
ARTICLE OPEN

Multi-omics data integration and modeling unravels new
mechanisms for pancreatic cancer and improves
prognostic prediction
Nicolas A. Fraunhoffer1,2,3,7, Analía Meilerman Abuelafia1,7, Martin Bigonnet1, Odile Gayet1, Julie Roques1, Remy Nicolle 4,
Gwen Lomberk 5,6, Raul Urrutia5,6, Nelson Dusetti 1✉ and Juan Iovanna 1✉

Pancreatic ductal adenocarcinoma (PDAC), has recently been found to be a heterogeneous disease, although the extension of its
diversity remains to be fully understood. Here, we harmonize transcriptomic profiles derived from both PDAC epithelial and
microenvironment cells to develop a Master Regulators (MR)-Gradient model that allows important inferences on transcriptional
networks, epigenomic states, and metabolomics pathways that underlies this disease heterogeneity. This gradient model was
generated by applying a blind source separation based on independent components analysis and robust principal component
analyses (RPCA), following regulatory network inference. The result of these analyses reveals that PDAC prognosis strongly
associates with the tumor epithelial cell phenotype and the immunological component. These studies were complemented by
integration of methylome and metabolome datasets generated from patient-derived xenograft (PDX), together experimental
measurements of metabolites, immunofluorescence microscopy, and western blot. At the metabolic level, PDAC favorable
phenotype showed a positive correlation with enzymes implicated in complex lipid biosynthesis. In contrast, the unfavorable
phenotype displayed an augmented OXPHOS independent metabolism centered on the Warburg effect and glutaminolysis.
Epigenetically, we find that a global hypermethylation profile associates with the worst prognosis. Lastly, we report that, two
antagonistic histone code writers, SUV39H1/SUV39H2 (H3K9Me3) and KAT2B (H3K9Ac) were identified key deregulated pathways in
PDAC. Our analysis suggests that the PDAC phenotype, as it relates to prognosis, is determined by a complex interaction of
transcriptomic, epigenomic, and metabolic features. Furthermore, we demonstrated that PDAC prognosis could be modulated
through epigenetics.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is one of the most
aggressive tumors with a five-year survival rate between 3% and
30% depending on the diagnosis time, being the patients with distal
metastasis those with the poorest prognoses. Based on its increasing
incidence world-wide, PDAC is expected to become the second cause
of cancer death by 20301–3. The hallmarks that define PDAC prognosis
and treatment response are determined by the progression and
crosstalk of the tumor cell and its microenvironment compart-
ments4–6. Specifically, the epithelial tumor cells have been extensively
typified at a molecular level to capture patients’ outcomes7–10. Many
current studies associate clinical findings primarily based on the
classical/basal-like classifiers. Recently, however, our laboratory
demonstrated the co-existence of multiple epithelial tumor cell
subtypes into the same tumor11. Thus, we generated a PDAC
distribution based on the histology and termed PDAC Molecular
Gradient (PAMG)12 which was centered in the tumor epithelial cell.
Based primarily on epithelial cell characteristics, we and others

have shown that a set of central transcriptional factors (TFs)
defines the tumor cell phenotype. The classical subtype is
characterized by ductal cell and germline linage TFs, such as

PDX1, HNF4A, HNF1A, and GATA6, whereas the basal-like subtype
is modulated by SNAI2, SIX1/4, and TP637,9,10,13–16. Additional TFs
are induced depending on intra-tumoral and extra-tumoral factors
such as hypoxia and epithelial-mesenchymal transition (EMT)
related proteins which contribute to tumor aggressiveness17,18.
Therefore, the global PDAC phenotype is highly determined by a
core of of transcription factors and epigenetic regulator proteins,
which dynamics defines the patients’ outcome. Interestingly, this
extensive characterization of PDAC TFs has been performed on
the tumoral epithelial cell only, limiting the understanding of this
regulatory network in the microenvironment. In the current study,
we describe a PDAC prognosis model that incorporates data
derived from key TFs, which act as master regulators (MR) of
tumor cells and its microenvironment. We termed this new
continuous stratification method as MR-Gradient. MR-Gradient
combines both data-driven and experimentally derived inferences
from transcriptional networks and their link with epigenomics and
metabolomic profile. Analyses from this new modeling reveal
three antagonistic writer enzymes, SUV39H1-SUV39H2 (H3K9Me3)
and KAT2B (H3K9Ac), as novel pathways associated with PDAC
heterogeneity. We also demonstrate that lipid metabolism not
only plays a critical role in PDAC pathobiology but also associates
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with defined prognosis. The novelty and importance of these
findings for a better understanding the pathobiology and
management of this dismal malignant disease is discussed.

RESULTS
Deconvoluted transcriptome-based stratification through
both the transformed cells and microenvironment
components improves prognostic prediction of PDAC
We generated a discovery cohort of patient data that could capture
PDAC heterogeneity by numerically harmonizing and mining data
derived from three RNA expression datasets, our own experimental
data from 90 patient-derived xenografts (PDXs) and two available
from public domains (TCGA-PAAD and ICGC-PACA-AU Seq). Similar
normalization strategies have been previously used to draw
inferences of biological significance when working with expression
asymmetry across datasets7,8. Therefore, this data appropriately
represents molecular events tightly associated with the pathobiol-
ogy of PDAC and serves as a useful baseline to build mechanistically
oriented prediction models for prognosis and therapies. Toward
this end, we applied Low-Rank ICA (LRICA) to the analyses of the
discovery cohort, considering that key aspects of PDAC pathobiol-
ogy are intrinsically low-dimensional in nature19. We also used
robust principal component analyses (RPCA) to decompose our
expression matrix into a low-rank (L) and a sparse (S) one (Fig. 1a).
This approach allowed us to separate the underlining biology (L)
and noise (S) of the tumor cell population, without modifying the
overall structure of expression matrices and proximity among
datasets (Fig. 1b). We subsequently applied ProDenICA with the
goal of increasing the information that can be gained from the L
matrix. In this approach, the selection and directionality of each
component was determined by excess kurtosis (to evaluate normal
value distributions) and biological relevance measured by GSEA,
which resulted in five components (Fig. 1c; Supplementary Table 1).
Supporting the validation of this approach, we found a component
termed PAMG which capture the tumor epithelial cell phenotype,
which displays strong polarization to the progenitor (NES= 3.25;
FDR= 0.001; Fig. 1c) and squamous phenotype (NES=−3.48;
FDR= 0.01; Fig. 1c). In addition, this method differentiated two
microenvironment-specific components, including one primarily
defined by fibroblast-related features, such as MYCAF (NES= 2.26;
FDR < 0.0001; Supplementary Fig. 1a) and ICAF (NES= 2.59; FDR <
0.0001; Supplementary Fig. 1a). The second was an immunological
component, which captures information on hematopoietic lineages
(NES= 2.06; FDR= 0.007; Fig. 1c) and inflammatory processes
(NES= 2.77; FDR= 0.003; Fig. 1c). Lastly, we also identified a neuro-
secretory and a cell cycle component. Thus, this approach yields
more appropriately weighted information on the type of biological
information that resides within the mathematical structure of the
data and contributes to the bioinformatics-based modeling of
pancreatic cancer-associated processes.
Next, we determined the association of the components

defined above with patient overall survival (OS). For this purpose,
we used TCGA-PAAD and ICGC-PACA-AU Seq, as the discovery
cohort for downstream analysis. At this point, we excluded our
human xenograft dataset to avoid any bias related to lack of
microenvironment compartments. Kaplan–Meier survival analysis
revealed that patient OS highly correlated to PAMG (P= 0.004),
stroma (P= 0.01), immunological (P= 0.004), and cell cycle
(P= 0.03) components (Supplementary Fig. 1b). Unfavorable
prognosis correlated with the activation of cell cycle and EMT
pathways (Supplementary Fig. 1b; Supplementary Table 1). On the
other hand, we found a high correlation of patients with a
favorable prognosis and enrichment in lipid metabolism and
immunological pathways (Supplementary Fig. 1b; Supplementary
Table 1). Interestingly, the immunological-related pathways
determined the prognosis profile within the stroma component

(Supplementary Fig. 1b; Supplementary Table 1), highlighting the
importance of including the microenvironment component as a
prognostic marker.
To weight the contribution of the Kaplan–Meier analysis

significant components on the prognosis, PCA followed by a
Cox proportional-hazards model on the PCA coordinates were
applied. This analysis indicated that both Dimension 3 (Dim 3;
uHR= 0.76, 95% CI [0.62–0.94]; P= 0.01) and Dimension 4 (Dim 4;
uHR= 0.8, 95% CI [0.65–0.99]; P= 0.04) significantly associated
with the OS (Fig. 1c, Supplementary Fig. 1c), with Dim 3 as the
strongest contributor. This observation was confirmed by multi-
variant cox regression analysis, where the Dim 3 remains
significantly associated with the OS (mHR= 0.78, 95% CI
[0.63–0.98]; P= 0.03; Supplementary Table 1). Dimension 3 was
primarily represented by the immunological component with
correlation coefficients of 0.68 (P < 0.0001; Fig. 1d). Moreover,
additional deconvolution of stromal compartments suggested
that favorable prognosis displayed positive correlation with T cells
and B cells, while a negative one with fibroblast abundance (Fig.
1d; Supplementary Fig. 1d; Supplementary Table 1), an implication
of both biological and medical relevance. Specifically, the
cytotoxic cell marker, CD8A (r= 0.44; P < 0.0001; Supplementary
Table 1), and two plasma cell markers, CD27 (r= 0.44; P < 0.0001;
Supplementary Table 1) and CD38 (r= 0.30; P < 0.0001; Supple-
mentary Table 1), positively correlated with Dim 3. Taken together,
these results highlight the fact that PDAC prognosis is not
determined by the tumor cell or the microenvironment in
isolation, but rather through their combined contribution. Hence,
by highlighting this interdependency, our data should contribute
to better conceptualize the search and development of both
markers and targeted drugs. Lastly, we reveal that the stratifica-
tion of PDAC as a molecular gradient, according to PAMG, when
enhanced by the contribution of the immunological components
(Fig. 1e), significantly differentiates patient clinical outcomes.

Transcriptional regulatory network analyses provide
pathobiological information and yield useful molecular
markers for patient stratification
We performed transcriptional regulatory networks analyses on the
same two public datasets used above to unravel key upstream
modulators governing each of the components that contribute to
prognostic predictions. We focused our analysis on connected
transcriptional factors (TFs) with high contribution to the LRICA
components displaying significant associations with OS, namely
PAMG as well as the immunological and stroma components.
Initially, we constructed a regulatory transcriptional network (RTN)
for each component, using the ARACNe algorithm20,21 for the TFs
identified through GO annotation (GO:0001067; Regulatory region
nucleic acid binding). Using this approach, we detected a total of
113 TFs, representing 121 regulons with a range of molecular
interactions between 16 and 5312 events. Subsequently, we
identified the master regulators (MR) within the TF set by testing
for the enrichment of each regulon associated with the specific
component (Supplementary Table 1). Accordingly, we detected 54
MR with an absolute enrichment score > 1 (Supplementary Table
1). PAMG displays a compact interaction network (Jaccard
index ≥ 0.17; Fig. 2a), driven mainly by progenitor-related regulons
(88%), in which HNF4A, NR1I2, and GATA6 showed the highest
contribution. In addition, the squamous MR network was
associated with SNAI2, MYBL1, and HMGA2, which are key
regulators of EMT and cell cycle progression17,22,23. Moreover,
we observed an immunological MR network polarized into
modulatory and proinflammatory nodes (Jaccard index ≥ 0.30;
Fig. 2a), characterized by TFs related to Treg-cell (FOXP3 and
STAT5) and B/T-cell activation (IKZF1 and NFATC2). Lastly, the
stroma component was characterized for pleiotropic TFs that
represents multiple microenvironment cell types. However,
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enrichment in immunological-related regulators, such as MAFB,
BCL6B, IKZF3, and SP1 was observed (Fig. 2a). Once establishing
the transcriptional regulatory network for each prognosis-relevant
component, we hypothesized that the MR could accurately infer
patient prognosis capturing the cell global phenotype in unbiased

way. To test the validity of this idea, we applied a Cox univariate
proportional-hazards model to each MR to evaluate their
predictive power. We found that HMGA2, SNAI2, GATA6, and
ZFPM1 display the highest association with prognosis, indepen-
dent of the cohort (Supplementary Fig. 2) used for our evaluation.
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However, to generate a consistent stratification that captured
both, the epithelial and the microenvironment features, we built a
unified gradient with the MR extracted from the transcriptional
network analysis where each gradient was computed, weighting
the gene expression (GE) with the enrichment score (ES) for each
MR (i) and patient (j), followed by the scaled summation (see Eq. 1,
Materials and methods). This analysis reveals a combined
contribution from PAMG and immunological transcription factors
outperformed the other components, even when combined, to
estimate patient prognosis in the discovery cohort (uHR= 0.7,
95% CI [0.60–0.86]; P= 0.0005; Supplementary Fig. 2a), ICGC-Array
(uHR= 0.69, 95% CI [0.53–0.89]; P= 0.006; Supplementary Fig. 2b),
and Puleo (uHR= 0.74, 95% CI [0.63–0.87]; P= 0.0002; Supple-
mentary Fig. 2c). We termed this new continuous stratification
method as MR-Gradient. Notably, this MR-Gradient simplifies the
prognosis estimation using a set of 40 MR that capture both,
epithelial and microenvironment features. Then, we implemented
the ICA JADE algorithm to the discovery cohort to unravel the
global phenotype associated with the MR-Gradient. ICA2 showed
a positive correlation with the MR-Gradient (r= 0.88; P < 0.0001;
Supplementary Table 2), displaying a solid association between
the CHOLESTEROL_HOMEOSTASIS (NES= 1.53; FDR= 0.03; Fig. 2c)
and FATTY_ACID_METABOLISM (NES= 1.45; FDR= 0.02; Fig. 2c)
pathways with a favorable prognosis, whereas an unfavorable
phenotype correlated with upregulation of HYPOXIA (NES=
−1.89; FDR= 0.01; Fig. 2c), EMT (NES=−2.61; FDR= 0.01; Fig.
2c) and CELL_CYCLE (NES=−2.41; FDR= 0.02; Fig. 2c) pathways.
Lastly, we evaluated the value of this PDAC prognosis profile for
capturing previously established subtypes. We found that ICA2
encompassed the key features that determine patient outcomes
at both, the tumor cell and microenvironment levels, representing
the progenitor/squamous spectrum and activated stroma, respec-
tively (Fig. 2d). Together, these results demonstrate that a refined
PDAC gradient-based in MR is a robust clinically actionable tool for
patient stratification.

Patient-derived xenografts (PDXs) recapitulate key PDAC
prognosis-related features
To expand our PDAC characterization at a multi-OMICs level, we
used a set of 90 PDXs, which have demonstrated their utility as a
tool to derive molecular signatures of significant medical
relevance4,5,12,24,25. Since our PDX cohort has undergone data-
driven deconvolution to distinctly represent the epithelia cell
(human) and the microenvironment (mice), which may be
contributed by the host, we performed differential expression
analyses to validate the MR that characterize both compartments.
MR represented within both PAMG and the immunological
compartment displayed higher expression levels in the human
tumor cell and murine microenvironment, respectively (Fig. 3a;
Supplementary Table 2). GSEA revealed an enrichment of
metabolic and epithelial cell differentiation pathways in the
human fraction of the PDXs, as well as upregulation of
hematopoietic and ECM pathways in the murine stromal
compartment (Fig. 3a). Subsequently, we reconstituted the PDX
expression matrix adding the human and mice compartment

expression matrices to estimate the MR-Gradient and conse-
quently weighed its predictive capability on the patient outcome.
Noteworthy, univariate Cox regression analysis showed a sig-
nificant positive correlation between the PDX-derived MR-
Gradient and patient OS (uHR= 0.6, 95% CI [0.47–0.77];
P= 0.00005; Fig. 3b). In addition, we measured similarities in
transcriptomics between our PDX and discovery cohorts to
validate its use as a reliable representation of the defining
prognostic features. Thus, we unraveled the PDX mixed matrix
into latent biological spaces using the ICA JADE algorithm, which
identified that ICA2 highly correlated with the MR-Gradient
(r= 0.95; P < 0.0001; Fig. 3b). This component displayed the same
phenotypic polarization observed in the discovery cohort
(Supplementary Table 2), capturing the progenitor (NES= 3.1;
FDR= 0.001; Fig. 3c) and squamous (NES=−3.6; FDR= 0.003; Fig.
3c) signatures, together with the microenvironment-derived poor
prognosis profile for ICAF (NES=−2.16; FDR= 0.002; Fig. 3c) and
activated stroma (NES=−1.63; FDR= 0.02; Fig. 3c). Furthermore,
ICA2 from the discovery cohort and ICA2 from the PDX group
revealed high correlation at both, the transformed cell (r= 0.74;
P < 0.0001; Fig. 3d) and stroma (r= 0.62; P < 0.0001; Fig. 3d) levels,
maintaining the directionality of gene contributions for key PDAC
cellular features, such as for example cytoskeletal proteins and
metabolic transporters among others (Fig. 3e). Altogether, these
results validate the application of PDX-derived data into our
analytical framework of a gradient in a manner that expands our
inferences on PDAC prognosis.

The CpG methylation profile contributes to defining the PDAC
transcriptomic phenotype
Despite the central role of a well-known mutation landscape as
the driver of the PDAC metaplastic phenotype, the lack of
mutation diversity fails to explain tumor evolution and the basis
for prognosis-related features26. Nevertheless, epigenetic plasticity
contributes to PDAC heterogeneity4,27. Thus, we first analyzed
DNA methylation levels of the MR. Broadly, key MR that determine
the progenitor phenotype showed strong hypermethylation and
associated with a poor prognosis, particularly ZFPM1, GATA6, and
HNF4A (Fig. 4a). In addition, ICA was performed to capture the
methylome profile related to patient outcome. A total of
12,162 significant (SD ≥ 3) CpG were selected into the component,
and their methylation degree was analyzed as the median of the
β-value per patient. Like the progenitor-related TR, we observed
an increase in DNA methylation levels associated with a MR-
Gradient decrease (Fig. 4b). Interestingly, this component was
enriched for CpGs implicated in lipid metabolic pathways,
including GLYCEROPHOSPHOLIPID METABOLISM (FDR= 0.01)
and FATTY ACID TRIACYLGLYCEROL METABOLISM (FDR= 0.004).
These results were confirmed on TCGA-PAAD cohort, where
23,448 CpGs displayed a high contribution in the selected
component (Fig. 4d–f; Supplementary Table 3). Thus, the DNA
methylation status of MR serves as a potential epigenetic
mechanism that contributes to the PDAC prognosis-related
phenotype.

Fig. 1 PDAC biological relevant components determination. a Low-Rank ICA (LRICA) methodology was applied on the integrated PDX,
TCGA-PAAD, and ICGC-PACA-AU Seq datasets to establish the tumor phenotype gradients. b Comparing the original integrated expression
matrix with the Low-Rank matrix applying principal component analysis (PCA). c Five PDAC biological relevant components were detected
after LRICA, applying as the selection criteria, the kurtosis, and the biological enrichment through GSEA. Also, PCA was applied to evaluate the
component contribution to the patient’s prognosis. Dimension 3 (Dim 3) showed the highest association with the prognosis (uHR= 0.76, 95%
CI [0.62–0.94]; P= 0.01). This dimension was explained mainly by the PAMG (35.8%) and Immunological (57.2%) components. d T (r= 0.51;
P < 0.0001) and B (r= 0.41; P < 0.0001) cells scores after stroma deconvolution of bulk RNA displayed a positive correlation with the Dim 3,
whereas the fibroblast (r=−0.37; P < 0.0001) score was negative. This observation was complemented by correlation of the T and B cell
markers. Specifically, CD8A and CD27 displayed the highest coefficients. e Heatmap of the high contributive gene of PAMG and
Immunological components for TCGA-PAAD, and ICGC-PACA-AU Seq datasets.
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Fig. 2 Transcriptional Master Regulator (MR) gradient and tumoral phenotype characterization. a Transcriptional network and enrichment
score of key regulons after regulatory transcriptional network (RTN) analysis on PAMG, immunological, and stroma components. b Univariate
Cox regression Log-Rank P-value representation applying the gradients of master regulators (MR) extracted from the RTN analysis for TCGA-
PAAD, and ICGC-PACA-AU Seq datasets. Moreover, the global PDAC phenotype associated to the MR-Gradient (integration of PAMG and
immunological MR) was extracted using ICA. ICA2 was detected (r= 0.88; P < 0.0001) and the high contributive genes were represented in a
heatmap. c Gene-set enrichment analysis (GSEA) was applied on ICA2, detecting the pathways associated with a favorable and unfavorable
prognosis. dMR-Gradient capture both tumor epithelial cell and microenvironment features, previously associated with the prognosis, such as
BAILEY_PROGENITOR (NES= 3.18; FDR= 0.0005), BAILEY_SQUAMOUS (NES=−4.11; FDR= 0.004), I_CAF (NES=−2.05; FDR= 0.003), and
MOFFITT_ACTIVATED_STROMA (NES=−1.73; FDR= 0.006).

NA Fraunhoffer et al.

5

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2022)    57 



SUV39H1/2 and KAT2B are two antagonistic histone-based
pathways that contribute to establishing the PDAC
transcriptomic profile
Subsequently, we explored the correlation of multiple histone
modifiers and readers, as additional epigenetic regulators, with

our phenotype categories to infer mechanisms that regulate
transcriptional outcomes. We found 149 proteins had significant
correlation with the MR-Gradient (Supplementary Table 3). We
identified SUV39H1 (r=−0.41; P < 0.0001; Fig. 5a), SUV39H2
(r=−0.39; P= 0.0001; Fig. 5a) and KAT2B (r= 0.31; P= 0.003;
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Fig. 5a), which are writers with a clear antagonistic role on the
H3K9 residue, namely methylation for repression (SUV39H1/2) vs.
acetylation with activation (KAT2B). Notably, in contrast to
SUV39H1/2, we found that genomic deletion of KAT2B occurs in
25% of our cohort (Fig. 5b), a data confirmed by TCGA (Fig. 5c).
Interestingly, this chromosomal loss displayed a balance with
KAT2B promoter methylation, regulating its expression and
consequently the prognostic phenotype (Fig. 5c). Moreover,
KAT2B downregulation is an important characteristic of the
squamous phenotype (Fig. 5c; Supplementary Table 3). We
therefore quantified the specific epigenetic marks, namely
H3K9me3 for SUV39H1 and SUV39H2 and H3K9ac for KAT2B, in
a set of PDX samples that represents the MR-Gradient extremes. In
addition, we complement the histone mark analysis using as
reference two well-known activation marks, H3K4me3 and
H3K27ac, which have displayed a general and a polarized
expression pattern associated with PDAC phenotype, respectively.
H3K9me3 and H3K9ac displayed opposite patterns, in which the
trimethylation mark dominated the epigenetic landscape of high-
risk patients with approximately 60% of positive nuclei (Fig. 5d).
Conversely, K9 acetylation was prevalent in the group with
favorable outcomes, along with high levels of H3K27ac (Fig. 5d).
We used the H3K4me3 staining as a control mark since it displays
a homogeneous expression level independently of the phenotype
(Fig. 5d).
Functional validation was performed through inhibiting or

depleting SUV39H1/2 or KAT2B respectively. We used chaetocin, a
mycotoxin with specific action on SUV39H1/2, at 10 nM on 6 PDX-
derived Primary Cell Culture (PDPCC), which reduced H3K9me3
levels (Fig. 6a; Supplementary Fig. 3a) and was accompanied by
the upregulation of progenitor-related genes (Fig. 6a; Supplemen-
tary Table 3). Levels of H3K9ac were reduced through using a set
of specific KAT2B siRNAs (Fig. 6b; Supplementary Fig. 3b). KAT2B
downregulation resulted in a squamous-like phenotype which is
more obvious in PDPCC with neutral CNV as presented in Fig. 6b.
Combined, these results demonstrate a strong association

between the transcriptional networks, epigenomic regulators,
and patient outcome with the methylation level and H3K9 status
as a determinant of this phenomenon. This new data also expands
our previous observations on epigenomic landscapes of PDAC23

by linking two antagonistic writers, SUV39H1/2, and KAT2B, to
PDAC pathobiology.

Data integration links MR-Gradient to metabolomic functions
that underlie the prognosis-related phenotypes
Previous reports have demonstrated a strong association between
metabolism and PDAC subtypes, highlighted by progenitor
tumors displaying an energetic dependency on fatty acids (FA)
and cholesterol28,29. In contrast, in high-risk patients the most
undifferentiated ones upregulate glycolytic pathways30. These
observations aligned with our transcriptomic and methylome
characterization of PDAC patients following the MR-Gradient.
Furthermore, there is an intricate link between the epigenome
and metabolism with epigenetic changes impacting the transcrip-
tion of metabolic genes to affect cell metabolism and central

metabolites from diverse pathways serving as essential cofactors
for chromatin-modifying enzymes31–33. Thus, we analyzed how
metabolic networks are represented within the context of our MR-
Gradient and its relationship to prognosis. We built a metabolic
map using our PDX expression and methylome profiles of genes
encoding key enzymes within central metabolic pathways
(Supplementary Fig. 4; Supplementary Table 4). We found that
enzymes such as ACSS1 (r= 0.61; P < 0.0001), ACACB (r= 0.45;
P < 0.0001), and HMGCR (r= 0.49; P < 0.0001), which are involved
in acetate metabolism, FA synthesis, and cholesterol anabolism,
respectively, positively correlate with the MR-Gradient. This pro-
lipidic metabolism was reflected by high expression of enzymes
implicated in complex lipid biosynthesis from the glyceropho-
spholipids and sphingolipids pathways (Supplementary Fig. 4;
Supplementary Table 4). Conversely, the unfavorable phenotype
augmented OXPHOS independent metabolism centered on the
Warburg effect and glutaminolysis, where both amino acid
synthesis and accumulation of triglycerides (TG) in lipid droplets
play a central role (Supplementary Fig. 4). These observations
were confirmed through lipidomic analysis of 72 PDXs, where
28 subfamilies were detected; however, only 6 displayed a
significant association with the MR-Gradient (Fig. 7a; Supplemen-
tary Table 4). Specifically, the phosphoglyceroethanolamines (PE;
r= 0.36; P= 0.002) showed positive correlation with the MR-
Gradient, while the TG (r=−0.26; P= 0.03) and ceramides
metabolites, such as Monohexosylceramides (CMH; r=−0.26;
P= 0.02) and Sphingomyelin (SM; r=−0.26; P= 0.02), associated
with a poor prognosis. Cox regression analysis following PCA of
highly correlated metabolites of the selected subfamilies (uHR=
0.9, 95% CI [1.01–1.18]; P= 0.03; Fig. 7b) revealed a strong
association between the TG and the ceramides metabolites with
prognosis, constituting 53.84% and 24.6%, respectively, of the
Dimension 1 contribution. In addition, SPHK1 and PLIN2 expres-
sion were assessed in PDXs to validate these proteins as markers
of poor prognosis associated with sphingolipid metabolism and
TG accumulation, respectively. Notably, both SPHK1 and PLIN2
display a higher number of positive cells in high-risk (76%–85%)
compared with their representation in the low-risk (2%–12%)
patients, which also positively correlate with the EMT marker
vimentin (Fig. 7c). Lastly, we demonstrate that high-risk patients
show a dependence on anaerobic glycolysis and glutaminolysis,
by measuring their corresponding metabolites in supernatants
from PDX explants. Glucose consumption and lactate production
were 1.4 and 2.6 times higher, respectively, in high-risk patients vs.
the low-risk group (Fig. 7d). Consistently, glutamine consumption
and glutamate production increased in high-risk samples by 0.4
and 0.7 times, respectively (Fig. 7d). These results highlight ATP
source and lipid metabolism as determinants of prognosis-related
phenotypes.

DISCUSSION
The current study makes novel contributions to the field of PDAC
that have both significant mechanistic and biomedical relevance.
This study developed from the observation that a binary
classification of PDAC into basal-like and classical subtypes does

Fig. 3 Patient-derived Xenografts recapitulate key determinants of PDAC prognosis. a Differential expression analysis was performed on
the PDX tumor epithelial cell (human) and microenvironment (mice) matrices to evaluate the master regulators (MR) enrichment and
pathways polarization. b Cox regression analysis confirmed the PDX transcriptional homology scoring significantly the patients following the
MR-Gradient (uHR= 0.6, 95% CI [0.47–0.77]; P= 0.00005). In addition, we implemented ICA on the PDX expression matrix to identify the
biological component that explains the MR-Gradient. c PDX ICA2 captured key pathways related with PDAC prognosis, including the tumor
epithelial cell with the BAILEY_PROGENITOR (NES= 3.1; FDR= 0.0005), BAILEY_SQUAMOUS (NES=−3.6; FDR= 0.003) frame and
microenvironment with I_CAF (NES=−2.17; FDR= 0.001), and MOFFITT_ACTIVATED_STROMA (NES=−1.63; FDR= 0.009). d Human and
PDX ICA components displayed a high homology globally (r= 0.74; P < 0.0001) and both in tumor epithelial cell (r= 0.79; P < 0.0001) and
microenvironment (r= 0.62; P < 0.0001) stratum, assigning equivalent weight to central PDAC biological markers. e Comparing gene
contribution of human and PDX ICA components related with prognosis-related phenotype.

NA Fraunhoffer et al.

7

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2022)    57 



Fig. 4 Association of the CpGs methylation profile with the MR-gradient. a The master regulators associated with a favorable prognosis
showed a negative correlation between the methylation level and MR-Gradient. b Globally the unfavorable prognosis phenotype was
associated with a hypermethylation profile of the ICA high contributive CpGs. c ICA high contributive CpGs were associated mainly with lipid
metabolic pathways. d Master regulators related to a favorable prognosis displayed a hypermethylated profile in the unfavorable prognosis
patients in the TCGA-PAAD cohort. e The global methylation level showed a negative correlation with the MR-Gradient in the TCGA-PAAD
cohort. f ICA high contributive CpGs were associated with metabolic pathways in the TCGA-PAAD cohort.
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Fig. 5 Identification of key epigenetic modifiers related with the PDAC prognosis phenotype. a One hundred forty-nine chromatin
modifiers correlated with the MR-Gradient at transcriptional level. Specifically, SUV39H1/H2 and KAT2B, two antagonist writers of the H3K9
residue were identified correlating negatively and positively with the MR-Gradient, respectively. b KAT2B displayed a shallow deletion in the 25%
of PDX which was associated with a high-risk phenotype (P= 0.01). Moreover, KAT2B expression levels were modulated by the balance between
the shallow deletion and the methylation profile. c KAT2B shallow deletion was confirmed in the TCGA-PAAD cohort and was significantly
associated with a hypermethylation in the high-risk patients and 3p status. Error bars indicate mean ± SD. *P < 0.05. d Immunofluorescence
analysis of H3K9me3, H3K9ac, H3K4me3 and H3K27ac, confirmed the polarization of SUV39H1/H2 and KAT2B into the MR-Gradient.
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not completely capture the full heterogeneity of PDAC, nor it
helps to stratify patients accurately, nor does it consider the
contribution of the microenvironment. Consequently, the current
PDAC molecular stratification analysis relies on transcriptomic/
genomic data only, without integrating or characterizing other
PDAC biological features, such as epigenetic or metabolic profiles.
This limitation is accentuated by the tumor-centric focus of most
classification and the lack of actionable clinical tools to
differentially treat subtypes. Here, we provide a transcriptional
regulator-centered model that allocates the patients into a
prognosis continuum, incorporating both the tumoral cell and
microenvironment compartments. We show that this model: (1)
increases the power of diagnostic prediction; (2) allows to infer the
major transcriptional networks that contribute to PDAC hetero-
geneity; (3) integration of the MR-Gradient model with epige-
nomics and metabolomics profiles improves diagnostic schemes
and provides information on PDAC pathobiological, genome-wide
pathways, and potential therapeutic targets; (4) identifies a key
role for H3K9-mediated pathways (methylation vs acetylation) in
PDAC; and (5) underscores the distinct association of lipid and
glucose/OXPHOS metabolism with patients’ outcomes.
PDAC tumors are composed of two well-known strati, the tumor

cell, and the microenvironment, where the interplay between
those determines the global phenotypic, drug resistance, and
invasiveness4,6,34–36. Despite the complexity and diversity of the
manifest biology by PDAC tumors, the principles that underlay
their behavior is common to any tissue, where the observed
phenotype is determined through the action of a core of TFs
which modulate the transcriptional network of the compartments

previously mentioned. Thus, to understand and fully characterize
the PDAC, we can refer to a selected group of proteins with a key
role in defining the tumoral outcome. Initially, we isolated the
tumoral prognosis determinants components applying LRICA.
PAMG component was identified as a key driver of tumoral
phenotype, confirming the biological relevance of gradient
stratification12. However, the immunological component,
extracted from the microenvironment compartment, displayed a
significant contribution to the prognosis estimation, working as a
correction factor of the tumor cell phenotype. We observed a
positive correlation between a high immunological score and a
good prognosis. Specifically, T cells and B cells were identified as
strong conditional of PDAC prognosis. In fact, CD8A and CD27
markers showed the highest correlation with the immunological
component, suggesting a role of cytotoxic T cells and antibody-
producing B cells to improve the patient’s outcome. Similar results
regarding T cells were detailed by Carstens et al.37 which used
multiplex immunohistochemistry on 132 patients, demonstrating
the survival improvement in high T cell PDAC infiltrating tumors.
Interestingly, in contrast to our observations, CD20+ B cells have
been proposed as detrimental for a proper antitumoral
response38. This difference may be related to the types of B cell
subpopulations identified, whereas CD20 is a pleiotropic marker,
CD27 is circumscribed to an effector population. In fact our
observation in PDAC better correlates with an active B cell anti-
tumor response, such as observed in ovarian and lung cancer39,40.
Consequently, to build our MR-Gradient we applied transcriptional
network analysis on the prognosis-significant components, isolat-
ing the TFs that modulate the PDAC outcome. As expected PAMG

Fig. 6 Modulation of SUV39H1/H2 and KAT2B determine the PDX-Derived Primary Cell Culture (PDPCC) phenotype. a Chemical
modulation of SUV39H1/H2 through chaetocin (10 nM) for 72 h lead in the activation of Progenitor-related genes. Error bars indicate
mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001. b KAT2B silencing using siRNA promotes the squamous program and was associated with the
PDPCC deletion status. Error bars indicate mean ± SD. *P < 0.05.
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component was defined mainly by the classical TFs, such as
GATA6, HNF4A and ZFPM1 and secondary by poor prognosis
factors, such as, SNAI2, and HMGA2, MYBL1, which are EMT and
cell cycle modulators14,17,22,23. This regulatory profile between a
pancreas lineage TFs and inducible cell processes TFs, reaffirm the

gradient stratification approach, suggesting PDAC transitional
states triggered by the poor prognosis TFs expression. The
immunological TFs also can define both an inflammatory and a
regulatory core, with proteins related with B/T cells and Treg,
respectively. Surprisingly, the regulatory core displayed a positive

NA Fraunhoffer et al.

11

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2022)    57 



correlation with the patient’s outcome, which is aligned with
Zhang et al.41 observations, where the Treg depletion promotes
the tumor progression through CD4+/myeloid cell immune-
suppressive function and the myCAF depletion. Indeed, the
enrichment in iCAF6 and MOFFITT_ACTIVATED_STROMA8 signa-
tures associated with a MR-Gradient low score may be explained
by loss of Treg induction within the PDAC microenvironment.
To extend this prognosis-mechanistic relationship through

inferences made at the level of transcriptional regulation, we
used multi-OMICs data derived from PDXs. Initially, we measured
the divergence between the PDXs and the human tumor
following our gradient model. As expected, a high recapitulation
level was observed, both at epithelial tumor cell level as the
microenvironment, confirming previous observations and validat-
ing their use to extract PDAC biological relevant information.
Then, we correlated the methylation levels and histone code
regulators expression with our MR-Gradient model. This analysis
led us to identify a hypermethylation profile associated with a
worse prognosis, specifically on the loci of favorable prognosis TFs
and lipid metabolism proteins. Concomitantly, SUV39H1/2 and
KAT2B, two histone writers with antagonist effects on H3K9
residue, were detected as PDAC phenotype determinants.
Interestingly, while SUV39H1 and SUV39H2 have not been
previously associated to PDAC initiation, progression, or prognosis,
this mark is read by the HP1 family of proteins. Moreover, HP1
form a complex with DNA methyl transferases KAT2B, is critical for
regulating a particular type of enhancers marked by H3K9ac,
which differentiate them from the H3K27ac, a mark written by the
CBP/P300 family of proteins23,42. KAT2B works with many
transcription factors, among them many of the ones found in
our MR networks23. Noteworthy, we found that genomic deletion
of KAT2B occurs in 25% of our PDX samples and tumors from
TCGA. KAT2B promoter methylation and downregulation also
correlated to distinct prognosis and functional phenotypes. These
observations led to experimental validations, which showed the
cell nuclei from high-risk patients have a higher positive index for
nuclear H3K9me3 mark. In contrast, a high positive index for the
H3K9ac mark links to more favorable outcomes. Orthogonal
confirmation of these observations was obtained using both
pharmacological and genetic inhibition of these writers, resulting
in the molecular changes congruent with their phenotype
component. Therefore, our MR-Gradient is rich in new information
regarding key molecular players and associated factors with a
better-defined prognosis for PDAC.
Integration with metabolomic data indicates that acetate

metabolism, FA synthesis, and cholesterol anabolism, positively
correlate with the MR-Gradient. Conversely, the unfavorable
phenotype augmented OXPHOS independent metabolism cen-
tered on the Warburg effect and glutaminolysis. These observa-
tions were confirmed through lipidomic analysis of 72 PDXs, which
identified six pathways positively correlated with our MR-Gradient
model. High-risk patients show a dependence on anaerobic
glycolysis and glutaminolysis, which we confirmed by measuring
their corresponding metabolites in supernatants from PDX
explants. Glucose consumption and lactate production were
higher in high-risk vs. low-risk group patients. Similarly, glutamine
consumption and glutamate production were appropriately

coupled. Moreover, the lipidomic analysis unravels a strong
association between triacylglycerol accumulation and sphingosine
metabolism with the high-risk phenotype, which was confirmed
using PLIN2 and SPHK1, respectively, which have been described
as determinants of patients’ outcome in other types of
cancers43,44. These results highlight ATP source and lipid
metabolism as determinants of prognosis-related phenotypes.
These observations are important in light that these mechanisms
have been previously described to play a role in pancreatic cancer
in both animal models and humans, though their relationship to a
distinct prognosis scheme had not been stringently established.
Furthermore, their relationship with transcriptional regulation and
epigenomics remains an unfilled paradigm.
In summary, the current study offers a robust integration for

valuable predictions of patient prognosis through transcriptional
networks, DNA methylation, epigenomic regulators, and metabo-
lomics, mechanisms that bear prognostic and mechanistic value
and uncover potential therapeutic targets to fight this disease.

METHODS
Ethical approval
The study was approved by the local ethics committee (Comité de
protection des personnes Sud Méditerranée I) following patient informed
consent. The PaCaOmics study is registered at www.clinicaltrials.gov with
registration number NCT01692873. Written consent forms of informed
patients were collected and registered in a central database. PDAC samples
were collected from January 2012 to December 2015. All experimental
procedures on animals were approved by the Comité d’éthique de
Marseille numéro 14 (C2EA-14).

Derivation of patient-derived xenograft (PDX) and PDX-
derived primary cell culture (PDPCC)
PDAC samples were obtained from three expert clinical centers under the
PaCaOmics clinical trial (number 2011-A01439-32) after receiving ethics
review board approval. Consent forms of informed patients were collected
and registered in a central database. In addition, animal experiments were
performed following the institutional guidelines and were approved by the
“Plateforme de Stabulation et d’Expérimentation Animale” (PSEA, Scientific
Park of Luminy, Marseille). Ninety PDXs were used in this study which were
generated as previously described4. Briefly, PDAC tissue was fragmented
and mixed with 100 μl of Matrigel and implanted subcutaneously in a
NMRI-nude mouse until the tumor reached a 1 cm3 (Swiss Nude Mouse Crl:
NU(lco)-Foxn1nu; Charles River Laboratories, Wilmington, MA). PDPCC
were obtained from splitted PDXs into small pieces of 1 mm3 and
dissociated with collagen type V C9263; Sigma-Aldrich, Inc., St. Louis,
Missouri, USA) and trypsin/EDTA (25200‐056; Gibco, Sigma-Aldrich, Inc., St.
Louis, Missouri, USA). Cell homogenate was resuspended in DMEM with 1%
w/w penicillin/streptomycin (Gibco, Life Technologies) and 10% of fetal
bovine serum (Lonza). After centrifugation, cells were re‐suspended in
Serum Free Ductal Media (SFDM) adapted from Schreiber et al.45 and
conserved at 37 °C in a 5% CO2 incubator. Both, PDX and PDPCC RNA, was
isolated with the miRneasy mini kit (Qiagen). RNA-seq reads were mapped
using STAR. Gene expression profiles were obtained using Feature Count
and normalized using Trimmed Mean of M-values approach. In addition,
SMAP algorithm4 was applied to separate human and mice reads from PDX
RNA-Seq data.

Fig. 7 MR-Gradient capture key metabolic features associated with PDAC prognosis. a Correlation between the lipid subfamilies and MR-
Gradient, identified the glycerophospholipids (r= 0.36; P= 0.002), sphingolipids metabolites (r=−0.26; P= 0.02), and triacyclglycerols
(r=−0.26; P= 0.03) as determinant of PDAC prognosis. b Principal component analysis (PCA) on the high correlated metabolites from the
prognosis-related lipid subfamilies, showed that the dimension 1 (Dim 1; uHR= 0.9, 95% CI [1.01–1.18]; P= 0.03) explains the prognosis and
confirms the lipid metabolism as key prognosis determinant through the glycerophospholipids, sphingolipids metabolites, and
triacyclglycerols. c GATA6 and VIMENTIN were associated with the MR-Gradient. Furthermore, the lipid droplet marker, PLIN2 and the
sphingosine modifier, SPHK1, showed higher expression levels in the high-risk than the low-risk PDX. d Glucose consumption and lactate
production showed highest levels in the high-risk PDX. Concomitantly, the glutamine metabolism was higher in the high-risk PDX. Error bars
indicate mean ± SD. *P < 0.05, **P < 0.01.
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Low-rank independent component analysis (LRICA) and
prognosis-related component extraction
To identify the intrinsically biological trend into the PDAC biology a
modified version Low-Rank ICA (LRICA) was applied19. Initially we
integrated three RNA-Seq expression datasets, TCGA-PAAD, ICGC-PACA-
AU Seq, and PDX previous common normalization and log2 transforma-
tion. TCGA-PAAD, and ICGC-PACA-AU Seq were curated using previously
described criteria7. Robust PCA46 was used to decompose the
integrated matrix into the low rank matrix (L) and the sparse matrix
(S), capturing the constitutive dynamics and de noise of the original
dataset, respectively. The next goal was to isolate the major biological
trends transversal to the PDAC phenotype, independently of the cohort
or sequency platform. Thus, we deconvoluted the L matrix into
independent factors with the ProDenICA algorithm from the ProDenICA
R package47, following the iterative process described previously48 to
confirm the reproducibility of the selected components. The ICA
deconvolution results in an W and S matrices, representing the sample
orthonormal matrix and the gene contribution matrix for each
component, respectively. Then, we weight the biological relevance
and directionality of each component on the S matrix, calculating the
kurtosis excess and gene-set enrichment analysis (GSEA) using e1071
and fgsea R packages, respectively. Components with a high kurtosis
and enriched in a set of pathways associated biologically were selected.
After that, further component discrimination following the prognosis
criteria was done through Kaplan–Meier (KM) analysis on the W matrix.
The group stratification per component was established through
optimal P value separation. Finally, component weight on prognosis
estimation was determined applying Principal Component Analysis
(PCA) on KM analysis selected components, followed of Cox propor-
tional hazard model on the PCA sample dimension coordinates. The
dimension with the lowest Cox model P value was extracted and used
for downstream analysis.

Inference of stroma cell type abundance from bulk RNA and
their prognosis association
We applied MCP-counter algorithm49 to estimate sample’ immune
infiltration and stroma cell abundance of the transcriptomic data from
TCGA-PAAD and ICGC-PACA-AU Seq. Briefly, MCP-counter cell type
identification process relies on transcriptomic markers with a high cell
type specificity. Consequently, the log2 geometric mean of the set of
markers for each cell category is computed and used as the abundance
score. Spearman’s correlation was applied to determine the association
between the MCP-counter scores and the PCA-selected dimension. Cell
type with an r > 0.2 and a P < 0.05 were identified as strongly related with
the prognosis. In addition, a subset of specific lymphocyte T and B markers
were used to confirm the cell subtype specificity.

Master regulators (MR) gradient generation and validation
To build a robust PDAC stratification system using bulk RNA we used the
core of transcriptional factors (TFs) for each prognosis-relevant component
as phenotype drivers, weighting their contribution into the global score.
Initially, we identified the highly contributive TFs into each selected
component through Gene Ontology (GO) annotation (GO:0001067;
Regulatory region nucleic acid binding). A total of 113 TFs were extracted,
representing the PAMG, Immunological, and Stroma, components. Then,
the regulatory network was inferred for each TF using the RTN R package21.
The regulons (set of genes regulates by a TF) were detected and depurated
with the ARACNe algorithm to eliminate redundant associations20. This list
of regulons supported the Master Regulator (MR) Analysis applying as
targets the set of genes with a high contribution (>2 SD) into each
component. 78 MR were detected with a P < 0.01 (Supplementary Table 1).
Once identified, we established the weight of each MR into the global
phenotype using GSEA-2T, which calculate two enrichment score
according with the genes positively and negatively regulates into each
regulon following the sample distribution into the component. The
differences between these two enrichment scores indicates activation or
repression of a particular regulon and constitutes the MR weight factor.
The MRs with an absolute dES ≥ 1 were chosen to build the MR-Gradient

following the Eq (1):

Gradient ¼ Scale
X1

i ¼ 1

J ¼ 1

ESiJ ´GEiJð Þ

2
666664

3
777775

where each gradient is computed, weighting the gene expression (GE)
with the enrichment score (ES) for each MR (i) and patient (j), followed by
the scaled summation. Each component gradient and their mix were
computed to identify the combinatory set of biological components with
the lowest P value into the Cox Proportional Hazard model. The MR-
Gradient estimation and reliability was validated in Puleo cohort5 and
ICGC-PACA-AU Array.

MR-Gradient transcriptomic phenotype characterization
To extract the specific phenotype that explain the MR-Gradient model we
applied independent component analysis (ICA) on the integrated TCGA-
PAAD and ICGC-PACA-AU Seq matrix using the JADE algorithm in MineICA
R package50. Spearman’ correlation was used to identify the component
with the higher/significant association with the estimated MR-
Gradient model.

Analysis of patient-derived xenograft (PDX) associated with
MR-gradient stratification
Initially, differential expression analysis was performed using Limma R
package on the PDX’ epithelial tumoral cell (human) and stroma matrices,
comparing the specific ortholog genes to estimate the enrichment in the
MR-Gradient transcriptional factors. Then, we added the PDX’ stroma
expression matrix (mice) with the epithelial tumoral cell matrix (human) to
calculate the MR-Gradient model. ICA JADE algorithm from the MineICA R
package together with spearman’ correlation was applied to extract the
PDX phenotype related with the MR-Gradient. After that, we correlated the
ICA components from the integrated TCGA-PAAD/ICGC-PACA-AU Seq
matrix and the PDX matrix to evaluate the degree of recapitulation of PDX
model. This was performed on the global gene set and the subset of
specific genes from the tumoral epithelial cell and the stroma using log2
fold change ≥ 1 and a false discovery rate (FDR) < 0.05.

DNA methylation analysis
PDX whole-genome DNA methylation was analyzed as previously
described23. Briefly, microarray experiments and hybridized to the
BeadChip arrays were carried out at Integragen SA (Evry, France) following
the manufacturer’s instructions. Illumina GenomeStudio software was used
to extract the probe DNA methylation intensity signal values for each
locus. Data were processed and normalizing following the workflow
detailed in the methylationArrayAnalysis R package. In addition, we used
ICA to capture the methylation profile associated with the CGM applying
the JADE algorithm and Spearman’s correlation. The methylation level
associated with the gradient was measured through the median of the
CpG set with a component absolute contribution ≥ 3 SD. CpGs gene-set
enrichment analysis (GSEA) was performed using the missMethyl R
package.

Inhibition of SUV39H1/2 on PDPCC and RNA-seq analysis
Two hundred thousand cells were seeded on a T25 flask in SFDM. Twenty-
four hours later the media was supplemented with a sublethal
concentration of Chaetocin (10 nM; Selleckchem, Houston, Texas, USA)
and incubated for 72 h. Control samples were treated with DMSO only.
After that, RNA was extracted using RNeasy mini kit (Qiagen). RNA libraries
were prepared (Illumina NextSeq 500 High output kit v2) and run on the
Illumina NextSeq for 75 bp paired end reads. Expression matrix were
obtained using Rsubread R package51. Differential expression analysis was
performed with the Limma R package. In addition, principal component
analysis (PCA) was computed on the genes with a log2 fold change ≥ 1 and
a false discovery rate (FDR) < 0.05. The distance between control and
treated PDPCC was computed accounting the coordinates from the
dimension with the higher explained variance.
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KAT2B siRNA transfection and RNA-seq analysis
Four KAT2B siRNA (L-005055-00-0010, ON-TARGETplus siRNA Reagents,
Dharmacon) were transfected in two hundred thousand cells seeded on a
six-well plate using INTERFERin reagent (Polyplus-transfection) according
to the manufacturer’s protocol. The sequences of KAT2B-specific siRNAs
were as follows: KAT2B-1: 5′-GGUACUACGUGUCUAAGAA-3′; KAT2B-2:
5′-GAGCCGACCUGCAGCAAAU-3′; KAT2B-3: 5′-CGACAGAUUCCUAU
AGAAA-3′; and KAT2B-4: 5′-GCAAACAAUAGUUGAGUUG-3′. A control siRNA
pool was used as the negative control (D-001810-10-05, ON-TARGETplus
siRNA Reagents, Dharmacon). After 72 h, cells were lysed, and RNA
extracted with RNeasy Mini Kit (Qiagen). RNA libraries were prepared
(Illumina NextSeq 500 High output kit v2) and run on the Illumina NextSeq
for 75 bp paired end reads. Differential expression analysis was performed
with the Limma R package. In addition, principal component analysis (PCA)
was computed on the genes with a log2 fold change ≥ 1 and a false
discovery rate (FDR) < 0.05. The distance between control and treated
PDPCC was computed accounting the coordinates from the dimension
with the higher explained variance.

Functional analysis
To characterize the pathways related to the selected ICA component and
differential expression analysis, a gene-set enrichment analysis (GSEA) was
performed using fgsea R package, which implements GSEA on a pre-
ranked list of genes and MsigDB signaling database.

CNV of PDX analysis
The copy number status of the PDX KAT2B was assessed using Illumina
Infinium HumanCode-24 BeadChip SNP at Integragen SA (Evry, France),
according to the manufacturer’s recommendations. The BeadStudio
software (Illumina) was used to normalize raw fluorescent signals and to
obtain log R ratio (LRR) and B allele frequency (BAF) values. Asymmetry in
BAF signals due to bias between the two dyes used in Illumina assays was
corrected using the tQN normalization procedure.

Protein extraction and Western Blot
The proteins were separated by SDS-PAGE (29:1 acrylamide:bis-acrylamide,
Euromedex Laboratories, France) in 10%–12% running gel and 4% stacking
gel, in an electrophoresis cell. Proteins were electro-transferred to a
nitrocellulose membrane (Immobilon-P, EMD Millipore Corporation, Bill-
erica, Massachusetts, USA) at 250mA for 2 h. To identify proteins, the
membranes were blocked for 1 h at room temperature with 5% powdered
milk in PBS containing 0.1% Tween 20. Next, they were incubated
overnight at 4 °C with the rabbit polyclonal antibodies anti-H3K9me3
(1:2000, C15410056, Diagenode), and anti-H3K9ac (1:1000, 9649, Cell
Signaling Technology, USA). For the immunoreaction, the membranes
were incubated with horseradish peroxidase (HRP)-conjugated goat anti-
rabbit IgG (1:3000, 4030-05, Suther Biotech, Birmingham, USA). The
outcome was visualized using the Chemiluminescent HRP substrates
(Millipore Corporation, Burlington, Massachusetts, USA) for chemilumines-
cence development. To normalize the results, polyclonal anti-H3 (1:1000,
14269, Cell Signaling Technology, USA) was used on the same membranes.
The membranes were scanned using a PXi multi-application imager
(Sygene, Cambridge, UK). The estimation of bands was performed using a
prestained protein ladder (SeeBlue Plus2, ThermoFisher, Waltham,
Massachusetts, USA) as a molecular weight marker.

Immunocytofluorescence and nuclear localization
quantification
Cells were grown on commercial microscope slide glasses, fixed with PFA
solution, washed twice with PBS and with blocking serum solution (Vector
Laboratories, Burlingame, CA, USA) for 30min. Then, the cells were
incubated with the primary antibody overnight at 4 °C. The primary
antibody used was rabbit anti-H3K9me3 (1:200, C15410056, Diagenode).
The secondary antibody was Alexa 488-conjugated anti-rabbit (1:300,
A21206, Invitrogen, ThermoFisher, Waltham, Massachusetts, USA), which
was incubated with the sections for 60min at room temperature. The
slides were counterstained with mounting medium for fluorescence with
DAPI (ProLong, Invitrogen, ThermoFisher, Waltham, Massachusetts, USA).
One hundred cells were selected randomly to quantify the histone mark
signal. Images were captured using the microscope (Axio Imager 2, Zeiss,
Germany) with an attached digital camera (ORCA-Fusion; Hamamatsu,
Japan).

Immunofluorescence and signal quantification
PDX paraffin sections were dewaxed in xylene and hydrated through a
decreasing ethanol series. After 10min in PBS, heat-induced epitope
retrieval was performed in a water bath at 96 °C in 10mM sodium citrate at
pH 6 for 20min. Then, the sections were blocked with blocking serum
solution for 30min. Slides were incubated with the primary antibody
overnight at 4 °C. The primary antibodies used were rabbit anti-H3K27ac
(1:100, 8173, Cell Signaling Biotechnology), anti-H3K4me3 (1:100, ab8580,
Abcam), anti-H3K9me3 (1:100, C15410056, Diagenode), anti-H3K9ac (1:200,
Cell Signaling Biotechnology), PLIN2 (1:100, NB110-40877, Novus Biologi-
cals), and anti-SPHK1 (1:100, H00008877-M01, Novus Biologicals). The
secondary antibody used was Alexa 488-conjugated anti-rabbit (1:300,
A21206, Invitrogen, ThermoFisher, Waltham, Massachusetts, USA), which
were incubated with the sections for 60min at room temperature. The
slides were counterstained with mounting medium for fluorescence with
DAPI (ProLong, Invitrogen, ThermoFisher, Waltham, Massachusetts, USA).
One hundred cells in three areas per section were used to quantify the
signal. Images were captured using the microscope (Axio Imager 2, Zeiss,
Germany) with an attached digital camera (ORCA-Fusion, Hamamatsu,
Japan).

Lipidomic analysis
Methanol and a mix of sodium chloride and chloroform/methanol (2:1)
were used to isolate lipids from 77 PDX. Raw data were extracted using
mass spectrometry coupled to ultra-performance liquid chromatography
(UPLC-MS). Chromatography was performed using an ACQUITY™HPLC
system (Waters Corp., Milford, USA), associated with the mass spectrometer
Waters LCT Premier (Waters Corp., Milford, USA). All the measures included
three defined quality control samples used to batch normalization. Raw
data were processed using the TargetLynx application manager for
MassLynx 4.1 software (Waters Corp., Milford, USA). A set of predefined
retention time, mass-to-charge ratio pairs, Rt-m/z, corresponding to
metabolites included in the analysis are considered. Associated extracted
ion chromatograms (mass tolerance window= 0.05 Da) are then peak-
detected and noise-reduced in both the LC and MS domains. A list of
chromatographic peak areas is then generated for each sample injection.
Normalization factors were calculated for each metabolite by dividing their
intensities in each sample by the recorded intensity of an appropriate
internal standard in that same sample, following the procedure described
by Martinez-Arranz et al.52. A total of 28 subfamilies were detected and the
median per sample was computed per each one. The lipid subfamilies with
a significant statistical correlation with the MR-Gradient model were
selected. Then, the metabolites into the selected subfamilies with a high
spearman’s correlation with the MR-Gradient were analyzing with principal
component analysis (PCA) to weight the metabolite contribution into the
PDAC prognosis through the PCA dimension coordinates applied on Cox
proportional hazard model.

Glucose and glutamine metabolism
PDX explants of 1 mm2 extracted from three high-risk and three low-risk
patients were seeding in a 12-well plate coated with 150 µl growth factor
reduced Matrigel (Corning, Wiesbaden, Germany) per duplicate. Glucose
and glutamine consumption together with lactate and glutamate
production were measured using the YSI 2950 BioAnalyser (System-C-
Industry). The explants were cultured in DMEM with 25mM glucose,
2.5 mM glutamine. After 48 h, explant supernatants were collected to
metabolites measurement. Raw data were normalized with the dry tissue
weight.

Statistical analysis
Spearman’s correlation coefficients and the significance levels were
calculated using the Hmist R package. Mann–Whitney’s test, and Chi-
Square test were performed with R basic functions. Heatmap and
correlograms were generated with ComplexHeatmap R package.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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DATA AVAILABILITY
ICGC-PACA-AU Seq and ICGC-PACA-AU Array expression datasets were downloaded
from the ICGC data portal (https://dcc.icgc.org/). TCGA-PAAD RNA expression and
methylation data were downloaded with TCGAbiolinks R package. Puleo cohort data
is available in ArrayExpress under the accession number E-MTAB-6134. PDX datasets
are available from ArrayExpress and European Genome-phenome Archive under the
accession numbers: E-MTAB-6134, E-MTAB-5039, E-MTAB-5008, E-MTAB-5006, and
EGAS00001001928. TCGA-PAAD genomic data was extracted from cBioPortal (https://
www.cbioportal.org/).

CODE AVAILABILITY
Data analysis was performed R (3.6.3) and RStudio (Version 1.1.453) with the
packages described in the methods. Raw code will be made available from the
corresponding author upon reasonable request.
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