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ABSTRACT: Bacterial and fungal pathogens cause a variety
of infectious diseases and constitute a significant threat to
public health. The human innate immune system represents
the first line of defense against pathogenic microbes and
employs a range of chemical artillery to combat these invaders.
One important mechanism of innate immunity is the
sequestration of metal ions that are essential nutrients.
Manganese is one nutrient that is required for many pathogens
to establish an infective lifestyle. This review summarizes
recent advances in the role of manganese in the host−pathogen interaction and highlights Mn(II) sequestration by neutrophil
calprotectin as well as how bacterial acquisition and utilization of manganese enables pathogenesis.

Metals ions are essential for the proliferation of all
kingdoms of life and perform a variety of structural and

chemical tasks. In order to establish a virulent lifestyle,
pathogens must acquire and concentrate metal ions from the
host.1−3 The mammalian innate immune system has evolved to
sequester bioavailable iron, manganese, and zinc at sites of
infection and thereby prevent microbial growth.4,5 The
competition between host and pathogen for these essential
nutrients is an important facet of health and disease
progression. Bioinorganic chemistry underlies this aspect of
innate immunity and microbial pathogenesis. Elucidating the
coordination chemistry of both mammalian and microbial
proteins involved in the sequestration, recruitment, and
utilization of these metals provides a molecular foundation
for physiology and informs therapeutic development. This
review highlights recent chemical and biological insights into
the battle between host and microbe for manganese. The
manganese-sequestering host-defense protein calprotectin (CP)
as well as the bacterial Mn(II) uptake systems and processes
that require Mn(II) and contribute to pathogenesis are
discussed.
A historical paradigm for metal-ion withholding by the host

immune system is provided by studies of iron-binding proteins.
The host proteins transferrin, lactoferrin, and siderocalin (also
named lipocalin-2 or neutrophil gelatinase-associated lipocalin
(NGAL)) deplete bioavailable iron in blood plasma, secretary
fluids, and at sites of infection and thereby limit the availability
of iron to microorganisms (Figure 1).6−8 Transferrin and
lactoferrin coordinate Fe(III) with high affinity, whereas
siderocalin captures iron-bound enterobactin. These systems
are detailed in several prior reviews3,9,10 and provide inspiration
for investigations of other metal-chelating host-defense
proteins.
Although less celebrated than iron for many years,

manganese and zinc are important nutrients at the host−
pathogen interface.5 In this context, members of the S100

family of Ca(II)-binding proteins have emerged as contributors
to transition-metal-ion homeostasis and players in innate
immunity. Select family members coordinate Mn(II), Cu(II),
and Zn(II) and contribute to the host metal-withholding
response (Figure 1).11−14 The human proteins S100A7 (23
kDa) and S100A12 (21 kDa) are homodimers that each house
two interfacial His3Asp metal-ion binding motifs.13,15,16 Human
S100A7, also called psoriasin, is expressed by epithelial tissues
and displays Zn(II)-reversible growth inhibition of Escherichia
coli.12,13,17,18 Human S100A12 is a Zn(II)- and Cu(II)-binding
neutrophil protein that exhibits chemotactic properties.15,16,19

Despite structural characterization,13,16 the bioinorganic chem-
istry of S100A7 and S100A12 remains poorly understood, and
elucidating how these host-defense proteins contribute to metal
homeostasis in broad terms is an important avenue for future
work.
CP, a heterooligomer of S100A8 (10.8 kDa, also named

MRP8 or calgranulin A) and S100A9 (13.2 kDa, also named
MRP14 or calgranulin B),20 is another S100 family member
that contributes to innate immunity. In early studies, CP was
identified as a Zn(II)-reversible antibacterial agent in human
neutrophil lysates.21,22 Subsequently, a role for CP in Mn(II)
homeostasis was discovered.11 To date, CP is the only known
mammalian Mn(II)-sequestering host-defense protein, and
additional biomolecules that modulate Mn(II) availability at
sites of infection may be uncovered in further discovery efforts.
CP is reported to constitute ca. 40% of the total cytoplasmic
protein in neutrophils,23 and CP concentrations exceeding 1
mg mL−1 (ca. 50 μM) have been found in infected tissues.24 CP
is therefore an abundant and important component of the
innate immune response and a significant focus of recent work
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on Mn(II) homeostasis at the host−pathogen interface as
described below.

■ COORDINATION CHEMISTRY OF HUMAN
CALPROTECTIN

Human CP exhibits remarkable biological coordination
chemistry that results from its heterooligomeric structure. It
is a heterodimer or -tetramer of S100A8 (α) and S100A9 (β)
and exists as either an αβ heterodimer or an α2β2

heterotetramer.20,27,28 Each subunit contains two Ca(II)-
binding EF-hand domains, and Ca(II) binding modulates the
quaternary structure of CP by mediating the conversion of the
dimer to the tetramer form.27 CP displays two transition metal-
ion binding motifs per S100A8/S100A9 heterodimer, both of
which are located at the heterodimer interface (Figure 1).20 Site
1 is a His3Asp motif that is formed by residues His83 and His87
from S100A8 and residues His20 and Asp30 from S100A9. Site
2 is an unusual His4 or His6 motif formed by residues His17
and His27 from S100A8 and His91 and His95 from S100A9.

The His6 motif is completed by His103 and His105 from the
S100A9 C-terminal tail.26,29 The Zn(II)- and Mn(II)-binding
properties of CP have been studied extensively and are the
focus of this review. Both sites 1 and 2 coordinate Zn(II) with
high affinity, whereas only the His6 motif of site 2 provides
high-affinity Mn(II) complexation.26,29−32 The metal-ion
affinities of both sites are Ca(II)-dependent, and CP morphs
into a high-affinity chelator when in the presence of excess
Ca(II).31,32

Considerations for Metal-Binding Studies. CP provides
a unique coordination chemistry puzzle, and challenges
associated with investigating its Zn/Mn-binding properties
include: (i) each CP αβ unit has six unique metal-binding sites,
(ii) Ca(II) ions cause changes in quaternary structure and
transition-metal affinities, and (iii) CP binds Zn(II) and Mn(II)
with high affinity. In terms of the third point, obtaining
quantitative information about the metal-binding affinities (as
measured by apparent dissociation constant, herein Kd) is
critical for understanding how CP sequesters metal ions in
biological contexts. Several methods, including isothermal

Figure 1. Crystal structures of metal-binding human host-defense proteins. (A, B) Siderocalin with hydrolyzed ferric enterobactin bound (PDB:
1L6M).7 (C, D) The diferric form of lactoferrin with the Fe(III)-binding site of the C-terminal lobe shown (PDB: 1LFG).25 Iron(III) ions are shown
as orange spheres. (E, F) The Zn(II)- and Ca(II)-bound form of human S100A7 (PDB: 2PSR).13 The Zn(II) ions are shown as chocolate spheres.
(G−I) The Cu(II)- and Ca(II)-bound form of human S100A12 (PDB: 1ODB).16 Panel I shows the packing of three S100A12 homodimers in the
asymmetric unit. Copper ions are shown as teal spheres. (J−M) The Mn(II)- and Ca(II)-bound form of human CP (PDB: 4GGF).26 S100A9
subunits are colored blue, and S100A8 subunits are colored green. The α2β2 tetramer (J) and an αβ heterodimer unit (K) taken from the α2β2
tetramer are shown. Mn(II), shown as pink spheres, is coordinated by site 1 (L, 50% occupancy) and site 2 (M, 100% occupancy). There are three
Ca(II) ions per αβ dimer. For S100A7, S100A12, and CP, the Ca(II) ions are represented as yellow spheres. No structure of the Zn(II)-bound form
of CP has been reported.
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titration calorimetry (ITC),2 electron paramagnetic resonance
spectroscopy (EPR),33 and competition titrations,34 have been
employed to probe the Zn/Mn affinities of CP (Table 1). For a
high-affinity chelator like CP, stoichiometric binding occurs and
direct titrations performed by any method can afford only an
upper limit (Kd ∼ 10−8 M) to the Kd value.2,34 Competition
titrations are one approach to overcoming this problem, making
small-molecule metal sensors with known Kd values valuable.
However, the competing sensor must have an appropriate Kd

value to probe CP and not succumb to artifacts in the presence
of protein.34

CP Binds Zinc with High Affinity. CP binds two
equivalents of Zn(II) with high affinity (Table 1).30,31 The
Ca(II)-insensitive Zn(II) sensor ZP4 (Kd = 0.65 nM)35

revealed that CP utilizes Ca(II) ions to modulate its affinity
for Zn(II) at both sites 1 and 2.31 On the basis of ZP4
competitions, in the absence of Ca(II), CP (αβ) binds Zn(II)
with Kd,site1 = 133 ± 58 pM and Kd,site2 = 185 ± 219 nM. In the
presence of excess Ca(II), CP (α2β2) effectively outcompetes
ZP4 for two equivalents of Zn(II), preventing the determi-
nation of reliable dissociation constants. Nevertheless, upper
limits were ascertained to be Kd,site1 ≤ 10 pM and Kd,site2 ≤ 240
pM. Further investigations are required to obtain more accurate
Zn(II) Kd values and to elucidate the Zn(II) coordination
numbers and geometries at both sites.
CP Binds Manganese(II) with High Affinity. CP is

unique among S100 proteins, and known host-defense proteins,
because of its ability to sequester Mn(II). CP therefore
overcomes the kinetic lability of this 3d5 metal ion.29 The

Mn(II) affinity of CP has been investigated by using ITC,
room-temperature EPR (RT-EPR), and competition titra-
tions.26,29,30,32 Taken together, the results from these experi-
ments demonstrate that CP has the capacity to coordinate
Mn(II) with remarkably high affinity for a Mn-binding protein
(Table 1).32 A combination of RT-EPR and Mn(II)
competition titrations using the Ca(II)-insensitive metal sensor
ZP1 (Kd1,Mn = 550 nM)36 revealed that CP uses Ca(II) ions to
modulate its Mn(II)-binding properties.32 For example, in the
absence of Ca(II), CP (αβ) exhibits relatively low affinity for
Mn(II) and does not compete with ZP1 for Mn(II). The
presence of excess Ca(II) ions enhances the Mn(II) affinity of
CP, and enables CP (α2β2) to sequester Mn(II) from ZP1.
Thus, Ca(II) binding enhances the Mn(II) affinity and appears
to be a general strategy for tuning the metal-sequestering
capability and antibacterial activity of CP (vide inf ra). On the
basis of current data (Table 1), the upper limit to the Kd value
of CP for Mn(II) in the presence of Ca(II) is in the nanomolar
range. Given the Ca(II)-dependent Mn(II) affinities, we reason
that Ca(II)-bound CP is required for Mn(II) scavenging in
biological contexts. Site 2 is the high-affinity Mn(II) site,32 and
both crystallographic and solution studies established that CP
employs a hexahistidine motif for Mn(II) complexation at site 2
(Figures 1M, 2A).26,29 Site 1, which exhibits the same primary
coordination sphere as Mn-containing superoxide dismutases
(SODs) (Figures 1L, 2G), has relatively low affinity for Mn(II).
Whether site 1 chelates Mn(II) in physiological contexts is
unclear. Its Mn(II) affinity is too low for Mn(II) sequestration;

Table 1. Reported Apparent Dissociation Constant Values (Kd) for Human CP and Experimental Methodsa

metal protein dissociation constant (Kd) method buffer conditions ref

Zn(II) CP-Serb Kd, site1 = 133 ± 58 pM Competitionc 75 mM HEPES, 100 mM NaCl, pH 7.5 31
Kd, site2 = 185 ± 219 nM

Zn(II) CP-Serb Kd, site1 ≤ 10 pM Competitionc 75 mM HEPES, 100 mM NaCl, pH 7.5 31
Kd, site2 ≤ 240 pM 20 equivalents Ca(II) / CP (αβ)

Zn(II) CP Kd1 = 1.4 nMd ITCe 20 mM Tris, 100 mM NaCl, pH 7.5 30
Kd2 = 5.6 nMd stoichiometric Ca(II)f

5 mM β-mercaptoethanol
Zn(II) ΔHis3Aspb Kd, site2 = 3.4 ± 1.2 nM ITCg 20 mM HEPES, 75 mM NaCl, pH 7.5 26

stoichiometric Ca(II)f

Zn(II) ΔHis4b Kd, site1 = 8.2 ± 1.5 nM ITCg 20 mM HEPES, 75 mM NaCl, pH 7.5 26
stoichiometric Ca(II)f

Mn(II) CP-Serb Kd, site2 = 4.9 ± 1.0 μM EPRh 75 mM HEPES, 100 mM NaCl, pH 7.5 32
Kd = 1.0 mM (n=2)

Mn(II) CP-Serb Kd, site2 = 194 ± 203 nM EPRh 75 mM HEPES, 100 mM NaCl, pH 7.5 32
Kd, site1 = 21 ± 5 μM 40 equivalents Ca(II) / CP (αβ)

Mn(II) CP-Serb Kd, site2 > 550 nM Competitioni 75 mM HEPES, 100 mM NaCl, pH 7.5 32

Mn(II) CP-Serb Kd, site2 < 550 nM Competitioni 75 mM HEPES, 100 mM NaCl, pH 7.5 32
40 equivalents Ca(II) / CP (αβ)

Mn(II) CP Kd1 = 1.3 nMd ITCe 20 mM Tris, 100 mM NaCl, pH 7.5 30
Kd2 = 3.7 μMd stoichiometric Ca(II)f

5 mM β-mercaptoethanol
Mn(II) ΔHis3Aspb Kd, site 2 = 5.8 ± 1.6 nM ITCg 20 mM HEPES, 75 mM NaCl, pH 7.5 26

stoichiometric Ca(II)f

aSee section entitled “Considerations for Metal-Binding Studies” for further discussion. bCP contains two native cysteine residues that were mutated
to serine for these metal-binding studies. cCompetition titrations were performed with ZP4 at 25 °C. dThe Kd values were not assigned to the metal-
binding sites. eDirect ITC titrations were performed at 30 °C. Stoichiometric Mn(II)/Zn(II) binding was observed. fThe definition of stoichiometric
Ca(II) in terms of molar equivalents per CP unit or Ca(II)-binding site is unclear. gDirect ITC titrations were performed at 25 °C. Stoichiometric
Zn(II)/Mn(II) binding was observed. hDirect EPR titrations were performed at room temperature. The +Ca(II) titrations are limited by the
concentrations required for detectable Mn(II). iCompetition titrations were performed with ZP1 at 25 °C.
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however, it is possible that site 1 contributes to Mn(II)
buffering.
The Hexahistidine Motif and the S100A9 C-terminal

Tail. From the standpoint of biological Mn(II) coordination
chemistry, CP is a notable example for several reasons. Mn(II)
coordination at interfacial protein sites is unusual.47 The
hexahistidine site (Figure 1M) is unprecedented among known
metalloproteins and provides Ca(II)-dependent Mn(II)
sequestration. Most biological Mn(II) coordination spheres
provide a mixture of nitrogen- and oxygen-based ligands
(Figure 2), as expected on the basis of hard-soft acid-base
theory. Thus, it is surprising that CP exclusively utilizes neutral
His ligands to coordinate Mn(II). Formation of the His6 site

results in organization of the C-terminal tail of S100A9,26 and
the residues His103 and His105 complete the octahedral
coordination sphere.26,29 Mutant proteins that lack histidine
moieties at positions 103 and/or 105 of the S100A9 C-terminal
tail bind Mn(II) at site 2, but these mutants appear to be unable
to sequester this metal.26,29 Additional structural and
spectroscopic investigations are required to elucidate how the
CP scaffold and His6 site are tuned to capture Mn(II).

Metal Binding Accounts for CP Antimicrobial Activity.
CP has broad-spectrum in vitro antimicrobial activity attributed
to its ability to starve microbes of essential nutrient metals
following its release into the extracellular space.11,24,26,31,48 In
vitro studies of CP revealed that (i) the metal-binding sites are

Figure 2. Examples of mononuclear biological Mn(II) sites. (A) The His6 site of human calprotectin.26,29 (B) The photochemical reaction center of
Rhodobacter sphaeroides.37 (C) A cupin of unknown function from Thermotoga maritima.38 (D) Site 1 of the Bacillus subtilis oxalate decarboxylase.39

(E) Site 2 of the B. subtilis oxalate decarboxylase.39 (F) The hammerhead ribozyme.40 (G) The His3Asp site of human calprotectin.26,32 (H) The
primary coordination sphere of Mn-SOD.41 (I) The TroA solute binding protein from Streptococcus suis and Treponema pallidum.42,43,59 The
numbering for the S. suis TroA is shown. Both TroA proteins have been crystallized in the Zn(II)-bound forms, but biochemical data indicate that
these proteins transport Mn(II). (J) MncA from Synechosytis PCC 6803.44 (K) The Mn(II)-solute binding protein of Staphylococcus aureus.45 (L)
The pneumococcal surface antigen (PsaA) from Streptococcus pneumoniae depicted with a four-coordinate geometry.46
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important for antibacterial activity30,31 and (ii) this activity is
enhanced in the presence of 2 mM Ca(II).31 Taken together
with the metal-binding studies described above, these results
provide a working model whereby CP employs physiological
Ca(II) ion gradients to modulate its metal affinities and
antibacterial activity.31 When stored in the cytosol of
neutrophils or epithelial cells, CP encounters relatively low
Ca(II) concentrations (nanomolar) under resting conditions.
Following release into the extracellular milieu, CP encounters
Ca(II) concentrations in the low-millimolar range and morphs
into a potent chelator. CP has been detected at sites of
infection in concentrations as high as ca. 50 μM,24 suggesting
that sufficient CP is available to chelate bioavailable metals in
these environments.
Studies of CP mutant proteins and numerous bacterial strains

revealed that site 2 contributes to in vitro growth inhibitory
activity more than site 1.26,29,31 The precise origins for this
behavior are unclear and require further investigation.29

Although site 2 coordinates Mn(II) with high affinity, it has a
thermodynamic preference for Zn(II), and other as-yet
unappreciated factors may be at work.29,31,32

■ BACTERIAL MANGANESE(II) ACQUISITION AND
COMPETITION WITH CP

With the discoveries that CP sequesters and depletes Mn(II) at
sites of infection,11 the Mn(II) biology of pathogens and
commensal microbes is a critical area of investigation.2 The
mechanisms of Mn(II) acquisition by microbes as well as the
microbial processes and virulence factors that require Mn(II)
are of particular interest (Figure 3).2 Indeed, animal models of
infection suggest that Mn(II) uptake systems are required for

virulence in a variety of bacterial pathogens including
Staphylococcus aureus,49 Streptococcus pneumoniae,50,51 Borrelia
burgdorferi,52 Salmonella Typhimurium,53 and Yersinia pestis.54

Bacteria primarily rely on two classes of Mn(II) importers,
Nramp-type transporters and ATP-binding casette (ABC)
importers, to shuttle divalent manganese into the cytoplasm.55

The Nramp-type transporters (e.g., MntH from S. aureus,
Figure 3) are composed of multiple membrane-embedded
helices. A paucity of structural or biochemical information
about these transporters is available,56 making studies of
Nramp-type machinery a rich area for exploration. The ABC-
type importers are three- or four-component systems
comprised of (i) a soluble extracellular or periplasmic binding
protein, (ii) a transmembrane permease, and (iii) a cytoplasmic
ATP hydrolase. Noteworthy examples of ABC-type importers
that are expressed by pathogens for Mn(II) acquisition include
PsaABC of S. pneumoniae and MntABC of S. aureus. In recent
years, structural and biochemical studies of the solute-binding
proteins from S. pneumoniae (PsaA) and S. aureus (MntC) have
informed the mechanism of bacterial Mn(II) capture.45,46,57,58

Structural studies revealed that various Mn(II) solute-binding
proteins display nearly identical secondary and tertiary
structures.42,45,46,59,60 These solute-binding proteins are char-
acterized by two (α/β)4 lobes that are linked by a backbone α-
helix (Figure 4). In order to concentrate metals from the
environment into the cytoplasm, solute-binding proteins must
coordinate a cognate metal with high affinity and subsequently
deliver the metal to the transmembrane protein. No Mn(II)
solute-binding protein has been crystallized with its trans-
membrane partner, and the mechanism of metal ion release
into the transmembrane protein remains unclear.

Mn(II) Transport by Pneumococcus. Pneumococcal
PsaA (34.6 kDa) has been crystallized in the apo, Mn(II)-
bound, and Zn(II)-bound forms (Figure 4A−C).46,58,61 The
structure of Zn(II)−PsaA is of interest because Zn(II) is toxic
to S. pneumoniae at high concentrations. Zn(II) inhibits Mn(II)
uptake by the PsaABC system, which is attributed to Zn(II)
coordination at the Mn(II) site of PsaA.62,63 The overall fold of
PsaA is very similar in the three structures, but the length of the
backbone helix varies between the apo and metal-bound forms.
In apo PsaA, the backbone helix extends an additional turn,
indicating that Zn(II) and Mn(II) coordination induces
unwinding of this helix as the lobe domains change
conformation.58 Zn(II) and Mn(II) are both coordinated by
His67, His139, Glu205, and Asp280 (Table 2 and Figure
4B,C).46,61 Zn(II) and Mn(II) coordination result in similar
changes to the secondary structure of PsaA, and the protein
adopts a closed conformation with both metals. PsaA chelates
Zn(II) in a tetrahedral geometry, with Glu205 and Asp280 each
coordinating Zn(II) in a monodentate manner (Table 2). An
overlay of Mn(II)- and Zn(II)-bound PsaA suggests that there
is a small rearrangement of the metal-binding residues between
the two forms. The Mn(II) coordination sphere of Mn(II)−
PsaA has been described as four-coordinate;46 however, Glu205
and/or Asp280 may afford bidentate interactions (Table 2).
Additional biophysical studies are needed to address this
ambiguity and to fully elucidate the molecular basis for how
PsaA facilitates Mn(II) delivery to its transmembrane partner
PsaC.
Despite the significance of S. pneumoniae in clinical settings,

the consequences of host-mediated Mn(II) deprivation for this
pathogen are largely unexplored. Two independent in vitro
investigations revealed that CP inhibits the growth of S.

Figure 3. Model of Mn(II) homeostasis in S. aureus and Mn(II)-
dependent processes that CP may disrupt. CP released into the
extracellular space coordinates Mn(II) at sites of infection and
competes with the staphylococcal Mn(II) transporters MntC and
MntH. Following uptake, Mn(II) is incorporated into metalloenzymes
including MnSOD, Class Ib RNR, and FosB. Expression of MntABC
and MntH is downregulated under Mn(II)-rich conditions by the
metalloregulatory protein MntR.
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pneumoniae.2,64 In contrast, an animal model study of
pneumonoccal infection reported attenuated pathogenesis in
CP knockout mice relative to that in wild-type mice.64 On the
basis of the coordination chemistry observed for PsaA, a model
whereby Zn(II) sequestration by CP prevents Zn(II) from
inhibiting Mn(II) uptake was proposed.64

Mn(II) Transport by Staphylococcus. The staphylococcal
solute-binding protein MntC (35 kDa) is expressed during
infection and is a current target for the development of a

multivalent vaccine against S. aureus.49,65 MntC was recently
crystallized with a putative Mn(II) ion in the metal-binding
pocket (Figure 4D,E).45 The Mn(II)-binding site is similar to
that of PsaA and formed by His50, His123, Glu189, and
Asp264 (Figure 4 and Table 2); however, the Mn(II) center is
five-coordinate. Asp264 provides a bidentate ligand, whereas a
monodentate interaction is observed for Glu189. ITC experi-
ments performed in the presence of the Mn(II) competitor
citrate revealed that MntC binds Mn(II) with nanomolar
affinity (Kd = 4.4 ± 0.9 nM at 25 °C and pH 6.0).45 MntC also
coordinates Zn(II) and Cd(II). In contrast to Mn(II), binding
of these d10 metal ions appears to be irreversible and may
render the transporter inactive.45 The irreversibility of Zn(II)
binding is similar to the behavior reported for PsaA58 and
indicates that elevated levels of Zn(II) may also shut down the
MntABC transporter.
CP exhibits growth inhibitory activity against S. aureus, and

the MntABC and MntH transportation systems enable in vitro
growth of S. aureus in the presence of CP.66 Although the
transcription of mntA and mntH increases 10- to 10 000-fold in
the presence of inhibitory concentrations of CP,66 strains of S.
aureus lacking mntA, mntB, mntC, or mntH do not exhibit
increased sensitivity to CP in vitro.11,66 Rather, inactivation of
both MntABC and MntH (ΔmntCΔmntH strain) is required to
increase the susceptibility of S. aureus to CP.66 These results
indicate that both transport machineries compete with CP for
bioavailable Mn(II). Furthermore, redundancy of Mn(II)-
uptake systems may be necessary for S. aureus to acquire
sufficient quantities of Mn(II) at sites of infection where CP is
abundant.

■ MICROBIAL MANGANESE ENZYMES CONTRIBUTE
TO PATHOGENESIS

Identifying the manganese-dependent microbial processes that
CP disrupts is of significant current interest. Following cellular

Figure 4. Crystal structures PsaA (A−C) and MntC (D, E). (A) Overlay of apo PsaA (light blue), Mn(II)−PsaA (lavender), and Zn(II)−PsaA
(green). The metal ions are omitted from the overlay. (B, C) Overlays of the Mn(II)-binding site of PsaA with apo-PsaA (blue) and the Zn(II)-
binding site of Zn(II)−PsaA (green). The Mn(II) ion from Mn(II)−PsaA is shown as a pink sphere. Apo PsaA, PDB: 3ZK7;58 Mn(II)−PsaA, PDB:
3ZTT;46 Zn(II)−PsaA, PDB: 1PSZ.61 (D) The Mn(II)-bound form of S. aureus MntC. (E) An expansion of the Mn(II)-binding site. PDB: 4K3V.45

Table 2. Metal−Ligand Bond Distances in Selected Mn(II)
Solute Binding Proteins

protein
residue/coordinating

atom
metal−ligand bond distance

(Å)

Mn(II)−PsaAa,b His67/Nε2 2.1
His139/Nε2 2.1
Glu205/Oε1 2.1
Glu205/Oε2 2.4
Asp280/Oδ1 2.1
Asp280/Oδ2 2.4

Zn(II)−PsaAa,c His67/Nε2 2.0
His139/Nε2 2.0
Glu205/Oε1 2.0
Glu205/Oε2 2.6
Asp280/Oδ1 2.0
Asp280/Oδ2 2.8

Mn(II)−MntCd,e His50/Nε2 2.1
His123/Nε2 2.1
Glu189/Oε1 2.3
Glu189/Oε2 2.8
Asp264/Oδ1 2.2
Asp264/Oδ2 2.3

aNumbering corresponds to the full-length PsaA. bPDB: 3ZTT. cPDB:
1PSZ. dNumbering corresponds to the soluble construct of MntC.
ePDB: 4K3V.
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uptake, manganese becomes incorporated into biomolecules.
Microbial enzymes that employ manganese as a cofactor
contribute to defense against oxidative stress, deoxynucleotide
biosynthesis, primary metabolism, and antibiotic resistance
(Figure 5). Recent investigations have focused on how CP
modulates oxidative killing of bacteria as a result of Mn(II)
chelation,26,30,66 and additional Mn(II)-dependent microbial
processes warrant consideration in future work.

Superoxide Dismutases. Pathogens must survive the
harsh chemical conditions of the immune response, including
a host-mediated oxidative burst. Microorganisms therefore
produce a number of detoxifying enzymes, including superoxide
dismutases (SODs), to overcome oxidative stress. SODs
catalyze the disproportionation of superoxide into oxygen and
hydrogen peroxide and require one of four metal cofactors: Fe,
Mn, Ni, or Cu/Zn.67 The Fe, Mn, and Cu/Zn forms have been
identified in human pathogens. Recent investigations address-
ing how CP influences bacterial susceptibility to oxidative stress
have focused on S. aureus.11,26,30,66 S. aureus strains produce two
SODs, SodA and SodM.68,69 SodA and SodM both exhibit a
His3Asp primary coordination sphere and appear to require Mn
as the redox-active cofactor; however, the identity of the
cognate metal ion has not been rigorously determined for either
enzyme, and some SODs are active with Mn or Fe.70−72 Given
the expression of these two SODs, S. aureus may be particularly
susceptible to oxidative stress under Mn(II)-limiting con-
ditions, providing an appropriate model organism to examine
the effect of Mn(II) sequestration on SOD activity in vitro and
in animal models of S. aureus infection. Although not rigorously
established to occur in S. aureus, small-molecule Mn complexes
also disproportionate superoxide and provide protection against
oxidative stress in vivo.73,74

Treatment of S. aureus Newman with CP in vitro reduces the
total SOD activity of whole-cell lysates.30 This effect was not
observed upon mutation of sites 1 and 2 of CP, indicating that
the transition metal-ion binding sites are necessary.30 More-
over, the S. aureus SOD activity was restored upon addition of
exogenous Mn(II) to the growth medium.30 CP also increased
the susceptibility of wild-type S. aureus to the superoxide-

generating agent paraquat, and this effect was more
pronounced for a ΔsodAΔsodM knockout mutant of New-
man.30 Thus, SodA and SodM contribute to the protection of S.
aureus against superoxide, and CP decreases this effect.30

Subsequent studies revealed that site 2 (His6) was required to
attenuate the SOD activity of S. aureus.26 Furthermore,
MntABC and MntH Mn(II)-uptake systems of S. aureus are
required for full SOD activity in the presence of CP and for
infection in the mouse model of disease.66 Taken together,
these results indicate that site 2 of CP competes with bacterial
metal-ion transporters for Mn(II) and that a consequence of
CP-mediated Mn(II) sequestration is a reduction in staph-
ylococcal SOD activity. Thus, although Mn(II) chelation is a
bacteriostatic effect, CP may assist the bactericidal oxidative
burst by reducing SOD activity. Despite these observations
from in vitro studies, the ΔsodAΔsodM mutant in S. aureus was
able to colonize both wild-type and CP knockout mice,30

indicating that SODs may not be required for pathogenesis and
that other Mn-dependent processes are at work (vide inf ra).
Manganese-dependent SODs are found in many other

microbial species and are considered to be virulence factors
in many cases. The Lyme disease pathogen B. burgderfori has no
metabolic requirement for iron and encodes a single Mn(II)-
containing SOD.75−77 Other virulent species that utilize Mn-
SOD include Neisseria gonorrheae,73 Beauveria bassiana,78

Streptococcus mutans,79 Saccharomyces cerevisiae,80 E. coli,81,82

Haemophilus influenzae,83 and Treponema pallidum.84 Many
pathogens also express FeSOD and/or CuZnSOD.67,85,86

Whether CP influences the (mis)metalation and activity of
these enzymes is currently unknown. Because different
microbes employ different enzymatic arsenals to combat the
host-mediated oxidative burst, the consequences of CP on the
oxidative stress response will need to be assessed on a case-by-
case basis.

Ribonucleotide Reductase. Ribonucleotide reductases
(RNRs) are essential enzymes that convert ribonucleotides to
deoxyribonucleotides, the latter of which are the building
blocks of DNA. Class I RNRs are metalloenzymes that contain
dinuclear active sites. Characterized class Ib RNRs are active
with a dinuclear Mn cofactor and therefore constitute
compelling candidates for bacterial enzymes that are disrupted
by CP-dependent Mn(II) sequestration.87−91

One example of a bacterial pathogen that expresses class Ib
RNR is Streptococcus sanguinis, a causative agent of infective
endocarditis.92 A series of recent studies established that both
manganese and class Ib RNR are important for S. sanguinis
pathogenicity.92−95 Deletion of the Mn(II) solute-binding
protein SsaB (ΔssaB), which is homologous to PsaA and
MntC, resulted in less cellular accumulation of Mn and Fe by S.
sanguinis and attenuated its virulence in a rabbit model of
infective endocarditis by >1000-fold.94 Subsequently, a S.
sanguinis ΔsodA mutant was found to be less virulent than
wild-type by only 10−100-fold. Taken together, these results
suggested that other Mn-dependent processes contribute to
heart valve colonization by S. sanguinis. The S. sanguinis genome
encodes two forms of RNR, class Ib (nrdHEKF and nrdI) and
class III (nrdD).93 Because NrdD is a strictly anaerobic form of
RNR, the class Ib enzyme is required for aerobic growth of S.
sanguinis. Biochemical studies revealed that S. sanguinis class Ib
RNR can be reconstituted with a diiron or dimanganese
cofactor.92 The latter form exhibits greater activity, utilizes a
dimanganese(III) tyrosyl radical cofactor, and is postulated to
be relevant in vivo.92

Figure 5. Examples of enzymes that utilize Mn as a cofactor. Mn-SOD
disproportionates the superoxide radical, RNR converts ribonucleo-
tides to deoxyribonucleotides, FosB inactivates the antibiotic
fosfomycin, and UlaG hydrolyzes L-ascorbate-6-phosphate.
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In order to evaluate the contribution of the class Ib RNR to
S. sanguinis virulence, the same rabbit model of infective
endocarditis was employed,93 and rabbits were infected with
wild-type S. sanguinis or mutants lacking functional class Ib
RNR.93 In contrast to the parent strain, which was recovered
from heart tissue as expected, the ΔnrdHEKF and ΔnrdI
mutant strains were unable to survive in vivo.93 Moreover,
mutation of the class III RNR (ΔnrdD) had no effect on heart
valve colonization.93 These results demonstrated that man-
ganese enzymes other than Mn-SOD contribute to virulence
and revealed that disruption of RNR activity has a pronounced
effect on S. sanguinis viability in vivo. Reduction of microbial
RNR activity may be a general consequence of metal-ion
withholding by the host. The effect of CP on cofactor assembly
and the activity of class Ib RNR remains an avenue for future
work.
The class Ic RNR may also be considered from the

standpoint of Mn(II) sequestration by the host. The sexually
transmitted intracellular pathogen Chlamydia trachomatis
expresses a class Ic RNR, and in vitro studies demonstrated
that this enzyme is active with a bimetallic Mn/Fe cofactor.96,97

It will be interesting to decipher whether Mn sequestration by
the host perturbs its assembly. It should be noted that, despite
the prevalence of RNRs in nature and the strict requirement of
deoxyribonucleotide building blocks for the synthesis of DNA,
some slow-growing pathogenic organisms, including B.
burgdorferi,91 do not have genes encoding RNRs. Rather,
these unusual microorganisms may scavenge deoxyribonucleo-
tides from the host.
Other Mn Enzymes. There are many other enzymes that

utilize Mn as a cofactor (Figure 5).1 For instance, S. aureus
FosB is a Mn(II)-dependent enzyme that inactivates the
antibiotic fosfomycin.98,99 Many enzymes involved in general
metabolism, including S. Typhimurium propionate kinase and
the E. coli lactonase UlaG, are active with added Mn(II).100,101

A potential mycobacterial virulence factor and putative oxidase
named Rv0223 requires a Mn/Fe cofactor for activity.102

Trichomonas vaginalis, a sexually transmitted parasite, catalyzes
the degradation of sphingomyelin, a component of the plasma
membrane in the vaginal mucosa. Addition of Mn(II) to T.
vaginalis cell extracts affords a 2-fold increase in sphingomye-
linase activity.103 It will be important to evaluate the
contributions of these enzymes, and others, to virulence and
the effect of CP on enzymatic activity. Lastly, the gut
commensal Lactobacillus genus expresses a dinuclear Mn-
containing catalase to detoxify hydrogen peroxide.104 The
consequences of metal chelation by CP on the growth of
commensal bacteria is largely unexplored; Mn(II) and Zn(II)
sequestration may also inhibit the growth of beneficial flora in
the inflamed gut.24,105,106

■ SUMMARY AND OUTLOOK
The battle between host and pathogen for transition metal ions
is an important facet of infectious disease. Manganese and CP
are two intriguing players in this arena, and CP is currently the
only known Mn(II)-sequestering host-defense protein in
mammals. In recent years, chemical and biological initiatives
have addressed the Mn(II)-binding properties of human CP as
well as how CP affects select Mn(II)-dependent microbial
processes and contributes to microbial infection. This work
provides a foundation for future investigations pertaining to
how CP contributes to metal-ion homeostasis at the host−
pathogen interface and in other biological contexts. Further

studies of this complex problem require the tools of chemistry
and biology. Many different species of metal-bound CP exist,
and the M(II)−CP speciation will be dependent on the metal-
ion availability in any physiological environment. How CP
modulates the ratios of bioavailable metal ions in vivo, and how
microbes as well as the host respond to these changing nutrient
levels, warrants rigorous evaluation. Because metabolic metal-
ion requirements vary from microbe to microbe and because
pathogens employ strain-specific strategies to evade the metal-
withholding response, the effect of CP on microbial growth in
vitro and in vivo must be considered on a case-by-case basis.
Such initiatives will illuminate the interplay between CP and
microbial virulence factors.
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McNeil, L. K., Mininni, T., Nuñez, L., Carriere, M., Singer, C., Dilts, D.
A., and Jansen, K. U. (2012) Staphylococcus aureus manganese
transport protein C is a highly conserved cell surface protein that
elicits protective immunity against S. aureus and Staphylococcus
epidermidis. J. Infect. Dis. 205, 1688−1696.
(50) Dintilhac, A., Alloing, G., Granadel, C., and Claverys, J.-P.
(1997) Competence and virulence of Streptococcus pneumoniae: Adc
and PsaA mutants exhibit a requirement for Zn and Mn resulting from
inactivation of putative ABC metal permeases. Mol. Microbiol. 25,
727−739.
(51) Ogunniyi, A. D., Mahdi, L. K., Jennings, M. P., McEwan, A. G.,
McDevitt, C. A., Van der Hoek, M. B., Bagley, C. J., Hoffmann, P.,
Gould, K. A., and Paton, J. C. (2010) Central role of manganese in
regulation of stress responses, physiology, and metabolism in
Streptococcus pneumoniae. J. Bacteriol. 192, 4489−4497.
(52) Ouyang, Z., He, M., Oman, T., Yang, X. F., and Norgard, M. V.
(2009) A manganese transporter, BB0219 (BmtA), is required for
virulence by the Lyme disease spirochete, Borrelia burgdorferi. Proc.
Natl. Acad. Sci. U.S.A. 106, 3449−3454.
(53) Zaharik, M. L., Cullen, V. L., Fung, A. M., Libby, S. J., Kujat
Choy, S. L., Coburn, B., Kehres, D. G., Maguire, M. E., Fang, F. C., and
Finlay, B. B. (2004) The Salmonella enterica serovar Typhimurium
divalent cation transport systems MntH and SitABCD are essential for
virulence in an Nramp1G169 murine typhoid model. Infect. Immun. 72,
5522−5525.
(54) Bearden, S. W., and Perry, R. D. (1999) The Yfe system of
Yersinia pestis transports iron and manganese and is required for full
virulence of plague. Mol. Microbiol. 32, 403−414.
(55) Ma, Z., Jacobsen, F. E., and Giedroc, D. P. (2009) Coordination
chemistry of bacterial metal transport and sensing. Chem. Rev. 109,
4644−4681.
(56) Cellier, M. F. M. (2012) Nramp: from sequence to structure
and mechanism of divalent metal import. Curr. Top. Membr. 69, 249−
293.
(57) Li, N., Yang, X.-Y., Guo, Z., Zhang, J., Cao, K., Han, J., Zhang,
G., Liu, L., Sun, X., and He, Q.-Y. (2014) Varied metal-binding
properties of lipoprotein PsaA in Streptococcus pneumoniae. J. Biol.
Inorg. Chem. 19, 829−838.
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Wisńiewska, A., and Bielawski, K. P. (2010) Superoxide dismutase is
upregulated in Staphylococcus aureus following protoporphyrin-
mediated photodynamic inactivation and does not directly influence
the response to photodynamic treatment. BMC Microbiol. 10, 323.
(70) Cotruvo, J. A., Jr., and Stubbe, J. (2012) Metallation and
mismetallation of iron and manganese proteins in vitro and in vivo: the
class I ribonucleotide reductases as a case study. Metallomics 4, 1020−
1036.
(71) Tabares, L. C., Bittel, C., Carrillo, N., Bortolotti, A., and Cortez,
N. (2003) The single superoxide dismutase of Rhodobacter capsulatus
is a cambialistic, manganese-containing enzyme. J. Bacteriol. 185,
3223−3227.
(72) Meier, B., and Gabbianelli, R. (1998) In vitro incorporation of
different transition metal ions into a cambialistic superoxide dismutase
from Propionibacterium shermanii. J. Inorg. Biochem. 70, 57−61.
(73) Tseng, H.-J., Srikhanta, Y., McEwan, A. G., and Jennings, M. P.
(2001) Accumulation of manganese in Neisseria gonorrhoeae correlates
with resistance to oxidative killing by superoxide anion and is
independent of superoxide dismutase activity. Mol. Microbiol. 40,
1175−1186.
(74) Barnese, K., Gralla, E. B., Valentine, J. S., and Cabelli, D. E.
(2012) Biologically relevant mechanism for catalytic superoxide
removal by simple manganese compounds. Proc. Natl. Acad. Sci.
U.S.A. 109, 6892−6897.
(75) Posey, J. E., and Gherardini, F. C. (2000) Lack of a role for iron
in the Lyme disease pathogen. Science 288, 1651−1653.
(76) Troxell, B., Xu, H., and Yang, X. F. (2012) Borrelia burgdorferi, a
pathogen that lacks iron, encodes manganese-dependent superoxide
dismutase essential for resistance to streptonigrin. J. Biol. Chem. 287,
19284−19293.
(77) Aguirre, J. D., Clark, H. M., McIlvin, M., Vazquez, C., Palmere,
S. L., Grab, D. J., Seshu, J., Hart, P. J., Saito, M., and Culotta, V. C.
(2013) A manganese-rich environment supports superoxide dismutase
activity in a Lyme disease pathogen, Borrelia burgdorferi. J. Biol. Chem.
288, 8468−8478.

ACS Chemical Biology Reviews

DOI: 10.1021/cb500792b
ACS Chem. Biol. 2015, 10, 641−651

650

http://dx.doi.org/10.1021/cb500792b


(78) Xie, X.-Q., Li, F., Ying, S.-H., and Feng, M.-G. (2012) Additive
contributions of two manganese-cored superoxide dismutases
(MnSODs) to antioxidation, UV tolerance and virulence of Beauveria
bassiana. PLoS One 7, e30298.
(79) Vance, P. G., Keele, B. B., Jr., and Rajagopalan, K. V. (1972)
Superoxide dismutase from Streptococcus mutans. Isolation and
characterization of two forms of the enzyme. J. Biol. Chem. 247,
4782−4786.
(80) Luk, E. E., and Culotta, V. C. (2001) Manganese superoxide
dismutase in Saccharomyces cerevisiae acquires its metal co-factor
through a pathway involving the Nramp metal transporter, Smf2p. J.
Biol. Chem. 276, 47556−47562.
(81) Privalle, C. T., and Fridovich, I. (1992) Transcriptional and
maturational effects of manganese and iron on the biosynthesis of
manganese-superoxide dismutase in Escherichia coli. J. Biol. Chem. 267,
9140−9145.
(82) Keele, B. B., Jr., McCord, J. M., and Fridovich, I. (1970)
Superoxide dismutase from Escherichia coli B. A new manganese-
containing enzyme. J. Biol. Chem. 245, 6176−6181.
(83) D’Mello, R. A., Langford, P. R., and Kroll, J. S. (1997) Role of
bacterial Mn-cofactored superoxide dismutase in oxidative stress
responses, nasopharyngeal colonization, and sustained bacteremia
caused by Haemophilus inf luenzae type b. Infect. Immun. 65, 2700−
2706.
(84) Austin, F. E., Barbieri, J. T., Corin, R. E., Grigas, K. E., and Cox,
C. D. (1981) Distribution of superoxide dismutase, catalase, and
peroxidase activities among Treponema pallidum and other spirochetes.
Infect. Immun. 33, 372−379.
(85) De Groote, M. A., Ochsner, U. A., Shiloh, M. U., Nathan, C.,
McCord, J. M., Dinauer, M. C., Libby, S. J., Vazquez-Torres, A., Xu, Y.,
and Fang, F. C. (1997) Periplasmic superoxide dismutase protects
Salmonella from products of phagocyte NADPH-oxidase and nitric
oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 94, 13997−14001.
(86) Langford, P. R., Sansone, A., Valenti, P., Battistoni, A., and Kroll,
J. S. (2002) Bacterial superoxide dismutase and virulence. Methods
Enzymol. 349, 155−166.
(87) Stubbe, J., and Cotruvo, J. A., Jr. (2011) Control of metallation
and active cofactor assembly in the class Ia and Ib ribonucleotide
reductases: diiron or dimanganese? Curr. Opin. Chem. Biol. 15, 284−
290.
(88) Zhang, Y., and Stubbe, J. (2011) Bacillus subtilis class Ib
ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme.
Biochemistry 50, 5615−5623.
(89) Cotruvo, J. A., Jr., and Stubbe, J. (2011) Escherichia coli class Ib
ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical
cofactor in vivo. Biochemistry 50, 1672−1681.
(90) Masalha, M., Borovok, I., Schreiber, R., Aharonowitz, Y., and
Cohen, G. (2001) Analysis of transcription of the Staphylococcus aureus
aerobic class Ib and anaerobic class III ribonucleotide reductase genes
in response to oxygen. J. Bacteriol. 183, 7260−7272.
(91) Lundin, D., Torrents, E., Poole, A. M., and Sjöberg, B.-M.
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Hernańdez-García, M. E., and Vargas-Villarreal, J. (2013) Sphingo-
myelinase activity of Trichomonas vaginalis extract and subfractions.
BioMed. Res. Int., 679365.
(104) Barynin, V. V., Whittaker, M. M., Antonyuk, S. V., Lamzin, V.
S., Harrison, P. M., Artymiuk, P. J., and Whittaker, J. W. (2001) Crystal
structure of manganese catalase from Lactobacillus plantarum. Structure
9, 725−738.
(105) Diaz-Ochoa, V. E., Jellbauer, S., Klaus, S., and Raffatellu, M.
(2014) Transition metal ions at the crossroads of mucosal immunity
and microbial pathogenesis. Front. Cell. Infect. Microbiol. 4, 2.
(106) Behnsen, J., Jellbauer, S., Wong, C. P., Edwards, R. A., George,
M. D., Ouyang, W., and Raffatellu, M. (2014) The cytokine IL-22
promotes pathogen colonization by suppressing related commensal
bacteria. Immunity 40, 262−273.
(107) Ehrnstorfer, I. A., Geertsma, E. R., Pardon, E., Steyaert, J., and
Dutzler, R. (2014) Crystal structure of a SLC11 (NRAMP)
transporter reveals the basis for transition-metal ion transport. Nat.
Struct. Mol. Biol. 21, 990−996.

■ NOTE ADDED IN PROOF
While this manuscript was in review, a crystal structure of the
NRAMP family member ScaDMT from Staphylococcus capitis
was reported.107

ACS Chemical Biology Reviews

DOI: 10.1021/cb500792b
ACS Chem. Biol. 2015, 10, 641−651

651

http://dx.doi.org/10.1021/cb500792b

