cause of death) information of GTEx donors, and labeled 90 donors

whose deaths were related to CVD (e.g., cardiovascular disease, myocardial infarction, etc.) as ‘‘CVD pos-

itive’’, and another 60 donors whose deaths were caused by accidents (e.g., motor vehicle accident, drug

intoxication, etc.) as ‘‘CVD negative’’. Since other donors have other diseases, which might introduce some

confounding factors into the model, we abandoned these samples to minimize potential influence.

Then, in each candidate genomic region, we filtered out variants with less than 10 reference or alternate

allele donors, and calculated VCS score for each remaining variant. The kth variant’s VCS score is defined as

VCSk = juk , lk j:
To avoid information leakage, we randomly separated all labeled donors into five folds. We used two folds

of the labeled donors to obtain the weights u, and the other three folds to calculate l and VCS score.

lk is defined as

lk =

�����

PD1
d = 1Od

D1
�

PD2
d = 1Od

D2

�����;

Od is the openness score of RE where variant k locates, D1 is the number of donors with alternate alleles,

and D2 is the number of donors with reference allele. Intuitively, lk quantifies the influence of variant k on

chromatin accessibility of corresponding RE.
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To define uk, let u be the weight vector of all features in a logistic regression model, where we used the

openness scores of the REs in this candidate genomic region to classify donors with or without CVD. The

objective function of this logistic regression model is

min
u; c

1

2
uTu+C

XD

d = 1

log
�
exp

�� yd
�
Od

T
u + c

��
+ 1

�
;

where D is the total number of the 2/5 labeled donors,Od is the vector of RE openness scores in this candi-

date genomic region, and yd is the binary label (CVD positive/CVD negative) of donor d. uk is the compo-

nent in u which corresponds to the RE where the variant k locates. Intuitively, uk quantifies the influence of

chromatin accessibility of corresponding RE on CVD.

In summary, the VCS score integrates the effect of the variant on RE openness and the effect of RE open-

ness on CVD, to evaluate the relative causal effect of the variant within the candidate genomic region. Var-

iants with higher VCS scores should have a stronger causal effect on CVD.

It is worth noticing that calculating l and VCS score does not require disease phenotype information, so we

could still save the 3/5 labeled donors for downstream analysis.
Evaluate causal effects of candidate genomic regions

Based on variants prioritization results, we further evaluated the causal effect of the candidate genomic re-

gions on CVD.

For each variant, we could obtain the following statistics:
CVD positive CVD negative

Number of alternate-allele donors a b

Number of reference-allele donors c d
Then, we could calculate the odds ratio (OR) for each variant, which is defined as

OR =
a=b

c=d
:

OR quantifies the causal effect of each candidate genomic region on CVD, and we used the 3/5

labeled donors whose disease phenotype information had not been used in the previous step to

calculate OR.

We reason that if a candidate region includes one or more REs mediating the causal effects in a tissue-spe-

cific manner, then ORs of the variants in these REs should be different from those outside. Thus, if the ORs

of top-ranked variants are significantly higher or lower than bottom-ranked variants in a candidate genomic

region, causal variants should exist in this region, which shows alternate-allele-pathogenic or reference-

allele-pathogenic effect on CVD, respectively. Based on this hypothesis, we performed one-tail Wilcoxon

rank-sum tests to compare ORs of top-ranked variants and the same number of bottom-ranked variants in

each candidate genomic region. We tested for ‘‘ORs of top-ranked variants are higher than the same num-

ber of bottom-ranked variants’’ and ‘‘ORs of top-ranked variants are lower than the same number of bot-

tom-ranked variants’’, which correspond to alternate-allele-pathogenic and reference-allele-pathogenic

scenario respectively, and calculated corresponding p-values. Since the number of causal variants in

each region should be different, we performed hypothesis testing for top- and bottom- 2%�50% variants

separately, and kept the lowest p-value in each scenario as the quantification of alternate-allele-patho-

genic and reference-allele-pathogenic effect on CVD of this region. We also kept the top-ranked variants

corresponding to the lowest p-value.

Call pcRegions and pcVariants

To call pcRegions and pcVariants of CVD, we repeated the above two steps (‘‘Evaluate causal effects of var-

iants in each candidate genomic region’’ and ‘‘Evaluate causal effects of candidate genomic regions’’) for
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30 times. In each time, we resampled the labeled donors, and obtained p-values with corresponding top-

ranked variants. We used Fisher’s method to combine the 30 p-values in alternate-allele-pathogenic and

reference-allele-pathogenic cases, respectively. Then, we performed Bonferroni test on Fisher’s p-values

across all candidate genomic regions in multiple test correction, regarded the regions with false discovery

rate (FDR) lower than 13 10�9 as pcRegions, and further distinguished them as alternate-allele-pathogenic

or reference-allele-pathogenic regions. In pcRegions, we defined variants which appeared more than one

time in the top-ranked variants list in the repetitive tests as pcVariants. We used Python packagemultiproc-

ess (McKerns et al., 2012) to accelerate computational process, Python package scipy (Virtanen and Gom-

mers et al., 2020) and R package stats (R Development Core Team, 2010) to perform statistical analysis.
Find noteworthy cell types for two types of heart failure

The third step was to identify disease-noteworthy cell types, and to find out the roles that pcVariants play in

these cell types. We bridged the gap between pcVariants and cell types through gene expression. By

leveraging eQTL studies and scRNA-seq data, we were able to first relate pcVariants to gene expressions

of eGenes, then relate these pcGenes to certain heart cell types in a more specific type of CVD.

We collected SMCs, ECs, FBs, MPs, and CMs from normal, dHF, and cHF donors. By comparing gene

expression changes between normal and disease cells, we observed which cell types were most affected,

and the importance of the pcGenes in different cell types in this disease. Following the idea proposed by

Skinnider et al. (Skinnider et al. (2021), we turned this biological problem into a classification problem. We

assumed that if cells in normal and disease status from the same cell type were better classified, this cell

type should be more affected by this disease, and vice versa. We applied a random forest model for clas-

sification, and used AUROC to prioritize cell types. The comparison of AUROCs among different cell types

revealed which cell type was more affected, and the corresponding feature coefficients in each cell type

suggested the importance of each gene in these cell types. If we only use one feature (gene) to do classi-

fication, then the AUROC quantifies the importance of this gene to different cell types in this disease. This

part was implemented using Python package scikit-learn (Pedregosa et al., 2011).

Take dHF as an example, after quality control and normalization, we integrated 7,418 normal cells and

2,728 dHF cells from five cell types. Based on R package Seurat (Butler et al., 2018), 2000 highly variable

genes were selected for batch correction and data integration. Then, taking each highly variable pcGene

as the feature, we applied random forest classifiers on the processed gene expression matrix for each cell

type, and obtained the classification (dHF versus normal) AUROCs, which compared the importance of

each pcGene in different cell types. We repeated the classification process for 10 times per highly variable

pcGene, and took their average as the final AUROC.
QUANTIFICATION AND STATISTICAL ANALYSIS

In deciding pcRegions, we used one-tail Wilcoxon rank-sum tests to compare ORs of top-ranked variants

and the same number of bottom-ranked variants in each candidate genomic region. We then used Fisher’s

method to combine the 30 p-values for each region in repetitive tests, and performed Bonferroni test on

Fisher’s p-values across all candidate genomic regions in multiple test correction. We defined significance

as adjusted p-value less than 13 10�9. Python package scipy (Virtanen and Gommers et al., 2020) was used

in one-tail Wilcoxon rank-sum tests and in combining p-values. R package stats (R Development Core

Team, 2010) was used in multiple test correction.

In downstream enrichment analysis, we used R package clusterProfiler (Yu et al., 2012), and defined signif-

icance as FDR less than 0.05. The web-based visualization tool Circos (Krzywinski et al., 2009) and Python

package networkx (Hagberg et al., 2008) were used for visualization.
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