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The complexity of the tumor microenvironment presents significant challenges to cancer
therapy, while providing opportunities for targeted drug delivery. Using characteristic
signals of the tumor microenvironment, various stimuli-responsive drug delivery systems
can be constructed for targeted drug delivery to tumor sites. Among these, the pH is
frequently utilized, owing to the pH of the tumor microenvironment being lower than that of
blood and healthy tissues. pH-responsive polymer carriers can improve the efficiency of
drug delivery in vivo, allow targeted drug delivery, and reduce adverse drug reactions,
enabling multifunctional and personalized treatment. pH-responsive polymers have
gained increasing interest due to their advantageous properties and potential for
applicability in tumor therapy. In this review, recent advances in, and common
applications of, pH-responsive polymer nanomaterials for drug delivery in cancer
therapy are summarized, with a focus on the different types of pH-responsive polymers.
Moreover, the challenges and future applications in this field are prospected.
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1 INTRODUCTION

Cancer is a major cause of morbidity and mortality, greatly impacts quality of life, and is a serious
threat to human health; the number of diagnosed patients has increased gradually in recent years
(1–4). For example, recently, there were 18 million new cancer cases and 9.5 million cancer deaths
worldwide in 2018 (1). Many scientists worldwide are committed to researching the diagnosis and
treatment of cancerous tumors (5–10). Although this research has achieved some results, to some
extent, the complex tumor microenvironment remains a barrier to novel tumor therapy programs.
Chemotherapeutic therapy, referred to as chemotherapy, is still one of the main methods of tumor
treatment (11–13). Some chemical drugs, such as oxaliplatin, doxorubicin (DOX), and paclitaxel
(PTX), are applied to kill tumor cells and shrink or destroy the tumor (14–18). Because drug
delivery is generally given systemically, the body itself will also be affected and damaged to some
extent, causing side effects, complications, and even death in some serious cases (19–22). Therefore,
the development of target-specific or stimuli-sensitive drugs that can identify tumor cells, to achieve
the purpose of tumor treatment with no or very little impact on normal tissue cells, is the current
focus of research.

During tumor growth, cell proliferation and angiogenesis are uncontrolled and dysfunctional,
resulting in a complex tumor microenvironment, comprising severe hypoxia, a slightly acidic pH,
and excessive ROS (22–24). Owning to the severely hypoxic microenvironment, a large number of
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acid metabolites are produced through glycolysis in tumor cells,
leading to a weakly acidic microenvironment (pH < 6.5) around
tumor tissues, which is lower than the pH value of blood and
healthy tissues (pH 7.4) (25–27). In addition, after endocytosis,
the rapid acidification due to proton influx decreases the pH
values of intracellular and suborganelle structures (pH 5.0–6.0)
and lysosomes (pH 4.0–5.0) (28, 29).

This complex tumor microenvironment can be exploited by
researchers to obtain specific responses; for example, pH-
responsive stimuli were found to respond to the difference in
pH between normal and tumor tissues (30, 31). pH-responsive
stimulation is a powerful tool that can be used to regulate the
properties of materials (32). Researchers have designed pH-
responsive polymer nanomaterials (10–100 nm) (33) that can
be engineered to suit the need of the therapy and target area.
These materials are relatively stable in the blood and normal
tissue but are unstable in the tumor area (acidic pH), leading to
rapid changes in the degree of ionization in pH-responsive
groups, causing material changes that release the anti-tumor
drugs, achieving the goal of targeted tumor therapy (34, 35).
Researchers have performed sustainable research on these pH-
responsive polymer nanomaterials (36, 37). This review will
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focus on pH-responsive polymer nanomaterials in tumor
therapy and comprises a brief introduction to anti-tumor drug
loading methods, a clarification of the mechanism and
application of pH-responsive polymer nanomaterials in tumor
therapy, an outlook addressing the great recent challenges faced,
and suggestions for applications and future research directions.
2 ANTI-TUMOR DRUG LOADING
METHODS FOR PH-RESPONSIVE
POLYMER NANOMATERIALS

Theoretically, pH-responsive polymer nanomaterials can carry
anti-tumor drugs, which are transported into the tumor tissue
and are then released to produce therapeutic effects on tumors.
pH-responsive nanomaterials are classified into organic
nanomaterials (liposomes, polymer micelles, polymer capsules,
nano-gels, dendrimers, etc.), inorganic nanomaterials [carbon
nanoparticles (NPs), silica NPs, gold NPs, etc.], and composite
nanomaterials [metal–organic frameworks (MOFs) and metal-
phenolic networks, etc.] (Table 1). They exhibit many different
TABLE 1 | Classification of nanomaterials.

Nanomaterials

Classify Morphology or structure Characteristics or deficiency

Organic
Nanomaterials

Liposomes A hydrophobic phospholipid bilayer, and a central
hydrophilic cavity

Low toxicity, good biocompatibility, easy degradation;
poor stability in vitro, and in vivo, and unstable drug
release kineticsPolymer capsules A hydrophobic wall, and a hydrophilic cavity

Polymer micelles “Core-shell” structure, hydrophobic cores, and
hydrophilic shell

Nanogels Colloidal particles, with an internal cross-linked structure
Dendrimers Spherical structures of multi-branched polymers, central

cores, branches of repetitive units, and an outer layer of
multivalent functional groups

etc.

Inorganic
Nanomaterials

Carbon
nanoparticles

Graphene Network structure from zero-dimensional to three-
dimensional, and at least one dimension of the
dispersion size is less than 100 nm

Good biocompatibility, electrical conductivity, optical
properties, and photothermal properties;
carrier surface modification is very important

Carbon nanotubes
Fullerenes
Carbon quantum
dots
etc.

Silica nanoparticles Mesoporous silica nanoparticles, a large number of pore
structures, the aperture is in the range of 2-50 nm

The ordered arrangement of pores, tunable pore size,
pore volume, and surface chemistry, high chemical
stability, and biocompatibility; rely on surface
modification to achieve the controlled release of drug
molecules

Metallic
nanoparticles

Gold nanoparticles Core (metal), and shell (functional material) Gold nanoparticles have a wide range of applications,
controllable particle size, easy surface modification,
good biocompatibility, excellent photothermal
properties, and enzyme activity

Silver nanoparticles
Iron nanoparticles
etc.

etc.

Composite
Nanomaterials

Metal-Organic Frameworks An infinitely extended network-like structure, organic
bridging ligands linked to metal ions (clusters) by self-
assembly or coordination bonds

Large surface area, adjustable performance, a large
amount of drug encapsulation, and sustained release
effect

Metal-Phenolic Networks A network structure formed by the coordination of
phenolic hydroxyl groups with various metal ions in
polyphenols

Good biocompatibility; poor biological antifouling
performance

etc.
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structures: linear (homopolymer, biblock copolymers,
multiblock copolymers, and organic/inorganic hybrid
polymers), non-linear branched (branched or hyperbranched
polymers), and grid. Linear homopolymers and amphiphilic
and amphiphilic block copolymers the most common types, and
mainly form micelles, vesicles, dendritic macromolecules, and
nanogels. Owing to the different properties of different drug
molecules, it is necessary to select the appropriate nanomaterial
according to the properties of the particular drug; drugs and
nanomaterials can be combined in different ways. The anti-tumor
drug loading methods for pH-responsive polymer nanomaterials
can be classified into three categories: physical encapsulation,
intermolecular force, and chemical bonding, via the connection
between the pH-responsive polymer nanomaterial and anti-tumor
drug (Figure 1).

2.1 Physical Encapsulation
Physical encapsulation is the earliest and most effective drug
loading method for nanomaterials. It can be used in organic,
inorganic, and composite nanomaterials; the most common
Frontiers in Oncology | www.frontiersin.org 3
nanomaterials discussed for its use in the literature are
liposomes, polymer micelles, polymer capsules, mesoporous
silica NPs, MOFs, and metal–polyphenol nano-networks.

Liposomes were the earliest kinds of nano-drug. They mainly
consisted of a bilayer of phospholipid molecules, which could be
used to encapsulate the anti-tumor drugs in a hydrophobic
phospholipid bilayer or a central hydrophilic cavity; their drug
piggybacking was achieved through the physical encapsulation
route. Hong et al. (38) designed lipid–polymer hybrid NPs with
poly(lactic-co-glycolic acid) as the hydrophobic core to encapsulate
afatinib and/or miR-139 encapsulated in an amphiphilic shell of
polyethylene glycol (PEG) liposomes, and further modified the shell
layer with ligand arginine and pH-sensitive cell-penetrating peptide
histidine to enhance the targeting and penetration of these
multifunctional NPs in the acidic microenvironment of colorectal
cancer cells. Similar to iposomes, physical encapsulation is the main
method of drug loading polymer capsules; the polymeric
capsules encapsulate hydrophobic drug molecules within the
capsule wall and hydrophilic drug molecules in the cavity (39).
Zhong et al. (40) synthesized a pH-responsive block polymer, which
FIGURE 1 | Schematic diagram of pH-responsive polymer nanomaterials loaded with anti-tumor drugs and entering the tumor environment.
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comprised methoxy PEG (mPEG) and poly(asparagyl
diisopropylethylenediamine-co-phenylalanine), self-assembled into
nano-microcapsules as a drug carrier, and encapsulated
the hydrophilic hypoxia-activated prodrug tirapamine and
hydrophobic photosensitizer dihydroporphyrin [chlorin e6 (Ce6)]
to treat breast cancer effectively. Polymeric micelles are the most
common carriers of high-molecular-weight polymers. They are
thermodynamically stable colloidal solutions formed by the self-
assembly of amphiphilic block copolymers in water, and their “core-
shell” structure can encapsulate hydrophobic drugs in hydrophobic
cores. Xu et al. (41) encapsulated the reactive oxygen species (ROS)
generator vitamin K3 with pH/ROS dual-sensitive polymer prodrug
PEG-b-P[(LL-g-TK-PTX)-(LL-g-DMA)] micellar NPs to prepare
polymeric prodrug-based drug delivery systems (DDSs) with pH-
induced surface charge inversion and ROS amplification for ROS-
triggered self-accelerated drug release. Mesoporous silica NPs
(MSNs) contain a large number of pore structures, which can
significantly increase the drug loading capacity and can be blocked
by blocking agents, such as surface films or pH-sensitive ZnO
quantum dots (QDs), to prevent the drug from leaking at non-
targeted positions during transportation in vivo. The inorganic
material on the walls of MSNs can prevent mechanical, thermal,
and biological degradation of the encapsulated drugs to provide safe
and effective drug delivery (42). Yan et al. (43) developed a
biodegradable pH-responsive hollow MSN for the co-delivery of
pheophorbide a and DOX. The NP possessed controllable particle
size and a large inner hollow core, giving it excellent encapsulation
capacities. MOFs are crystalline materials consisting of organic
bridging ligands linked to metal ions (clusters) employing
coordination bonds to form an infinitely extended network-like
structure, which can physically embed drugs. He et al. (44) loaded
cisplatin precursor drugs into UiO nanoscale MOFs with
hexagonal-plate morphologies by encapsulation and loaded
multiple drug resistance gene-silencing siRNAs by the surface
ligand to enhance the therapeutic efficacy against drug-resistant
ovarian cancer cells. Liposomes and nanocapsules can carry drugs
only by physical encapsulation, unlike other carriers, which can
carry drugs through physical encapsulation, using intermolecular
forces, or via chemical bonding.

2.2 Intermolecular Forces
The use of intermolecular forces is also a common non-chemical
bonding method of attaching drugs to carriers. Such forces
include electrostatic attraction, hydrogen bonding, p–p
interaction, van der Waals forces, and hydrophobic
interactions. For water-soluble polymers, drugs can be loaded
onto nanomaterials by intermolecular interaction to increase
their circulation time and limit their toxicity to normal tissues
(45–48). Polymer micelles, nanogels, carbon NPs, and dendritic
macromolecules can be combined with drugs via one or more
intermolecular forces. Polymeric micelles are capable of carrying
drug molecules in their cores using hydrophobic forces and
hydrogen bonding forces. Wu et al. (49) wrapped hydrophobic
DOX in the core of core/shell PEGylated poly(glycerol sebacate)
(PEGS)/hydroxyapatite hybrid nanomicelles using hydrogen
bonding and fabricated spherical NPs with a high drug loading
capacity and pH-sensitive response release by optimizing the
Frontiers in Oncology | www.frontiersin.org 4
coordination of PEG nanomicelles with the hydroxyapatite
mineralization-responsive release of spherical NPs. In addition,
multi-intermolecular forces can stabilize the bond between
carriers and drugs. Zhao et al. fabricated co-loaded NPs using
supramolecular assembly, which consisted of a block copolymer
of mPEG and polycarbonates, DOX, and Ce6. DOX and Ce6
were mainly dispersed in the hydrophobic core. The
hydrophobic polycarbonate chain segments and cationic
polycarbonate chain segments generated strong intermolecular
interactions between the polymer and cargo, including
hydrophobic interactions, hydrogen bonding interactions, and
electrostatic interactions. The strong interactions between Ce6
and DOX, including electrostatic interactions, p–p stacking
interactions, and hydrophobic interactions, favored the
formation of NPs (50). Nanogels with an internal cross-linked
structure often adsorb drug molecules through hydrophobic
interactions and can use their swelling and anti-swelling
characteristics to achieve the stimulus-responsive release of
drug molecules. Howaili et al. (51) synthesized a plasmonic
nanogel loaded with curcumin (AuNP@Ng/Cur) as a stimuli-
responsive nanocarrier, using an incubation method at
temperatures above the lower critical solution temperature to
promote hydrophobic interactions between the Cur and nanogel
to achieve loading. Dendrimers are well-defined spherical
structures of multi-branched polymers, characterized by central
cores, branches of repetitive units, and an outer layer of
multivalent functional groups. Their hydrophobic core can
encapsulate uncharged non-polar small molecular drugs, and
their functional groups can electrostatically interact with charged
polar molecules or chemically bind with immunotherapeutic
agents such as therapeutic antibodies. Shi et al. (52) developed a
unique polymeric hybrid NP nanoplatform for multi-stage
siRNA delivery, which was formed by electrostatic interactions
between the copolymer mPEG–poly(l-histidine)-poly
(sulfadimethoxine), the dendrimer poly-l-lysine, and
PLK1siRNA to efficiently deliver siRNA.

2.3 Chemical Bonding
Researchers often combine drugs with carriers through chemical
bonds, such as coordination bonds and acid-unstable bonds, and
common nanomaterials, including composite nanomaterials
(MOFs), organic nanomaterials (dendrimers), and inorganic
nanomaterials (quantum dot nanomaterials).

MOFs are composite nanomaterials with intramolecular
pores formed by the self-assembly of organic ligands and metal
ions or clusters through coordination bonds (53). Shen et al. (54)
prepared a core-shell nanocomposite composed of zeolite
imidazole skeleton-90 (ZIF-90) coated with spermine-modified
acetal dextran (SAD), in which hydrophilic DOX was covalently
bonded to the ZIF-90 skeleton and the hydrophobic
photosensitizer IR780 was loaded into the SAD shell, thus
allowing combined photodynamic therapy and chemotherapy.
Duan et al. (55) fabricated a novel pH-responsive MOF antigen-
delivery system to solve the problems in the delivery strategy for
tumor-associated antigens (TAAs). Through the one-pot
synthesis process, TAAs were loaded into MOFs, which were
released into the tumor site and disintegrated due to hydrolysis
March 2022 | Volume 12 | Article 855019
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caused by the slightly acidic tumor environment, thus enhancing
the anti-tumor effect. In dendrimer polymers, such as PAMAM,
funct iona l groups can be chemica l ly l inked wi th
immunotherapeutic agents. Xia et al. (56) linked DOX to the
terminal amino group of PAMAM through a pH-sensitive
hydrazone bond [PEG-PAMAM-DOX (PPD) conjugate] and
designed a PAMAM-based NP (LMWH/PPD/CpG) loaded with
DOX and immunoadjuvant cytosine–phosphate–guanine
oligonucleotides (CpGODNs) for the combined chemotherapy
and immunotherapy of metastatic melanoma. QDs in inorganic
nanocarriers can also combine drugs with carriers through
special coordination. Cai et al. (57) synthesized the first acid-
decomposable, luminescent aminated ZnO QDs as nanocarriers
with ultra-small size, modified with dicarboxyl-terminated PEG
and hyaluronic acid (HA), and finally, constructed a ZnO QD-
based pH-responsive drug delivery platform, in which DOX
molecules were successfully loaded to PEG-functionalized ZnO
QDs via the formation of a metal–DOX complex and covalent
interactions. After the ZnO QDs are taken up by cancer cells, the
metal–drug complexes dissociate in the acidic environment of
the endosomes or lysosomes, releasing Zn2+ and DOX,
achieving synergistic therapy.

In terms of drug loading rate and accurate controlled drug
release, the performance of physical encapsulation is poorer than
that of the other two drug-loading methods, which can not only
reduce the non-specific release of drugs during circulation, but can
also increase drug loading by adjusting the ratio of reactants and
have obvious advantages in clinical production and application.
These benefits may be related to the molecular weight, surface and
internal structures of the material, whether the surface is charged,
and whether the surface is hydrophobic. Owing to the advantages
and disadvantages of these three different loadingmethods and the
complexity of the tumor microenvironment, researchers have
constructed nanomaterials with a diverse combination of
different drug-loading methods and achieved satisfactory results
in drug delivery and tumor treatment. Two pH-sensitive
conjugates, pluronic P123-mono–hydrazone bond-P123-single-
hydrazone–docetaxel and pluronic P123-double–hydrazone
bond–docetaxel, prepared by Su et al. (58) were used as carrier
materials to encapsulate docetaxel physically. These polymer
micelles, which were prepared using chemical combination and
physical encapsulation, can increase the drug loading capacity and
drug release control compared to those created by chemical
combination or physical encapsulation.
3 MECHANISM OF PH-RESPONSIVE
POLYMER NANOMATERIALS
IN TUMOR THERAPY

pH-responsive polymer nanomaterials carrying anti-tumor
drugs can change their structures or properties with the pH
reduction in the tumor microenvironment, thus providing
accurate targeted tumor therapy. The common pH-sensitive
structures mainly include chemical bonds, which are relatively
stable in a neutral or alkaline environment but unstable in an
Frontiers in Oncology | www.frontiersin.org 5
acidic environment and are hydrolyzed or broken; polymers that
can change their charge properties according to the change in pH
(59); and other special pH-responsive polymers. Since these
special pH-responsive structures will change their structures or
properties according to changes in pH in the environment, the
structure of nano-drug carriers containing these structures will
also change (rearrangement, expansion, or degradation) (60).
The aim of this is to release the loaded therapeutic drugs, remove
the protective layer, cause disintegration close to targeted
molecules in areas of pH change, and overall, achieve
improved drug delivery efficiency and therapeutic effects (61; 62).

3.1 pH-Sensitive Chemical Bonds
Previously, we have discussed the drug loading methods for
nanomaterials. Although the special spatial structure of some
nanomaterials allows for the physical loading of drug molecules,
combining the drugs and polymer carrier through chemical
bonds can better control the distribution and release of drugs,
can make the nano-drug system more stable in vivo, and only
specifically degrade and release drugs in the tumor tissue
environment (63–66). At present, we already know that many
chemical bonds are unstable and easy to break in a strongly
acidic or strongly alkaline environment. We can utilize these
unstable chemical bonds in an acidic environment and introduce
them into nano-drug carriers to construct a pH-responsive
polymer DDS that can specifically release drugs in the slightly
acidic tumor microenvironment. The common pH-sensitive
bonds mainly include hydrazone/acyl hydrazone, imine, acetal/
ketal, oxime, amide, ester/orthoester, b-thiopropionatent, and
borate ester (59, 60, 67–69). The general structures of these
bonds and the corresponding hydrolyzed products are
summarized in Figure 2.

3.1.1 Hydrazone/Acyl Hydrazone Bonds
Hydrazone/acyl hydrazone bonds are formed by the
condensation reaction of hydrazine groups (-NH-NH2) or
hydrazide groups (-CONH-NH2) with ketones or aldehydes.
This reaction is relatively stable at pH 7.4, and thus, the
hydrolysis rate is very slow but will be accelerated at lower pH
levels (70). Based on this, hydrazone/acyl hydrazone bonds are
widely used in drug delivery (71).

In the early 1990s, Greenfield et al. (72) and Kaneko et al. (73)
had studied various hydrazone bonds formed by the
condensation of the ketone groups of DOX with hydrazide
groups. The sensitivity of the hydrazone bond to the acidic
environment has since been deeply and extensively studied,
and it has been applied to various structures, including linear
(73), star-shaped (74), and cross-linked (75) molecules. Recently,
Long et al. (76) reported a novel strategy to endow cellulose
nanocrystals (CNCs) with pH responsiveness and drug loading
through the formation of hydrazone bonds between PEG-
modified CNCs and the aldehyde group of DOX. DOX was
loaded on PEG-modified CNCs and could be specifically released
from pH-responsive drug polymer carriers at the tumor site. The
results of anti-tumor experiments both in vivo and in vitro
showed that the drug carrier had obvious cytotoxicity and a
good anticancer effect.
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The most common method of introducing hydrazone bonds
into nano-drug carriers is the condensation of hydrazide groups
in various polymers with ketones or aldehyde group drugs.
Therefore, the existence of ketone or aldehyde functional
groups in drug molecules is the main challenge hindering the
application of hydrazone bonds (77). Although many
researchers have synthesized drug derivatives to obtain
ketones or aldehyde groups, such as PTX synthesized by Alani
et al. (78), cisplatin synthesized by Aryal et al. (79), and Cur
Frontiers in Oncology | www.frontiersin.org 6
derivatives synthesized by Li et al. (80) and Wang et al. (81) in
clinical application, the product development and regulatory
approval of these drug derivatives are difficult in practice (77).
At the same time, the cationic polymer residues that may be
formed after the hydrazone bond breaks in an acidic
environment will produce cytotoxicity to a certain extent (82).
These limitations in the application of nano-polymers
containing hydrazone bonds to tumor therapy require
improvement through further research.
FIGURE 2 | PH-responsive linkages and the corresponding hydrolyzed products.
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3.1.2 Imine Bonds
The structural formula of imine bonds is -C=N-, which is widely
known as a pH-sensitive dynamic covalent bond. Its carbon–
nitrogen double bond structure is obtained by the condensation
reaction of aldehydes or ketones with primary amines, i.e., the
“Schiff base reaction”. Therefore, the Schiff base structure mainly
refers to a class of compounds containing C=N groups. Although
it has been proven that the structure can exist stably in an alkaline
or neutral environment and accelerate the hydrolysis/breaking rate
in an acidic environment (83, 84), some researchers agree that
imide bonds are not stable enough under physiological conditions
(i.e., pH 7.4 and 37°C) (85, 86). Thus, it has been suggested that
increasing the stability by conjugating with the p–p bond to form
benzoic–imide bonds could be a solution to this (87).

The synthesis of benzoic–imide bonds involves amines and
benzaldehydes, which exist naturally in many raw materials and
are easy to obtain and synthesize. They are very suitable for
constructing pH-responsive polymer nanomaterials and have
been widely used in anti-tumor DDSs. For example, Liao et al.
(88) prepared pH-responsive benzoic-imide polymer nanogels as
carriers of indocyanine green (ICG) by crosslinking poly
(ethylenimine)-g-mPEG (PEI-g-mPEG) copolymers with
hydrophobic terephthalaldehyde molecules in an aqueous
solution with pH 7.4. The nanogel loaded with ICG not only
significantly improved the photostability of ICG in phosphate
buffer, but also clearly slowed down the leakage of ICG at pH 7.8,
and when the pH was decreased from 7.8 to 6.4, the benzoic–
imide bonds in the nanogel broke and released ICG, showing
targeted release.

3.1.3 Acetal/Ketal Bonds
The structural formula of acetals/ketals allows for two alkoxy
groups to connect on the same carbon; the difference between
them is that ketals have one more central carbon substituent than
acetals. Under acidic conditions, one of the oxygen atoms is
protonated, thus activating the adjacent carbon atoms and
leading to the hydrolytic fracture of bonds. Previous studies
have shown that polymers containing acetals/ketals can be
degraded into soluble monomers in the acidic pH of a tumor
microenvironment (89, 90).

Acetal/ketal bonds are also widely used in pH-responsive
polymer nano-DDSs (NDDSs). Zhao et al. (91) polymerized
cinnamaldehyde (CA) directly with glucose through acid-
unstable acetal bonds and encapsulated 10-hydroxy
camptothecin (HCPT), and then, synthesized a novel type of
pH-responsive DDS comprising HCPT–CA-loaded NPs (PCH).
In an acidic environment, both HCPT and CA could be rapidly
released by PCH. The results of anti-tumor experiments both in
vivo and in vitro showed that PCH could not only effectively
prolong the drug circulation, increasing the drug accumulation in
the tumor site and promoting the intake of drugs, but also induced
the death of cancer cells by producing intracellular ROS, showing
excellent therapeutic performance and improved biosafety.

3.1.4 Oxime Bonds
The structural formula of oxime bonds is -C=N-O-. These bonds
are reversible dynamic covalent chemical bonds, similar to imine
Frontiers in Oncology | www.frontiersin.org 7
bonds. The common method for preparing oxime bonds is a
condensation of aldehydes or ketones with hydroxylamine
groups, which can be hydrolyzed into aldehydes, ketones, and
hydroxylamines under acidic conditions (92, 93). Studies have
shown that oxime bonds are reversible, have dynamic pH
sensitivity, and can form a new type of pH-responsive polymer
(94). Jin et al. (94) successfully synthesized a pH-responsive
triblock copolymer (PEG-OPCL-PEG) by ligating aminooxy
terminals of OPCL with aldehyde-terminated PEG (PEG-
CHO), which consisted of hydrophilic PEG and hydrophobic
oxime-tethered polycaprolactone (OPCL). DOX was selected as
an anti-tumor model drug, which was encapsulated in PEG-
OPCL-PEG and self-assembled into micelles in an aqueous
solution. The drug release studies showed that the release rate
of DOX in micelles at pH 5.0 was significantly faster than that at
pH 7.4, which indicated that the oxime bond DDS had the
characteristic of pH response. The results of anti-tumor
experiments both in vitro and in vivo also showed that DOX-
loaded PEG-OPCL-PEG micelles had a high anti-cancer effect.

3.1.5 Amide Bonds
Amides are an important part of pharmaceutical chemistry, and
more than 25% of drugs in the database of pharmaceutical
chemistry contain amide bonds (95). The structural formula of
amide bonds is (-C=O-N-). The synthesis method involves initial
preparation using active carboxylic acid derivatives, such as acyl
chloride, anhydride, ester, and azide, followed by development
into an acylated preparation using substrates such as alcohols,
aldehydes, and alkynes, catalyzed by new catalysts and amines
(96, 97). Because some amide bonds with special side chains are
hydrolyzed and broken under weakly acidic conditions (98, 99),
such as maleic acid (MA) (60), cis-aconitine acid (100), and
dimethyl maleic anhydride (DMMA) (101), amide bonds are
also widely used in pH-responsive polymer NDDSs. Luo et al.
(102) linked stearic acid (SA) to the main chain of carboxymethyl
chitosan (CMC) through amide bonds, which then self-
assembled into an amphiphilic stearic acid-O-carboxymethyl
chitosan conjugate (SA-CMC), and then loaded the anti-tumor
drug PTX onto the conjugate to form PTX-SA-CMC NPs. In the
acidic environment of the tumor, the NPs disintegrated rapidly
and released drugs specifically, owing to the pH sensitivity or
acid instability of amide bonds. Both in vivo and in vitro
experimental results showed that compared to those in the free
PTX group, the drug uptake rate of tumor cells and killing effect
in the PTX-SA-CMC NP group were significantly enhanced,
which not only reduced the systemic toxicity but also achieved a
noticeable anti-tumor effect.

3.1.6 Ester Bonds
The structure of the ester bonds or orthoester bonds is similar, in
which one carbon atom is connected with two or three oxygen
atoms. They are also pH-sensitive and degrade faster than
acetals, ketals, or hydrazone bonds in an acidic environment
(103, 104). At present, ester bonds or orthoester bonds have been
widely studied and applied in pH-responsive polymers. Thambi
et al. (105) prepared pH-sensitive amphiphilic block copolymers
with orthoester bonds using hydrophilic PEG and hydrophobic
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poly(g-benzyl-L-glutamate) (PBLG) as carriers and loaded DOX
into them. In vitro release studies showed that DOX was released
slowly from the carrier in the physiological buffer with pH 7.4,
whereas the release rate of DOX increased significantly at pH 5.0.
In vitro cytotoxicity tests showed that the toxicity of these DOX-
loaded nanocarriers to SCC7 cancer cells was higher than that of
DOX carriers without orthoester bonds. These results indicated
that this pH-responsive copolymer NDDS with orthoester bonds
has great potential in tumor therapy.

3.1.7 b-Thiopropionate Bonds
Owing to the inductive effect of the S atom in the b-
thiopropionate bond, the hydrolysis of the bond is driven by
the positive charge on the carbonyl carbon of the ester.
Compared with other pH-resbeponsive chemical bonds, such
as hydrazone, imide, and acetal/ketal bonds, which are very
sensitive to pH changes, and thus, have a high hydrolysis rate
in an acidic environment, b-thiopropionate bonds can be
hydrolyzed at a relatively slow rate in a moderately acidic
environment (for example, pH 5.5) (106–108).

b-thiopropionate bonds can be synthesized by simple Michael
addition reaction of mercaptan methacrylate (106, 107). Samanta
et al. (69) copolymerized 2-hydroxyethyl methacrylate and a
coumarin-based methacrylate monomer containing a b-
thiopropionate moiety via reversible addition–fragmentation
chain transfer (RAFT) polymerization. The copolymer self-
assembled to form vesicular nanoaggregates at physiological
pH conditions, and then, photochemical crosslinking was
performed via coumarin (2p + 2p) cycloaddition reaction to
further stabilize the vesicles. In the acidic environment of tumor
cells, the slow hydrolysis of b-thiopropionic acid led to the
disintegration of the polymers, resulting in the sustainable
release of the loaded drugs. The results of the in vivo and in
vitro anti-tumor experiments showed that compared with free
DOX, the 50% inhibiting concentration (IC50) of DOX-loaded
nanomaterials toward the MG63 cancer cell line decreased
significantly, showing excellent anti-tumor effect and
good biosafety.

3.1.8 Borate Ester Bonds
Borate ester bonds, formed by the condensation of
phenylboronic acid and its derivatives with cis-diol or
compounds containing catechol groups, are also reversible
dynamic covalent bonds. At acidic pH levels, borate ester
bonds can be reversibly hydrolyzed and broken, which gives
them broad application prospects in tumor DDSs (109–111).
Fang et al. (112) prepared a mitochondrial-targeted polymer, 3,4-
dihydroxyphenyl propionic acid-chitosan oligosaccharide-
dithiodipropionic acid-berberine (DHPA-CDB), which was
used to load Cur and self-assemble into cationic nano-micelles
(DHPA-CDB/CUR). Negatively charged oligomeric hyaluronic
acid-3-carboxyphenylboric acid (OHA-PBA) was added to the
prepared DHPA-CDB/CUR as the ligand of sialic acid and
CD44, to shield the positive charge and prolong the circulation
time in vivo. The OHA-PBA@DHPA-CDB/CUR covalent
polymer was formed by OHA-PBA and DHPA-CDB/CUR
through pH-sensitive borate ester bonds between PBA and
Frontiers in Oncology | www.frontiersin.org 8
DHPA. The low pH in tumor tissue promoted the degradation
of borate ester bonds and the exposure of cationic micelles,
which led to the reversal of the polymer surface charge, thus
promoting internalization and mitochondrial localization. All
experimental results showed that OHA-PBA@DHPA-CDB/
CUR had mitochondrial targeting and tumor environmental
charge-reversal capabilities, as well as great potential in
targeted drug delivery.

3.2 pH-Responsive Charge Conversion
It is well known that nano-drug carriers reach the target position
mainly through blood circulation in the human body. If there is a
positive charge on the surface of the drug carrier when it
encounters the many negatively charged proteins in human
plasma, they will attract each other strongly; this makes it very
easy for the carriers to be swallowed and cleared by phagocytes in
the human body (113, 114), resulting in reduced drug delivery
efficiency. The drug uptake efficiency will be reduced due to
electrostatic repulsion when a drug carrier with a neutral or
electronegative surface encounters the electronegative cell
membrane (115, 116), whereas electropositive nano-drug
carriers can better target endothelial cells, have higher vascular
permeability (117), and are more likely to be swallowed by tumor
cells (118–120). However, the liver can act as a charge-selective
filtration barrier, which can cause the accumulation of
electronegative nano-drug carriers in the liver with
consequential potential side-effects. Thus, the long-cycle ability
of neutral polymers or amphoteric ionic polymers is a better
option (121).

In addition to attaching pH-sensitive acid-unstable bonds to
the polymer backbone or side chains, there is another way to
make the nano-drug carriers pH-responsive: introduce a
chemical group into the nanomaterial that can lead to a
change in surface charge properties (protonation or
deprotonation) with the change in environmental pH. Such
groups include amino, phosphoric acid, and carboxyl groups.
These groups have different chemical structures and pKa values,
can accept or provide protons, and undergo changes in physical
or chemical properties related to pH, such as swelling or
solubility, resulting in drug release (59, 60, 122). A nano-drug
carrier has been designed, which has neutral or amphoteric ionic
when it circulates in the human body, as this allows an improved
circulation time for the nano-drug carrier in the body. When the
nano-drug carrier reaches the tumor site, the surface charge of
the nano-drug carrier is converted to positive, owing to the
decreased pH in the tumor microenvironment, which promotes
the uptake of tumor cells, thus greatly improving drug delivery
efficiency (116, 123). For example, Fang et al. (124) coupled
berberine (Ber) and vitamin B6 with oligomeric hyaluronic acid
(OHA), creating self-assembled spherical NPs in an aqueous
solution to prepare pH-responsive mitochondria-targeting NPs
(B6-OHASS-Ber). In the acidic microenvironment of the tumor
tissue, the pyridine group of B6 was protonated, and the surface
of the carrier changed from negatively to positively charged,
which promoted the internalization of NPs. After lysosome
escape, it actively targeted mitochondria and released the
drugs. The in vivo anticancer activity experiment results
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showed that B6-OHA-SS-Ber/Cur had an obvious inhibitory
effect on tumor growth. As shown in Figure 3, the micelles
were modified by B6 to give the NPs the ability to convert
charges, Ber was induced to focus on mitochondria preferentially
by drugs and carriers, and OHA was used to target CD44
receptors (125, 126).

In addition, there also exists a pH-responsive polymer that
changes the hydrophilicity or solubility of nano-drug carriers
after protonation with a decrease in pH, resulting in the change
in carrier structure and drug release (127). For example, some
polymers synthesized from acidic monomers, such as poly
(methacrylic acid) (128, 129), poly(aspartic acid) (PAsp) (130),
and sulfonamide-based polymers (131), change from hydrophilic
to hydrophobic when the pH is decreased. Kang and Bae (132)
studied oligomeric sulfonamides (OSASs), which could
effectively release polymers or transport nucleic acids. Owing
to the different pKa values of different sulfonamide groups,
Frontiers in Oncology | www.frontiersin.org 9
OSASs change from hydrophilic to hydrophobic with a
decrease in the surrounding pH and show different proton
buffering capacities. Kang and Bae (132) combined an OSAS
with DNA and then complexed it with poly(L-lysine) (PLL) to
form an OSA polymer. The experimental results showed that
there was no significant difference in DNA uptake between the
OSA polymer and PLL/DNA control group; however, the OSA
polymer induced a more extensive distribution of DNA in cells
and significantly enhanced the transfection rate of DNA.

3.3 Synergistic Action of pH Stimulus and
Other Stimuli
We have previously discussed the two main mechanisms of
action of pH-responsive polymers, namely, unstable chemical
bonds with pH sensitivity and groups or polymers with charge
transfer or water solubility changes. However, these pH-
responsive polymers should remain stable when the
A

B

FIGURE 3 | (A) Schematic structure of B6-OHA-SS-Ber self-assembly into micelles; (B) the micelles entered into tumor cells and concentrated on mitochondria by
active targeting and released the drug to tumor cells (124).
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physiological pH is 7.4, and it is challenging to ensure sufficient
drug release rate or cell uptake rate with a decrease of 1 pH unit
(60). At present, many preclinical studies are being conducted at
two pH values (7.4 and 5.0). Nevertheless, if there is only a small
difference between the targeted position of the nano-drug
carriers and the physiological pH, the drug release time of
polymers that solely depend on the pH-responsive mechanism,
especially the nano-drug carriers that rely on covalent bond
cleavage, will be very slow (60). Hence, compared to single
stimulus-responsive nano-polymers, dual or multiple stimuli-
responsive polymer NDDSs have higher physiological or
biological system correlations, can better adapt to the
interaction in the real biological system (133), and greatly
improve the stability of drug delivery and the sensitivity of
controlled release, giving excellent anti-tumor effects and
broader application prospects (134).

Compared with normal tissues, tumor tissues show
significantly different physiological characteristics, such as
differences in pH, redox enzyme levels, ROS levels, owing to
their uncontrolled growth and abnormal gene expression. We
can select or combine the corresponding stimulus-response
factors for tumor-targeted therapy according to specific
changes in the tumor microenvironment. In addition, some
polymers will change their morphological structure, physical,
or chemical properties when exposed to external stimuli
(temperature, light, magnetic field, and ultrasound), which can
be combined with pH stimulation response for tumor treatment
to improve the therapeutic effect (135–139).

To reduce the problem of non-specific drug release in oral
DDSs, Song et al. (140) studied the effect of pH response
combined with enzyme response (double stimuli) on precisely
targeted drug delivery. They anchored polyacrylic acid (PAA)
and chi tosan (CS) onto Gd3+-doped mesoporous
hydroxyapatite NPs (Gd-MHAPNPs) to realize programmed
drug release and magnetic resonance imaging at tumor sites.
Among them, the grafted PAA acted as a pH-responsive switch
to control the release of drugs into the colon. In addition, CS was
functionally modified into enzyme-sensitive parts and could be
degraded by b-glucosidase in the colon. Chemotherapeutic drugs
(5-fluorouracil) and targeted therapy drugs (gefitinib) were
encapsulated in Gd-MHAP NPs for synergistic therapy
(Figure 4). The experimental results showed that CS and PAA
protected drug-loaded NPs from various physiological
conditions in the gastrointestinal tract, in order for the drug to
reach the colon tumor site, prevent premature drug release, and
control drug release via the dual stimulus-response mechanism
(pH and enzyme), which increased the drug load at the colon
tumor site and improved the therapeutic effect.

Owing to the high reducibility in the tumor environment,
such as the increased glutathione (GSH) content, Kim et al.
(141) designed pH- and GSH-responsive fluorescent polymer
dots (L-PDs) containing PTX. The core part of the L-PD nano-
hybrid system used disulfide bonds as the redox response site,
which could not only maintain the stability of the internal
structure but could also avoid the leakage of PTX during the
cycle. The nano-hybrid system showed fluorescence quenching
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behavior, with less than 2% of the PTX being released under
physiological pH conditions. However, in the tumor
microenvironment, fluorescence was restored under the acidic
pH, and the PTX release was about 100%, which significantly
improved the effectiveness of killing tumor cells. In addition, the
experimental results showed that there were differences in
the release of PTX under different GSH concentrations, and
the explosive release of PTX was detected under a high
GSH concentration.

In addition, because of the high levels of reactive oxygen
spec i e s (ROS) and low pH l eve l s i n the tumor
microenvironment, Jäger et al. (142) designed functionalized
“AND gate” multi-responsive (MR) block amphiphilic
copolymers with dual stimulus-response to ROS and pH for
cancer drug delivery therapy. The hydrophobic part of the
polymer contained masked pH reaction side chains, which
were exclusively exposed in response to the high ROS in the
tumor microenvironment. These researchers synthesized two
kinds of pH-responsive polymers from MR-ethyl and MR-
isopropyl and then prepared DOX-loaded nano-drug carriers
(multi-responsive nanoparticles, MRPs) and control-free DOX
carriers using microfluidic self-assembly technology. The
experimental results showed that compared to the control-free
DOX carriers, the drug release rate of the MRP group was
significantly faster under the influence of the dual ROS and
pH response.

In addition to taking the different biochemical indexes of
tumor tissue as stimulus-response factors, some polymer
components undergo volume phase transition when the
external environment, such as temperature, changes, thereby
triggering the selective release of drugs. For example, Wang et
al. (143) synthesized the temperature and pH double stimuli-
responsive NPs consisting of deoxycholic acid and
hydroxybutyl-decorated chitosan (DAHBCNPs) and designed
a series of DAHBCs with different lower critical solution
temperatures (LCSTs, all below 37°C) to load Cur for the oral
treatment of colorectal cancer. Owing to the mutual offset of the
size change between the polymer expansion after pH response
and the polymer contraction after temperature response, the
DAHBC NPs were relatively stable under simulated gastric
conditions (pH 1.2, 37°C). However, in simulated intestines
(pH 7.0–7.4, 37°C), DAHBC NPs promoted the continuous
release of Cur into the intestinal tract on account of the single
effect of polymer contraction after temperature response.
Compared with free Cur, DAHBC NPs at 27°C (DAHBC27)
were better absorbed by Caco-2 cells through transcellular and
paracellular transport pathways, and the intestinal absorption
efficiency of Cur was greatly improved by paracellular transport
pathways. In addition, Chen et al. (144) Feng et al. (145),
and Lin et al. (146) reported on multifunctional nano-drug
carriers with dual pH and temperature-stimuli responses
(photothermal therapy). For example, Chen et al. (144)
prepared a multifunctional NDDS with pH and temperature
response based on an ordered mesoporous silica-sandwiched
black phosphorus nanosheet (BP@MS) with vertical pore
coating. The special structure of the drug carrier not only
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enhanced the dispersity of the BP nanosheet and improved the
drug loading efficiency (DOX), but also facilitated post-
modification, such as the PEGlyation and conjugation of the
ligand targeting TKD peptide. The results of in vivo and in vitro
anti-tumor experiments showed that the DOX-loaded BP@MS
system (BSPTD) manifested heat-stimulative, pH-responsive,
and sustained release behaviors. Moreover, the BSPTD
could also significantly inhibit the lung metastasis of
tumors, owing to the secondary administration promoted by
photothermal degradation.

In addition to dual stimuli, the combined application of
multiple stimuli in tumor therapy has been widely studied.
Don et al. (147) synthesized a poly(AA-b-NIPAAm)
copolymer (PAA-b-PNIPAAm) via reversible addition–
fragmentation chain transfer polymerization, consisting of
PAA and poly(N-isopropylacrylamide) (PNIPAAm), which
self-assembled to form nanogels with cationic protein
(protamine). Chemical characterization showed that the
nanogel exhibited a change in protamine conformation,
Frontiers in Oncology | www.frontiersin.org 11
PAA-b-PNIPAAm disaggregation, and protein enzymatic
hydrolysis when stimulated by temperature, pH, and enzyme
activity level changes. Changing the pH from 7.4 to 5.0-6.5
increased the mean particle size and converted the surface
charge from negative to positive. After cold shock treatment,
DOX was rapidly released in the cells. Furthermore, the nanogel
could also carry a rose bengal photosensitizer and cause
significant damage to cancer cells under irradiation.

3.4 Other Mechanisms
In addition to the two basic principles introduced above, another
pH response mechanism has been gradually discovered and
studied, the principle of which is that bicarbonate reacts with
an acid to produce CO2 and H2O. Therefore, polymer
nanomaterials containing bicarbonate structures may also
release drugs specifically in an acidic environment, in what is
known as a gas-generating pH-sensitive nano-system (59). Kim
et al. (148) encapsulated poly(lactide-co-glycolide) (PLGA) NPs
with sodium bicarbonate, which could be decomposed to
FIGURE 4 | Schematic illustration of the preparation of Gd-MHAPNPs and the mechanism of drug release in different physiological environments in the GIT (140).
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produce CO2 under acidic conditions, and imidazoquinoline-
based synthetic toll-like receptor 7/8 agonist (TLR7/8, also
known as “522”). The addition of sodium bicarbonate not only
significantly increased the loading dose of 522, but also
decomposed and released CO2 through pH response after the
NPs were internalized by tumor cells and phagocytized by
lysosomes, resulting in the release of 522 into tumor cells.
Finally, the experimental results also showed that the new pH-
sensitive NPs had a better anti-tumor effect than traditional
PLGA NPs.
4 APPLICATION OF PH-RESPONSIVE
POLYMER NANOMATERIALS
IN TUMOR THERAPY

At present, there are many effective treatment approaches for
tumors, from surgical resection, chemotherapy, and
radiotherapy to landmark molecular targeted therapy,
immunotherapy, gene therapy, photodynamic therapy,
photothermal therapy, and chemodynamic therapy, all of
which have made great progress and development throughout
the years. As is well known, the traditional administration of
chemotherapy leads to the poor targeting of drugs to tumors, low
drug utilization, and many other challenges. Therefore, scholars
have proposed DDSs in which chemotherapeutic drugs are
loaded and transported on carriers (149). To improve the
efficiency of DDSs, it became a hot spot (150, 151) in tumor
therapy research to design nano-drug carriers that can respond
Frontiers in Oncology | www.frontiersin.org 12
to the abnormal biochemical indicators in the tumor
microenvironment (152) to release drugs directly into the
tumor site. With the development of nanomaterials, nano-
systems can enhance the permeability and retention
of drugs in solid tumors (59) by introducing different
stimulus-responsive structures into DDSs (153), among which
pH-responsive polymers have been widely used in stimulus-
responsive NDDSs (59, 100). The common applications of pH-
responsive polymer nanomaterials in tumor therapy are
summarized in Figure 5.

4.1 Application of pH-Responsive Polymer
Nanomaterials in Tumor Monotherapy
4.1.1 Application of pH-Responsive Polymer
Nanomaterials in Combination with Chemotherapy
Single drug therapy will produce serious drug resistance in tumor
treatment, but combinations of different drugs have been proven
to be very effective in overcoming multidrug resistance (154,
155). Moreover, the combination of two or more drugs can
generally reduce the drug dose and toxicity (156). Thus,
constructing a multifunctional pH-responsive NDDS provides
an effective strategy for chemotherapy. Wang et al. (157)
synthesized multifunctional NPs (FTDCAG NPs), using a pH-
responsive prodrug (PEG2K-NH-N-DOX), a GSH-responsive
prodrug (PEG2K-S-S-CPT), folate-receptor targeting polymers
(FA-PEG2K-L8, FA-PEG2K-TOS), and T1-enhanced magnetic
resonance imaging contrast agents (Gd-DTPA-N16-16) used to
encapsulate combrestatin A4 (CA4). These FTDCAG NPs
contained three drugs, namely, CA4, DOX, and CPT. At pH
FIGURE 5 | Application of pH-responsive polymer nanomaterials in tumor monotherapy (left) and application of pH-responsive polymer nanomaterials in tumor
synergistic treatment (right).
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6.5, the drug release rate of CA4 increased by 63.4%. After
re lease , CA4 destroyed angiogenes is in the tumor
microenvironment and promoted the uptake of the remaining
FTDCG NPs by tumor cells. After entering tumor cells, the
FTDCG NPs disintegrated, owing to the increase in intracellular
GSH concentration and the decrease in pH levels in the
endosomes or lysosomes, releasing CPT and DOX. The results
showed that FTDCAG NPs had a significant anti-tumor effect,
and controlled drug release in time and space, which could
maximize the effect and accuracy of cancer chemotherapy.

4.1.2 Application of pH-Responsive Polymer
Nanomaterials in Combination with Radiotherapy
Radiotherapy is the most effective method to treat malignant
brain tumors, but it is a challenge to ensure minimum damage to
the surrounding normal tissue, while providing the best
therapeutic dose to the tumor tissue (158). Therefore, one of
the basic treatments for glioblastoma is radiotherapy combined
with radiosensitizers. Shirvalilou et al. (159) used 5-iodo-2-
deoxyuridine (IUdR) as a radiosensitizer for glioblastoma and
magnetic graphene oxide NPs coated with PLGA polymer as
drug carriers for IUdR (MNPs). The results of in vivo and in vitro
experiments showed that MNPs not only prolonged the
circulation time in vivo but also targeted glioma through an
external magnetic field after intravenous injection. Moreover, the
experiment results illustrated a higher IUdR release rate at pH
5.6 than at pH 7.4, where 82% and 56% of the IUdR was released
within 24<n,bsp/>h respectively. The drug release rate was
significantly increased when the NPs reached the tumor site
due to the degradation of PLGA polymers as a result of charge
transfer under acidic pH conditions, revealing the controlled
drug release abilities of the MNPs in the acidic environment of
the tumor. Under high voltage X-ray irradiation, compared with
the control group, IUdR/MNPs showed a stronger radiation
sensitization effect and increased apoptosis induced by radiation,
which improved the therapeutic effect.

4.1.3 Application of pH-Responsive Polymer
Nanomaterials in Combination with Immunotherapy
Compared with chemotherapy, immunotherapy has more
advantages in terms of avoiding toxicity and side effects,
inhibiting tumor metastasis, and preventing tumor recurrence;
it is recognized as the next generation of tumor therapy (160,
161). The complement system plays an important role in
promoting antigen-specific immune responses (162). Polymers
carrying nucleophilic groups, such as hydroxyl or amino groups,
can activate the complement system, resulting in the maturation
of dendritic cells and induction of enhanced immune responses
(163–165). Li et al. (166) prepared a multifunctional pH-
responsive micelle vaccine platform (COOH-NPs) based on a
carboxyl-modified deblock copolymer of poly(2-ethyl-2-
oxazoline)–poly(D, L-lactide) (COOH-PEOz-PLA). After
injection, the vaccine showed good targeting, and the tertiary
amine groups in the PEOz backbone became protonated under
acidic conditions, imparting the micelle payloads with
endosomal escape via the “proton sponge” effect (167, 168).
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Compared with the control group, the nano-vaccine exhibited
good laminin targeting, antigen presentation ability of cytotoxic
T lymphocyte immune response, and complement activation to
promote dendritic cell maturation, which significantly inhibited
tumor growth and prolonged survival time.

4.1.4 Application of pH-Responsive Polymer
Nanomaterials in Combination with Gene Therapy
Traditional gene therapy generally adopts the method of
enhancing host anticancer immunity, antagonizing
antioncogenes, expressing suicide genes, or gene modification
combined with high-dose chemotherapy. While achieving
certain curative effects, it also has some disadvantages, such as
low gene vector introduction efficiency and poor accuracy and
controllability of foreign gene expression in vivo. With the
development of genomics and genetic engineering research,
recent new technologies, such as targeted gene-viro-therapy
(169), RNAi technology (170), and microRNA (171), provide
new bases or evidence for the accurate treatment of cancer. In
gene therapy, hyperbranched PEI-25k and its derivatives have
been widely developed and applied, owing to its high density of
positive charges, which can bind closely to DNA and promote its
escape from endosomes (172, 173). Chen et al. (174) synthesized
a novel pH-responsive polymer shielding system (PAMT) via
click reaction between poly(g-allyl-L-glutamate) and thioglycolic
acid or 2-(Boc-amino) ethanethiol. PAMT was electrostatically
attached to the surface of the positively charged PEI/pDNA
complex to form a ternary complex. When the pH in the external
environment decreased from 7.4 to 6.8, the PAMT released gene
therapy drugs through rapid charge conversion. The in vivo anti-
tumor experiment showed that the transfection efficiency of the
PAMT/PEI/shVEGF group was higher and the inhibitory effect
on tumor growth was more obvious, compared to the
control group.

4.1.5 Application of pH-Responsive
Polymer Nanomaterials in Combination
with Photodynamic Therapy
In recent years, photodynamic therapy (PDT) has been widely
used in tumor therapy. Earlier, Kelly et al. (175) successfully used
hematoporphyrin derivatives as photosensitizers in the
treatment of bladder cancer, creating a precedent for the
application of PDT on tumors. The traditional DDSs relying
on photosensitizers have limited application for the PDT of
tumors, owing to their poor pharmacokinetics (176, 177) and
long-term biological safety issues (176–178). For example, MoS2
DDSs, the biotoxicity of which is caused by quantum size effects
and surface effects, may have adverse effects on the human
reproductive system (178). Previous studies have shown that
nanomaterial drug carriers have a higher uptake rate of tumor
cells and fewer side effects (177), and the specific response of
drugs to the tumor can be further enhanced by designing
stimulus-responsive nano-drug carriers.

To overcome the shortcomings of the non-specific tumor
therapy associated with PDT, Li et al. (179) and He et al. (180)
applied nanomaterials with stimulus-response to PDT, which
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made the therapeutic drugs release specifically at the tumor site,
reducing the non-specific phototoxicity of PDT and improving
the anti-tumor effect. Ma et al. (181) combined chidamide as a
histone deacetylase inhibitor (HADCi) with pH-responsive block
polymer folate PEG-b-poly(aspartic acid) (PEG-b-PAsp)-grafted
folate (FA-PEG-b-PAsp) to obtain block polymer folate PEG-b-
poly(asparaginyl-chidamide) [FA-PEG-b-PAsp-chidamide
(FPPC)]. Then the model photosensitizer pyropheophorbide a
(Pha) was coated with FPPC and polymer micelles (Pha@FPPC)
were formed in PBS. After the uptake of Pha@FPPC by tumor
cells through FA-receptor-mediated endocytosis, PAsp changed
from hydrophilic to hydrophobic in the lysosome due to the
decrease in pH, which led to the directional release of Pha
molecules. The results showed that Pha@FPPC had low dark
cytotoxicity in vitro and a good therapeutic index, owing to its
high dark cytotoxicity:photocytotoxicity ratio. Furthermore,
compared with free Pha, Pha@FPPC not only significantly
inhibited the growth of the implanted tumor and prolonged
the survival time of melanoma-bearing mice, but also remarkably
prevented the pulmonary metastasis of mice melanoma through
folate-mediated and selective accumulation.

4.1.6 Application of pH-responsive
Polymer Nanomaterials in Combination
with Photothermal Therapy
Similar to PDT, photothermal therapy (PTT) has become an
effective method to treat cancer with high specificity, good anti-
tumor effects, controlled drug release, and few side effects (154, 182,
183). As an NIR-absorbing organic photosensitizer, ICG is an
amphiphilic tricarbocyanine dye that has been approved by the
United States Food and Drug Administration for medical diagnosis
and imaging. Although ICG has great potential in PTT applications,
it also has many defects (184, 185). To overcome these
shortcomings, pH-responsive polymer micelles or NPs have been
used to design tumor-targeting ICG delivery methods. Ting et al.
(186) co-assembled hybrid polymer NPs (PbCTPNs) comprising
hydrophobic PLGA segments, ICG molecules, amphiphilic
tocopherol PEG succinate (TPGS), and pH-responsive mPEG-
benzoic imine-1-octadecylamine (mPEG-b-C18) segments.
PbCTPNs maintained sufficient stability under physiological pH
conditions, effectively inhibiting the self-aggregation and leakage of
ICG. However, when the pH decreased to 5.5, the unstable imine
bond in mPEG-b-C18 was hydrolyzed, which accelerated the
release of ICG molecules in combination with near-infrared
radiation, significantly killing MCF-7 cells and improving the
anticancer efficacy of ICG-mediated PTT.

4.2 Application of pH-Responsive
Polymer Nanomaterials in Tumor
Synergistic Treatment
Previously, we discussed the application of pH-responsive
polymers in tumor monotherapy, such as PDT, PPT,
immunotherapy, and gene therapy; although they are still in
the early clinical stages, they have shown good efficacy and
clinical results. However, studies and clinical experiences have
shown that it is difficult for monotherapy to eliminate tumors
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and control their metastasis; some cell subsets in unevenly
distributed tumor tissues are resistant to monotherapy (187,
188). For example, in chemotherapy, long-term use of the same
anticancer drug will induce tumor multidrug resistance, resulting
in a decline in efficacy (189). Thanks to the rapid development of
nanotechnology, we can combine two or more therapies and
design multifunctional nano-drug carriers for the targeted
delivery of multiple drugs, which can not only improve the
curative effects, but can also reduce the side effects caused by high
doses of a single therapy and make up for the defects and
deficiencies of various other treatments (190, 191).

Photothermal therapeutic agents are also excellent
photosensitizers, and the combination of PDT and PTT may
have a synergistic effect on phototherapy. Bejjanki et al. (192)
studied the efficacy of PTT combined with PDT in treating
tumors. They combined ICG, Fe3O4, and palmitoyl ascorbic acid
(PA) with pH-responsive PEG-b-PAEMA-PDMA polymers to
form nano-drug carriers. The carriers remained stable under
physiological pH and the cycle time was prolonged, while drug
loading was released via charge conversion and tumor cell uptake
was promoted in the acidic tumor environment. The results of in
vivo and in vitro tumor cell experiments showed that the nano-
drug carrier showed a synergistic PDT/PTT effect, had a high
apoptosis rate, and significantly inhibited tumor growth.

Compared with photodynamic therapy, chemodynamic
therapy is a new treatment strategy (193). It can kill tumor
cells by converting overexpressed hydrogen peroxide into highly
toxic hydroxyl free radicals through Fenton and Fenton-like
reactions. It has a high tumor selectivity (194, 195). Wang et al.
(196) reported a pH and ROS dual-response nano-drug
(PtkDOX-NM), which accumulates in the tumor site through
the enhanced permeability and retention effect. In the acidic
endosomal environment, the poly(2-[diisopropylamino]
ethylmethacrylate) segment of the drug changes from
hydrophobic to hydrophilic, resulting in b-lapachone (Lap)
dissociation and rapid release. The Lap promoted the
production of hydrogen peroxide, and a Fenton reaction
occurred in the presence of iron ions, which significantly
increased the ROS content in the tumor environment, thus
promoting the effective cascade release of antineoplastic drugs
in response to ROS and enhancing the curative effect through the
combination of chemodynamic therapy and chemotherapy.

To verify the synergistic effect between chemotherapy and
PDT therapy, Li et al. (197) combined anti-tumor drug GNA002-
mediated chemotherapy with PDT therapy through an NDDS,
which improved the efficacy of anticancer therapy. They used 5-
(4-carboxyphenyl)-10,15,20-triphenylporphyrin as the
photosensitizer and GNA002 as the hydrophobic core and
cyclic RGD peptide (cRGD)-modified PEG (cRGD-PEG)
connected to cell-penetrating peptide hexa-arginine (R6)
through an unstable hydrazone bond as a hydrophilic shell to
synthesize a nucleus-targeted pH cascade-responsive micelle
nano-platform (Figure 6). The NPs were accumulated at the
tumor site, and then actively internalized into tumor cells
through the cRGD ligands. In cells, when the NPs were
swallowed by lysosomes, the hydrazone bond was hydrolyzed
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and the shell fell off due to the change in pH. Then nucleus-
targeted drug delivery mediated by R6 was treated with
chemotherapy and PDT under laser irradiation.

In addition, Tang et al. (198) studied whether there was a
synergistic effect between chemotherapy and PTT. They designed
a biosensor with a MOF coated with multifunctional
polydopamine (PDA) for the detection of miRNA-122 with Zn2
+-triggered aggregation-induced enhancement (AIE) and
synergistic chemotherapy/PTT. They used ZIF-8 NPs as DOX
carriers and modified themwith polydopamine to improve the pH
response and biocompatibility of the nano-drug carriers. When
the nano-drug carrier reached the tumor site, the acidic
environment led to a change in the carrier structure and
accelerated the release of Zn2+ and DOX. The experimental
results not only showed that the nano-drug carrier accurately
Frontiers in Oncology | www.frontiersin.org 15
detected miRNA-122, but also verified the synergistic effect of
chemotherapy and PTT on tumor therapy.

To solve the multidrug resistance of chemotherapeutic
drugs, the combination of chemotherapy and other
therapeutic methods for treating tumors has been widely
studied and explored. For instance, Wang et al. (199) studied
whether there was a synergy between chemotherapy and tumor
immunotherapy. They employed a unique cationic switchable
lipid as a pH-responsive drug carrier, which encapsulated the
anti-tumor drug sorafenib and was loaded with anti-
miRNA27a-loaded anti-GPC3 antibody to form targeted lipid
NPs (G-S27LN), enabling targeted release the sorafenib and
antibodies in the acidic environment of the tumor. Compared
to the control group, the survival rate of tumor cells decreased
significantly, and the proportion of apoptotic cells was
FIGURE 6 | Schematic illustration of a pH cascade-responsive nucleus-targeted nanoplatform for synergistic chemo-photodynamic therapy (197).
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remarkably higher than that in the control group, showing a
synergistic therapeutic effect.
5 CONCLUSION AND OUTLOOK

pH-responsive polymer nanomaterials can stably carry anti-
tumor drugs through the body and release them into tumors
through acid-unstable bond fracture or charge conversion for
certain targeted therapeutic effects. Compared with conventional
tumor chemotherapy, treatment with pH-responsive polymer
nanomaterials exhibits improved therapeutic efficiency with
minimal invasiveness to the host organism, which highlights its
great potential in clinical trials or preclinical studies. Despite the
notable progress made in the field of pH-responsive polymer
nanomaterials, there are many critical issues that remain to be
solved for better clinical application. Therefore, the potential
focuses and challenges of pH-responsive polymer nanomaterials
have been discussed below.

(1) Few pH-responsive polymer nanomaterials are currently
available for clinical use, owing to the enhanced permeability and
retention effect, as well as other delivery difficulties (200–204).
These polymer nanomaterials are delivered through five stages in
tumor therapy: being injected intravenously into the
bloodstream, accumulating specifically around the tumor
tissue, entering into the solid tumor, cellular internalization,
and “CAPIR”, i.e., “circulation, accumulation, penetration,
internalization, drug release.” In the current research stage, it is
impossible to consider these five stages, and it is still impossible
to achieve the complete treatment of tumors (205–207). This
must be the main focus of future research.

(2) Further research is needed to achieve the precise targeting
of pH-responsive polymer nanomaterials, to realize an accurate
combination of pH-response stimuli and other response stimuli,
to optimize pH-responsive stimulation as a tumor therapy, as
well as to realize the multifunctional platform function of pH-
response stimulation for tumor treatment.

(3) There are some crucial issues associated with pH-
responsive polymer nanomaterials, especially those containing
synthetic drugs or their derivatives, including manufacturing
technique problems, safe application problems, tumor treatment
evaluation criteria accuracy problems, and institutional
problems, which should be resolved as soon as possible to
favor the successful clinical application of treatments after
fundamental research is completed. More attention should be
paid to establishing the entire standard treatment process,
systematic evaluation, and long-term observation.
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(4) Finally, the acute short-term toxicity and chronic long-
term toxicity of pH-responsive polymer nanomaterials must be
considered for the biological safety of clinical application in the
future. These nanomaterials should be deeply studied to meet
safety standards. At present, some suggested polymer
nanomaterials are poisonous to the cells, causing side effects
and other disease complications. For example, as mentioned
earlier, the polymer nanomaterials containing hydrazone bonds
may produce cationic polymer residues after hydrolysis in vivo,
which are toxic to normal human tissues to some extent.
Accordingly, new pH-responsive polymer nanomaterials,
which are biodegradable and harmless to the body, should be
developed to avoid such side effects. Sustainable materials, such
as CO2 copolymers, should be further studied, with focus on
ensuring that these materials undergo degradation through the
Krebs cycle, metabolize into CO2 and water, and be excreted in a
harmless manner via exhalation and through the action
of kidneys.

In conclusion, pH-responsive polymer nanomaterials possess
great potential for tumor therapy, and we believe that their
beneficial effects will be recognized on a greater scale with the
development of new technology and ongoing research.
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