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Abstract: Neurologic insults as varied as inflammation, stroke, and fibromyalgia elicit neuropathic
pain and itch. Noxious sensation results when aberrantly increased afferent signaling reaches
percept-forming cortical neurons and can occur due to increased sensory signaling, decreased
inhibitory signaling, or a combination of both processes. To treat these symptoms, detailed knowledge
of sensory transmission, from innervated end organ to cortex, is required. Molecular, genetic,
and behavioral dissection of itch in animals and patients has improved understanding of the receptors,
cells, and circuits involved. In this review, we will discuss neuropathic itch with a focus on the
itch-specific circuit.
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1. Introduction

Both microscopic damage, such as small-fiber neuropathy, and macroscopic trauma such as that
occurring from spinal cord transection can result in neuropathic pain or itch [1]. Neuropathic pain
is defined by the International Association for the Study of Pain (IASP) as pain caused by a lesion
or disease of the somatosensory nervous system [2]. Currently, neuropathic itch has no consensus
definition but is generally understood as itch resulting from neuronal or glial damage without skin
alterations. Under this definition, neuropathic itch accounts for approximately 8% to 19% of chronic
pruritus conditions and include a wide variety of neurologic diseases with high medical burden and
diverse pathologic mechanisms [3].

Pain- and itch-detecting neurons are anatomically indistinguishable. Both are sensed by
small-diameter, unmyelinated C-fibers of the dorsal root ganglia (DRG) and trigeminal ganglia
(TG). These unipolar primary neurons synapse in the outer layers of the dorsal horn of the spinal
cord. Signal-carrying, secondary spinal neurons anteriorly decussate before traveling rostrally in the
spinothalamic and spinobrachial tracts [4]. In human psychophysical studies, participants often report
coexisting pain and itch sensations (“stinging itch” and “itching burn”) in response to itchy and painful
exogenous stimuli. Intriguingly, after nerve injury, sufferers commonly complain of concurrent pain
and itch [1,5–7]. For example, 92% of patients with small fiber neuropathies experience coexisting
neuropathic itch and pain [8]. Similarly, after herpes zoster virus reactivation, 30–65% of patients
experience both neuralgia and itch as a result of their illness [6,7].

In addition to widespread musculoskeletal-type pain and systemic symptoms of altered mood,
fatigue, and cognitive dysfunction, patients with fibromyalgia have exquisitely sensitized skin [9,10].
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A subset of patients with fibromyalgia have skin-related complaints including hyperhidrosis, burning
pain, and unexplained pruritus [11,12]. However, reported estimates of prevalence widely vary,
3.4–52% for cutaneous pain and 3.3–73% for pruritus [11,12]. On skin biopsy, approximately 40% of
fibromyalgia patients have evidence of small-fiber polyneuropathy suggestive of a neuropathic cause
for their altered sensation.

In recent years, advances in molecular biology have identified itch-specific sensory neurons
and allowed detailed dissection of both pain and itch circuits. From these studies, a comprehensive
framework of noxious sensation, from molecule to cell to circuit and perception, has emerged. Although
itch neurons are molecularly distinct from their pain-sensing counterparts, neuropathic itch shares
common mechanisms with neuropathic pain. Understanding how nervous damage and disease can
result in pathologic itch can allow better explanation and management of the pruritus and cutaneous
symptoms experienced by fibromyalgia patients. In this review, we will discuss recent advances in itch
biology, the itch-specific circuit, and pathophysiologic mechanisms of neuropathic itch.

2. Neuropathic Itch and Inflammation

Itch sensation begins in the skin when varied pruritogenic stimuli: molecules, temperature,
and mechanical force, excite afferent nerves through a variety of cell surface receptors and channels.
Receptors and channels confer molecular specificity, and their expression dictates if, when, where,
and how an itch neuron is excited. Single-cell sequencing studies have provided a near-complete account
of receptors and channels expressed in itch and pain-sensing neurons during various dermatoses,
so-called “itchscriptomes,” expanding our molecular understanding of itch far beyond the canonical
histamine receptor implicated in allergic itch [13–17].

In allergic itch and numerous chronic itch conditions, a component of itch sensation can be
attributed to a pathologic increase of pruritogen in skin which activates receptors and/or channels
present on itch neurons. This mechanism, whereby extrinsic pruritogen increases itch afferent signaling,
applies to neuropathic itch in certain clinical contexts. After peripheral nerve injury, significant
inflammation concurrently develops with sensory abnormalities (Figure 1) [4,18]. Itch neurons express
a variety of receptors for inflammatory mediators such as proteases, tryptase, chymase, and cathepsin,
and cytokines, thymic stromal lymphopoietin, interleukin (IL)-4, 13, 31, and 33 [16,19–23]. Based on
this receptor expression, it is plausible that a component of neuropathic itch is due to activation of
receptors by inflammatory molecules. For example, IL-4 activation of IL-4Rα, an interaction found to
be important in chronic itch of atopic dermatitis, could play a role in peripheral nerve injury-associated
neuropathic itch. At days 1 and 7 following sciatic nerve transection, IL-4 is significantly upregulated
in the distal nerve stump [4]. Both mouse and human itch neurons express IL-4Rα, the receptor for
IL-4 [19].

Historically, when inflammatory skin changes prevail, such as in psoriasis, atopic dermatitis,
or allergic contact dermatitis, associated itch has been classified as inflammatory and not neuropathic.
However, data suggests that these processes may be linked. During inflammation, keratinocytes release
neuro-active molecules such as nerve growth factor (NGF), amphiregulin, artemin, sempahorins,
and anosmin-1 which alter nerve fiber growth and proliferation [24]. In mouse models of allergic contact
dermatitis, inflamed skin exhibits nerve hyperproliferation and alters sensory neuron expression
profiles. In several inflammatory dermatoses, including psoriasis, systemic sclerosis, morphea,
dermatomyositis, and atopic dermatitis, neuropathic-type itch, pain, and other symptoms have
been documented [24–26]. Inflammation increases intraepidermal nerve fiber density. However,
in non-inflamed skin of patients complaining of neuropathic itch, intraepidermal nerve fiber density
is often decreased [8]. This phenomenon reflects one potential pathogenic difference between
inflammatory and neuropathic itch.
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Figure 1. Neuropathic itch of the peripheral nervous system. Small diameter itch-sensing nerves of the
dorsal root ganglia (DRG) ramify in skin and synapse with secondary neurons in the outer laminar
layers of the dorsal horn of the spinal cord. Various insults along this peripheral neuronal tract can result
in neuropathic itch. These include increased neurite outgrowth in diseased skin, neuroinflammatory
activation via IL-4/IL-4Ra receptor, and genetic channelopathies such as Nav1.9L811P which has been
associated with increased itch nerve activity.

3. Neuropathic Itch and Channelopathies

In peripheral nerves, receptor activation often recruits downstream ion channels, causing influx
of positive ions and neuronal excitation. However, channels themselves can be directly activated,
independent from receptor recruitment, to excite afferent neurons and produce neuropathic itch
sensation. For example, voltage-gated sodium channels (Nav), expressed in small-diameter sensory
neurons of the DRG, TG, and sympathetic ganglia, have been linked to neuropathic itch. These channels
regulate neuronal excitability and action potential propagation by altering resting membrane potential
and inactivation thresholds. Numerous gain-of-function mutations that serve to increase neuronal
excitability have been identified as causing neuropathic itch in patients [27–31]. For example, three
patients with paroxysmal bouts of severe itch affecting the trunk and upper extremities were found to
have abnormal sensory thresholds due to a Nav1.7I739V mutation [29]. Similarly, an additional patient
complaining of severe, unrelenting itch, was identified as harboring a mutation in a different channel,
Nav1.9L811P [31]. In the described patients, severe, neuropathic itch occurred in the absence of any
known itch-associated pathology or even overt damage to the nervous system. All of the mentioned
patient’s neuropathic itch responded well to gabapentin [29,31]. Differences in symptom chronicity
between these patients, paroxysmal vs. constant, can be explained by the dynamics of the mutated
sodium channel. Distinct from other voltage-gated sodium channels, Nav1.9 produces a distinct
current at physiologically-relevant resting membrane potentials [30]. Alterations to this current could
affect neuronal firing, even in the absence of external stimuli.

4. Cellular Mechanisms of Neuropathic Itch

In addition to molecular causes, there are numerous cell-based mechanisms by which peripheral
lesions can increase afferent signaling and elicit neuropathic itch. To understand these, the way itch is
coded in the periphery should be discussed. Although the mechanism of peripheral itch-coding is still
debated, synthesis of molecular, physiologic, and human psychophysical data supports the existence
of itch-specific sensory neurons, labeled-line coding, which may selectively innervate skin sites in
support of the spatial contrast model (Figure 2a,c) [5].
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Figure 2. Models of coding for itch and pain. Different models of coding have been proposed to explain
the relationship between itch and pain. (a) In the labeled-line coding model, the itch-specific sensory
neuron (left) and pain-specific neuron (right) each constitutes a dedicated pathway that only responds
to corresponding pruritogens (i.e., chloroquine) or algogens (i.e., capsaicin). (b) In the intensity coding
model, the itch and pain pathways are comprised of the same population of sensory neurons and
circuits. Low-to medium intensity stimuli evoke low firing rates of the sensory neurons and result
in itch sensation (left). On the contrary, high-intensity stimuli evoke robust firing rates of the same
sensory neurons and result in pain sensation (right). (c) In the spatial contrast coding model, focal
stimulation of the individual nociceptors induces itch sensation (left). Contrarily, co-stimulation of the
same population of sensory neurons with the neighboring nociceptors evokes the pain sensation (right).

4.1. Molecular Data Support a Labeled-Line for Itch

Itch neurons are small-diameter, pseudounipolar cells that reside within the DRG and TG. They
maintain a single axon that innervates both peripheral skin and synapses with secondary spinal cord
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neurons. Single-cell sequencing studies have demonstrated that itch neurons, classified based on
canonical itch receptor expression, are molecularly distinct from other sensory neurons including those
that detect pain [13]. Functional genetic studies enabling activation of specific neural populations
in mice also support the existence of distinct, itch-coding neurons in both the peripheral and central
nervous systems. In the periphery, natriuretic polypeptide B (NPPB) and Mrgpra3-expressing neurons
are believed to represent itch-exclusive neuronal populations [32,33]. Exclusive, robust activation of
Mrgpra3-expressing sensory neurons in mice elicits itch and not pain [32]. NPPB is both necessary
and sufficient for acute peripheral itch. Injection of NPPB produces exclusive itch, and NPPB−/− mice
have specific itch deficits with intact pain [32,33]. In the outer lamina of the dorsal horn of the spinal
cord, peripheral neurons synapse with itch-dedicated secondary neurons expressing NPRA, the NPPB
receptor, and gastrin-releasing peptide (GRP). Secondary neurons transmit a signal to tertiary, GRP
receptor-expressing (GRPR+) pruriceptors [33–35]. GRPR+ neuron ablation decreases itch without
altering pain, and GRP injection elicits exclusive itch.

4.2. Alternative Itch Coding Mechanisms

In human psychophysical studies where pruritogens are injected intradermally, mixed pain,
and itch sensations, a “stinging itch” or “itching burn,” are commonly reported [36–39]. Canonical
pruritogens such as histamine and cowhage induce stinging and burning pain in some volunteers,
while stereotypic algogens such as capsaicin can provoke itch [38,39]. Concurrently, electrophysiologic
recordings from a variety of mammalian models demonstrate that pruriceptive neurons also respond
to painful stimuli [40,41]. In murine spinal cords, evidence that GRP+ neurons represent a population
of neurons that code for both pain and itch has been presented [42]. Specific, low-to-medium intensity
activation of these neurons elicited pain and itch, and maximal activation elicited exclusive itch,
a pattern of activity consistent with a type I incoherent feedback circuit [42].

Labeled-line coding cannot completely account for these observed data, which are more accurately
described by alternative theories of itch signaling, intensity, and spatial contrast coding [5]. Under these
paradigms, itch signaling is decoded by physiologic parameters and not necessarily coded by distinct
neural circuits. Intensity coding proposes that a single population of nociceptors detect itch and pain.
In this model, low firing rates result in itch and robust firing rates are decoded as pain (Figure 2b).
Alternatively, in spatial contrast coding, the regional context of nociceptor activation matters (Figure 2c).
For example, focal nociceptor stimulation would be expected to induce itch. From these stimuli,
contrasted signaling from a few, active nociceptive endings and surrounding, silent nociceptors codes
for itch. Specific, in vivo testing of spatial contrast coding has yet to be performed. However, in mice,
particularly strong evidence against intensity coding exists as maximal activation of specific sensory
neuron populations, such as Mrgpra3+ neurons in mice, elicits exclusive itch without transition to
pain [32,43,44].

5. Neuropathic Itch of Peripheral Nerve Neuromas

As no single itch-coding theory accounts for all experimental data, peripheral itch-coding in
humans likely involves a combination of mechanisms. Synthesis of existing theory best explains
the cellular mechanisms by which peripheral neural lesions cause neuropathic itch. For example,
after limb amputation or traumatic surgical procedures such as mastectomy, itch of the deafferented
region, so-called “phantom” itch, commonly occurs [3]. During wound healing, substantial cellular
reorganizations of the peripheral nervous system, such as neuromas, increased neurite outgrowth
and nerve embedment in scar tissue can develop [3,45]. Similar increases in small-fiber, nociceptive
innervation are observed in normal and hypertrophic keloid scar tissue, skin graft, and post-burn
injury, all conditions associated with significant itch incidence [46–49]. One explanation for itch in this
context would be that the assayed, increased innervation exclusively represents labeled-line itch fiber
proliferation. However, these straightforward explanations are less likely as neuropeptide and neural
marker staining of scar support the presence of both pain and itch neurons [47,49].
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As in other neuropathic conditions, patients with phantom limb sensation commonly report
concurrent itch and pain but can also experience isolated pain or itch [50]. An admixture of sensations
is best explained by a combination of spatial contrast and labeled-line signaling. In the context of
a neuroma and resultant nerve ending hyperproliferation, spatial contrast theory can account for
isolated itch, isolated pain, and the switch between these sensory states. When there is no spatial
contrast in neuronal firing in the hyper-innervated injury site, such as in an inflamed neuroma where
nerve endings are globally activated, pain results. When different regions of the neuroma are activated,
such as in subtle inflammation or due to focal, external stimuli, spatial contrast is present, and itch is
sensed. How concurrent itch and pain sensation can be detected is more difficult to explain by spatial
contrast coding. Neuromas at amputation sites, hypertrophic scar, and burn scar have denser neuronal
innervation compared to normal skin. In this anatomically crowded space, achievement of spatial
contrast would require extraordinarily specific activation [51].

Labeled-line coding can resolve this issue of mixed pain and itch sensation. In a peripheral
neuroma, a subset of proliferating nerve endings will be itch-specific and others, pain-specific. When
all are activated, such as in inflammation, both pain and itch sensation can be detected. Labeled-line
coding could theoretically account for exclusive pain and exclusive itch sensations resulting from a
neuroma even when both pain and itch-specific afferents are activated. However, each explanation
assumes much. Pain inhibits itch in the spinal cord, a topic which will be explored further in the next
section. In an inflamed neuroma, exclusive pain would result if pain inhibits itch sensation. Exclusive
itch resulting from a neuroma is more difficult to account for with labeled-line coding. After peripheral
nerve transection injury, sensory neurons of the dorsal root ganglia undergo significant molecular
changes, including broad upregulation of the itch neuropeptide GRP, which could abrogate typical
nociceptor inhibition of itch through volume transmission [52]. However, for exclusive itch to be
detected in this scenario, injury-related changes would have to result in near-complete sensory neuron
expression of GRP which has not been experimentally demonstrated. Alternatively, exclusive itch
could be sensed if stimuli were applied with molecular specificity, activating only itch and not pain
neurons. However, in humans, few physiologic molecules that elicit pure itch have been identified.
With these caveats in mind, a synthesized mechanism of both labeled-line and spatial contrast coding
would best explain the neuropathic sensations evident in phantom limbs.

6. Circuit Mechanisms of Neuropathic Itch in the Spinal Cord

Peripheral nerve damage affects not only primary DRG neuron gene expression, such as GRP
upregulation but also that of non-neuronal cell types in the spinal cord such as astrocytes and
microglia (Figure 3). During peripheral nerve injury, spinal cord astrocytes and microglia undergo
reactive gliosis, a process that includes proliferation, upregulation of cytokine production and release,
and morphologic changes [53–55]. Typically, spinal microglial plasticity is transitory and peaks within
days, while astrocytic changes persist for weeks to months [56,57].

Both microglial and astrocytic changes have been shown to play a role in neuropathic pain.
For example, after nerve injury, both cell types release pro-inflammatory cytokines and chemokines,
such as CCL2 and CXCL1, which sensitize pain-coding spinal cord neurons and make them more
responsive to peripheral stimuli [56]. In neuropathic itch, a similar mechanism whereby gliosis
promotes itch sensation by modulating itch circuits may be present. In mice with chronic itch of atopic
and contact dermatitis, reactive astrogliosis in the spinal cord is both critical for the development of itch
and also enhances the sensation through release of lipocalin-2, which sensitizes GRPR+ neurons to GRP
itch neuropeptide transmission [58,59]. Similar dynamic glial changes could account for neuropathic
pruritus observed in neuromyelitis optica spectrum disorders (NOSD), a neuroinflammatory disorder
with auto-antibody targeting aquaporin-4 leading to demyelination and astrogliosis of the spinal
cord [60].

In addition to glia, inhibitory and excitatory spinal interneurons of the dorsal horn also
regulate itch transmission (Figure 3). Two separate inhibitory interneuron populations, basic
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helix-loop-helix b5 (Bhlhb5)-dependent and neuropeptide Y (NPY)+ inhibitory interneurons link
pain and mechanosensation, respectively, to itch signaling [61,62]. Bhlhb5-dependent interneurons
gate chemical itch while NPY+ interneurons gate mechanical itch. In the circuits formed, pain and
mechanosensory afferent signaling activates respective interneuron populations which inhibit itch.
Loss of either interneuron population results in severe itch in the absence of peripheral stimuli without
altering other sensations [61,62]. Excitatory spinal interneurons have also been shown to modulate
itch. In mechanical itch, urocortin 3- expressing excitatory interneurons are critical for mechanical itch
and mechanical alloknesis in chronic itch conditions [63].Cells 2020, 9, x FOR PEER REVIEW 8 of 15 
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Figure 3. Neuropathic itch of the central nervous system. Peripheral itch nerves synapse with
secondary Gastrin-releasing peptide (GRP)+ itch neurons of the spinal cord which then activate tertiary
GRP receptor (GRPR)+ neurons. GRPR+ neurons decussate anteriorly to form the spinothalamic
tract and synapse with thalamic neurons which communicate with various brain regions such as the
sensory cortex and insula to produce itch sensation. In the spinal cord, numerous interneuron (INs)
populations control itch processing. For example, nociceptor activation of Bhlhb5 INs inhibits GRP+

and GRPR+ neuron signaling of chemical itch. Similarly, peripheral low-threshold mechanoreceptors
(LTMRs) can both enhance mechanical itch by activating excitatory Ucn3 INs and inhibit mechanical
itch via inhibitory NPY INs. In addition to these peripheral inputs, higher-level brain regions, such
as the mid-brain periaqueductal gray (PAG), provide descending inhibitory feedback onto spinal
cord itch neurons. If descending inhibitory pathways are disrupted, then itch becomes disinhibited,
and neuropathic itch results. Finally, chronic itch conditions can cause reactive spinal astrogliosis,
a non-neuronal mechanism whereby itch signaling is enhanced.

Understanding spinal cord itch regulation sheds light on the pathogenesis of neuropathic itch
conditions such as trigeminal trophic syndrome (TTS). TTS is a severe neuropathic itch that results
after cutaneous pain neuron deafferentation due to shingles, treatments of trigeminal neuralgia such
as rhizotomy and ethanol injection, and vertebrobasilar stroke affecting the trigeminal nucleus [64].
Because pain afferent signaling inhibits itch in the spinal cord, when pain afferents are lesioned via
surgical intervention or viral infection, itch is disinhibited and the responses are more pronounced
when activated. TTS patients will scratch themselves until skin ulcerates [64]. Because patients feel
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itch and no pain, they have the motivation to scratch and no awareness of the extent of self-inflicted
damage caused. Similarly, in mice, silencing of peripheral pain by targeting TRPV1+ afferent signaling
also elicits severe, pathologic itch [65].

While the absence of pain and resultant disinhibition of itch can account for the severity of itch
perceived by TTS patients, it cannot explain why itch occurs in the first place and appears to be such an
entrenched phenotype. Peripheral itch afferents are not tonically active. Even in the complete absence
of pain and spinal inhibitory neuron input, the itch neural circuit would still require peripheral stimuli
to become active.

Reactive astrogliosis could account for tonic itch sensation and repetitive scratching in the absence
of peripheral stimuli by promoting the development of an “itch-scratch cycle.” Itch-scratch cycle is
a positive feedback loop that develops in nearly all chronic itch conditions where scratch enhances
rather than attenuates itch. Scratch activates TRPV1+ peripheral afferents which promote reactive
astrogliosis, release of factors such as LCN2, and sensitization of itch neurons. Astrogliosis is a
persistent phenomenon that, once developed, lasts for many months, a timescale wherein significant
tissue damage such as that seen in TTS can occur.

7. Descending Supraspinal Control of Itch Sensation

In the spinal cord, itch sensation is modulated not only by local segmental neurons and glia
but also by distant supraspinal neurons from varying regions such as the dorsal reticular nucleus,
mid-brain periaqueductal gray-rostral ventromedial medulla (RVM), and ventrolateral medulla (VLM).
Descending control is state-dependent [66,67]. During stress-associated fight-or-flight response,
descending control is overall inhibitory and produces hypoalgesia, and in the context of diseases such
as peripheral nerve injury, descending input facilitates pain by enhancing pain transmission in the
spinal cord [66,68].

While descending control can facilitate or inhibit sensation in a context-dependent manner,
overall it is thought to be inhibitory. When supraspinal control centers are experimentally lesioned,
sensation is increased, presumably due to loss of descending inhibitory control and subsequent
disinhibition [66]. Clinical evidence also supports an overall inhibitory role for descending control
pathways. Lesions to supraspinal itch control centers such as the lateral medulla in Wallenberg’s
syndrome can result in neuropathic itch. Similarly, destruction of descending fibers in the spinal
cord due to tumor, trauma, multiple sclerosis, or infarct, or stroke are also associated with severe
neuropathic itch [1,69]. In chronic itch disease of atopic dermatitis, prurigo nodularis, and neuropathic
brachioradial pruritus, descending control is altered. Typically, in healthy people, repeated pain
stimulation results in decreased pain ratings due to centrally-mediated desensitization [53]. However,
in chronic itch patients, this desensitization is not observed, indicating that descending inhibitory
pathways are lost [70].

Faciliatory and inhibitory descending control fibers are intermixed, and their cell bodies are closely
associated anatomically. For example, within the ventrolateral periaqueductal gray (vlPAG), a midbrain
structure just a few millimeters in size, both inhibitory and faciliatory cell types for descending control
of itch exist. While pharmacologic inhibition of the entire structure attenuates itch, suggesting that the
vlPAG as a whole facilitates itch, cell-type-specific activation of glutamatergic neurons inhibits itch
while GABAergic neurons facilitate itch [71]. Given the presence of both faciliatory and inhibitory
descending control of sensation, it is curious why neuropathic itch and pain are more commonly
reported in association with spinal cord lesions than the corollary loss of sensation. Such differences
may be due to reporting bias where patients who are experiencing noxious percepts are more likely to
bring these symptoms to a medical provider’s attention.

In addition to discrete lesions of the spinal cord and brainstem, diffuse cortical disease, such as
in Lewy body dementia and Crueztfeldt–Jakob prion disease (CJD), has also been associated with
increased itch sensation [72,73]. After synapsing in thalamus, itch sensation projects to basal ganglia
and many parts of the cortex including the somatosensory cortex, premotor cortex, the posterior parietal
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cortex, anterior cingulate, and insula. Different itch stimuli preferentially activate specific cortical
regions. For example, allergen-associated itch activated supplementary motor cortex, an activity which
was not apparent in histamine-associated itch [74].

One mechanism by which aberrant itch could develop in global cortical neurodegenerative
conditions would be by disruption of descending inhibitory control neurons similar to that previously
discussed with discrete lesions. Parietal stroke can cause neuropathic itch, and in familial, but not
sporadic CJD, diffusion-weighted imaging revealed decreased activity in mid-brain periaqueductal gray,
suggesting possible alterations to inhibitory pathways located there ultimately resulting in increased
itch [75,76]. However, these affected patients had severe disease, and many other itch-associated CNS
regions were similarly affected [75].

Psychogenic itch such as delusional parasitosis in Ekbom’s and Morgellon’s syndromes is a
relatively uncommon but notable cause of chronic itch [77,78]. The neural correlates for these
conditions are still under active investigation and could involve unidentified disruption of descending
itch control pathways in addition to psychiatric causes. Intriguingly, cerebral infarct of the right medial
occipital lobe can elicit delusional parasitosis, indicating that a single, discrete lesion, disrupting select
neural pathways, can explain disease symptoms [79].

Mechanistic studies of psychogenic itch are challenging due to the close relationship itch has
with psychiatric conditions. Chronic itch leads to depression and anxiety, which in turn can enhance
sensation of itch [80]. This mixed causality makes it difficult to distinguish primary drivers of
disease. However, peripheral itch was once just as mysterious as more central causes. By correlating
clinical findings of patient complaint with itch sensory research, enormous strides have been made
in understanding the peripheral and spinal circuits of itch. Future studies on itch processing in
higher-level brain regions can be similarly conducted and provide knowledge which will benefit those
who are suffering.

8. Future Therapeutic Directions for Neuropathic Itch

Understanding the molecular, cellular, and circuit regulation of itch sensation provides
opportunities for improved therapeutics [81–83]. In recent years, treatment of inflammatory itch
associated with atopic dermatitis, psoriasis, and prurigo nodularis has been revolutionized by
identification of inflammatory molecules and receptors involved [19]. As neuropathic itch can
develop following neuroinflammatory injury, it is possible that some of the therapeutics shown to be
helpful for atopic dermatitis might also benefit a subset of neuropathic itch patients. Once limited
to barrier treatment, steroid creams, and anti-histamines, improved, specific treatments targeting
cytokine mediators such as IL-4/IL-13 (dupilumab), IL-17 (secukinumab and ixekizumab), IL-31RA
(nemolizumab), and JAK-STAT receptors have greatly improved patient outcomes [19,84–88]. Another
drug class which has shown promise is neurokinin 1 (NK1) receptor antagonists. In multiple phase
II trials, the NK1 antagonist serlopitant showed significant anti-itch effects in patients with prurigo
nodularis and chronic itch conditions [89,90]. Unfortunately, neither trial tested the therapeutic effect
of serlopitant for neuropathic itch [89,90].

Neuropathic itch treatments being actively explored include injections of botulinum toxin
and topical applications of ketamine mixtures or strontium. Botulinum toxin has been shown to
improve, although with mixed results, neuropathic itch in brachioradial pruritus, notalgia paresthetica,
and keloids [91–94]. Topical application of ketamine, mixed with amitryptyline and/or lidocaine,
provided immediate relief for neuropathic itch patients [95]. Finally, topical application of strontium,
a calcimimetic calcium channel blocker, has benefited experimentally induced histaminergic and
non-histaminergic itch and, theoretically, could relieve neuropathic itch [96]. Depending on context,
symptomatic neuropathic itch and pain have been treated primarily by therapies which similarly aim to
decrease afferent signaling, whether by inhibition of excitatory ion channels with lidocaine, activation
of inhibitory ion channels with gabapentin, or ablation of afferent neurons with high dose capsaicin.
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Further study determining the cytokines, chemokines, and receptors involved in neuroinflammatory
injury would be of particular therapeutic interest.

Understanding the circuit mechanisms of itch regulation provides additional opportunities
for therapeutic intervention upon neuropathic itch. Based on current circuit models, to decrease
itch, one could increase pain afferent signaling, increase local spinal cord inhibitory interneuron
signaling, or increase descending inhibitory signaling. Certain therapeutic routes are clinically
untenable, for example, treating itch by provoking pain. However, other options, such as increasing
local inhibitory interneuron signaling, remain viable. To increase spinal cord inhibitory neuron
signaling, one could either specifically activate those populations of neurons or introduce selective
neurotransmitters, if they exist, released by those neurons. Pain-activated spinal interneurons inhibit
itch through the release of dynorphin, a kappa opioid receptor agonist, suggesting that this class of
molecules could treat itch conditions [97]. Indeed, kappa opioid agonists such as nalfurafine and
difelikefalin have shown clinical promise for treatment of a variety of chronic pruritic conditions and
similar treatments could also benefit neuropathic itch associated with peripheral nerve injury [98].

9. Conclusions

Neuropathic itch can result from almost any process that damages the nervous system. Many types
of damage directed at a myriad of anatomic locations are associated with neuropathic itch. For this
symptom to be controlled in the population at large, multiple therapeutic interventions, operating
through separate mechanisms, are required. Increased understanding of itch transmission, from
molecule to circuit and from skin to cortex, has similarly improved knowledge of neuropathic itch
pathophysiology. As data concerning the molecules, cells, and circuits of itch continue to be refined,
treatments for neuropathic itch will improve.

Despite the recent scientific focus on the distinction between itch and pain, their commonalities,
in terms of molecules, cells, and circuits, are undeniable. Pain and itch are elicited by similar stimuli,
chemical, temperature, and mechanical. While, overall, they are molecularly distinct, both types of
neurons shared expression of key channels and receptors such as TRP channels. Both sensations are
carried by similar size neurons that travel along the same neuroanatomical tracts to be processed in
the same brain regions. Similar logic is employed in their control, whether by distant descending
control pathways or local spinal interneuron circuits. For example, in an analogous mechanism to itch
inhibition by pain, pain itself is gated by touch sensation. Based on these similarities, the scientific
principles upon which successful neuropathic itch treatments are based will benefit pain just as
knowledge of neuropathic pain has long informed efforts to understand itch.
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