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Mesenchymal stem cells (MSCs) are adult stem cells with fibroblast-like morphology and isolated from the bone marrow via plastic
adhesion. Their multipotency and immunoregulatory properties make MSCs possible therapeutic agents, and an increasing
number of publications and clinical trials have highlighted their potential in regenerative medicine. However, the finite
proliferative capacity of MSCs limits their scalability and global dissemination as a standardized therapeutic product.
Furthermore, adult tissue provenance could constrain accessibility, impinge on cellular potency, and incur greater exposure to
disease-causing pathogens based on the donor. These issues could be circumvented by the derivation of MSCs from pluripotent
stem cells. In this paper, we review methods that induce and characterize MSCs derived from induced pluripotent stem cells
(iPSCs) and introduce MSC applications to disease modeling, pathogenic mechanisms, and drug discovery. We also discuss the
potential applications of MSCs in regenerative medicine including cell-based therapies and issues that should be overcome
before iPSC-derived MSC therapy will be applied in the clinic.

1. Introduction

Mesenchymal stem cells (MSCs) are derived from the
bone marrow, adipose tissue, or other connective tissues.
Importantly, they have promise for tissue repair because
of their expandability and multipotency. MSCs are able
to differentiate into a broad spectrum of end-stage cell
types such as osteoblasts, chondrocytes, myocytes, and adi-
pocytes. Many reports have demonstrated that MSCs
secrete a wide variety of bioactive molecules that exhibit
immunoregulatory and microenvironment modulatory
effects at the site of injury. These properties make MSCs
as potential candidate for regenerative medicine.

However, MSCs derived from these cell sources have
some limitations, including limited cell proliferative capacity
and alterations in phenotype and differentiation potential
during long-term culture [1]. Moreover, the quality of MSCs
varies widely among donors [2–4]. Consequently, despite
their potential, in some cases, MSCs have not translated well
for the research and treatment of patients. Instead, an inex-
haustible and safe source of MSCs is ideal.

MSCs induced from pluripotent stem cells (PSCs), such
as embryonic stem cells (ESCs) and induced pluripotent stem
cells (iPSCs), could provide such a source. Both possess prop-
erties of infinite growth and differentiation, making it possi-
ble to avoid long-term culture as MSCs. PSCs are also
compatible with gene-directed enzyme prodrug therapy
(GDEPT) or CRISPR/Cas9 and related technologies [5, 6]
for gene editing. Moreover, iPSCs can be obtained with min-
imally invasive procedures and avoid the key ethical contro-
versy surrounding ESCs regarding embryo use [7–9]. They
also minimize immunologic problems when autologous or
HLA-matched iPSC lines are used [10]. These characteristics
enable the study of MSC-related diseases, drug screening
using patient cells, and the transplantation of large quantities
of cells for cell therapy opening a new avenue for transla-
tional medicine.

However, several issues must first be answered before
iPSC-derived MSCs (iMSCs) fulfill this potential. For
example, the key signals and optimum protocols for effec-
tive differentiation and criteria for the evaluation of the
clinical quality and safety of iMSCs are still to be

Hindawi
Stem Cells International
Volume 2018, Article ID 9601623, 8 pages
https://doi.org/10.1155/2018/9601623

http://orcid.org/0000-0002-3930-8032
https://doi.org/10.1155/2018/9601623


determined. In this article, we describe recent research per-
taining to the differentiation methods of MSCs from iPSCs,
the application of iMSCs to disease modeling and drug
screening, animal experiments using iMSC-based cells for
preclinical study, and challenges that should be overcome
before clinical application.

2. Derivation of MSCs from iPSCs

The past ten years have seen a great rise in efforts to generate
MSCs from PSCs. Multiple protocols exist to derive cells with
the features that characterize MSCs. The original strategy to
generate MSCs from PSCs involved depriving the culture
medium of pluripotent signals, which resulted in spontane-
ous differentiation to MSCs that mechanically separated
from PSCs [11–13]. Although these cells exhibit MSC mor-
phology and express MSC surface markers, the differentia-
tion induction was inefficient. Later, researchers showed
that it is possible to obtain MSCs by using a medium supple-
mented with bFGF [14–16]. These cells are highly similar to
MSCs with regard to morphology and expression of markers.
However, they have diminished differentiation potential,
particularly toward adipogenic lineage [15].

The regulation of signaling that mimics embryonic devel-
opment is considered necessary to ensure MSCs derived from
PSCs exhibit predictable properties and functions [17].
Although the developmental origins of MSCs are not fully
understood, somatic lateral plate mesoderm is considered
to be the major source of MSCs (LPM in Figure 1(a)) because
it gives rise to the majority of the body’s adipose and skeletal
tissues [18, 19]. Based on better understanding of the critical
signals for mesoderm, several reports have shown the induc-
tion of mesoderm and then MSCs using known morphogens.
For example, Mahmood et al. inhibited TGFβ signaling with
the use of SB-431542 during PSC differentiation in embryoid
body [18]. Sánchez et al. used a similar strategy but this time
in cells that grew only in two dimensions (2D) [19]. These
protocols were demonstrated to be effective in differentiating
PSCs into MSCs, as the derived cells expressed mesenchymal
surface markers and possessed multipotency and immune
regulation activity.

Neural crest was identified as another developmental ori-
gin of MSCs [20, 21]. Simple and efficient methods to gener-
ate MSCs through neural crest cell lineage from iPSCs have
been established by several groups [22–28]. The activation
of canonical Wnt signaling and the prevention of TGFβ sig-
naling are common approaches used to obtain a highly
enriched induced neural crest cell (iNCC) population. To
establish an ideal method with respect to clinical application,
feeder-free and serum-free culture should be performed
using coating material and chemically defined medium
(CDM). Some reported protocols are suitable for these
demands [22, 25, 27]. For example, Menendez et al.
employed a two-step approach that first dissociated iPSCs
into single cells, then cultured them for two weeks in the
CDM to achieve feeder-free, serum-free condition, and
finally supplemented the culture with Wnt signaling activa-
tor and Activin/Nodal/TGFβ signaling inhibitor [25]. Mica
et al. cultured PSCs in MEF-conditioned hESC media, then

substituted the medium with knockout serum replacement-
(KSR-) based medium, and finally replaced KSR gradually
with increasing amounts of N2 medium. Next, BMP
signaling and Activin/Nodal/TGFβ signaling inhibitors were
included and then replaced with a Wnt signaling activator
[27]. Our group has developed a strong and efficient iMSC
generating method using CDM containing TGFβ and
GSK3β signaling inhibitors with minimal growth factors
[22]. This protocol generated iNCCs (70–80%) independent
of the human PSC generation method (viral-integrated or
plasmid-episomal). iNCCs can be expanded a long time
under conditions of bFGF and EGF supplementation and
TGFβ inhibition, and our protocol could generate a homoge-
neous, completely differentiated population of MSCs.
Moreover, frozen stocks of both iNCCs and iMSCs can be
made (Figure 1(b)) providing greater convenience for future
clinical use.

2.1. Characterization of iMSCs. iMSCs exhibit plastic adher-
ence, express MSC surface markers, and can differentiate into
osteoblasts, adipocytes, and chondroblasts. These properties
satisfy the minimal criteria of human MSCs proposed by
the International Society of Cellular Therapy [29, 30].
Genome-wide expression profiles of iMSCs were compared
to well-defined MSC types, such as adult bone marrow-
derived MSCs (BM-MSCs), and significant overlap of both
types in gene expressions has been shown [22, 31–34]. Mean-
while, iMSCs maintained gene expressions and DNAmethyl-
ation profiles in accordance with the initial donor, except for
tissue-specific and age-related DNA methylation profiles
[35]. The marker expression pattern in iMSCs was distinct
from iPSCs. Namely, the expression of CD-326, Tra-1-60,
SSEA-4, and E-cadherin were diminished [29]. These fea-
tures should be considered before the application of iMSCs
to animal experiments and preclinical trials.

When considering the main source for the derivation of
iPSCs, it should be noted that human dermal fibroblasts
(HDFs) exhibit phenotypic similarity to MSCs. For example,
the same surface phenotype (CD73+, CD90+, and CD105+

cell level), immunosuppressive ability [36–39], and even
osteo/chondro/adipo differentiation ability [40] between
HDFs and MSCs were reported. These properties may inter-
fere with cell identification during iMSC application. Highly
similar gene and microRNA expression patterns of HDFs
and MSCs were reported, suggesting overlapping phenotypic
and functional properties [41].

Because some clinical iPSC lines were derived from
HDFs, ways to separate HDFs from HDF-derived iMSCs
are necessary to apply these lines. However, at present,
there is no reliable marker for HDFs differentiated from
HDF-derived iMSCs, but there do exist a number of candi-
dates. TM4SF1 is a surface protein that is highly expressed
in various MSC sources but not in fibroblasts [42]. A
genome-wide oligonucleotide microarray analysis of HDFs
and MSCs might also be beneficial. Additionally, a number
of transmembrane protein, tumor, and metastasis-related
genes have been found to be upregulated 10-fold in MSCs
compared with HDFs, while HDFs show significantly
higher surface antibody CD10 levels. Culture conditions

2 Stem Cells International



that induce MSCs to differentiate into osteocytes, adipo-
cytes, and chondrocytes do not induce HDFs to differenti-
ate into any of these lineages [41]. Together, these
properties could be used to identify iMSCs.

2.2. iMSC-Based Disease Modeling and Drug Discovery. Clar-
ifying the pathological mechanisms underlying human dis-
eases is important for the discovery of novel therapeutic
strategies for genetic diseases. Because of limitations in
patient tissue and the lack of appropriate animal models,
research on these genetic disorders remains challenging. Cel-
lular disease models using patient-specific iPSCs provide new
understanding of these diseases. iMSCs differentiated from
patient iPSCs not only act as ideal tools for pathologic
research but also provide platforms for drug screening and
toxicity testing.

Deyle et al. [43] reported an iPSC model for osteogenesis
imperfecta (OI), a genetic bone disorder caused by a domi-
nant mutation in type 1 collagen genes. They generated
transplantable patient-specific iMSCs differentiated from OI
patient iPSCs in which the collagen mutation was removed.
These cells could act as bone-forming cells for the purpose
of treating defects in the skeletal tissue of OI patients.

Liu et al. modeled Fanconi anaemia (FA), a rare disease
caused by an impaired response to DNA damage, using
patient-derived iMSCs. FA-iMSCs showed impairment in
maintenance and proliferation, similar to MSCs from
Fancg-deficient mice [44].

Zhang et al. prepared iMSCs from patients with
Hutchinson-Gilford progeria syndrome (HGPS) to study
the pathology. HGPS is a segmental premature aging disease
that affects mesenchymal lineages and is caused by progerin,
a truncated and farnesylated form of Lamin A. HGFP-iMSCs
exhibit abnormalities including increased nuclear dysmor-
phology, DNA damage, and an accumulation of calponin-
staining inclusion bodies, which are all properties consistent
with fibroblasts isolated from HGPS patients. Compromised
viability of HGFP-iMSCs under stress was observed in vitro
and in vivo, especially to hypoxia. Reducing progerin levels
by shRNA restored the ability of HGPS-iMSCs to resist hyp-
oxia. Researchers have suggested that progerin toxicity
makes HGPS-iMSCs overly sensitive to their hypoxic micro-
environment, leading to exhaustion of the MSC pool caused
by replacing lost mesenchymal tissue [45]. Cicero et al. per-
formed a high-throughput screening of 2800 small molecules
that could inhibit the differentiation of HGPS-iMSCs
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Figure 1: Derivation of MSCs from iPSCs. (a) Inducing iMSCs from iPSCs by mimicking embryonic development. During embryonic
development, MSCs arise from two major sources: mesoderm and neural crest cells (left). Protocols for the induction include specific
signals and morphogens that drives the iPSCs to mesoderm/NCC formation and then generate iMSCs (right). LPM: lateral plate
mesoderm. (b) Protocols that induce iMSCs from iPSCs through iNCCs result in a homogeneous mesenchymal cell population without
contamination of other cellular phenotypes; therefore, when differentiation is complete, no remnants of undifferentiated cells are found.
Frozen stocks can be made to use cells of the same quality in order to evaluate reproducibility.
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towards osteogenic lineage by monitoring alkaline phospha-
tase activity (ALP). They identified seven compounds that
significantly decreased premature osteogenic differentiation,
four of which decreased progerin expression [46].

Fibrodysplasia ossificans progressiva (FOP) is a rare
genetic disease that is characterized by progressive hetero-
topic ossification (HO) in connective tissues. It is caused by
mutations in the ACVR1 gene, which encodes Activin-A
receptor type 1, an important protein in the bone morphoge-
netic protein (BMP) pathway. Our group [47, 48] generated
FOP patient-derived iPSC clones and gene-corrected (res-
cued) iPSC clones (resFOP-iPSC). iMSCs were induced from
both iPSC clones through neural crest cell lineage. FOP-
iMSCs exhibited augmented chondrogenic ability and
enhanced activity of the SMAD1/5/8 pathway compared to
resFOP-iMSCs, successfully recapitulating the disease phe-
notype. Using these cells, we screened TGFβ superfamily
ligands that could specifically activate BMP signaling
through FOP-ACVR1 by a luciferase reporter (BRE-Luc)
assay and found a new FOP mechanism. Activin-A, a TGFβ
signal transducer, evokes BMP signaling activation via FOP-
ACVR1. To develop an in vivo evaluation system, FOP- and
resFOP-iMSCs were transplanted together with Activin-A-
expressing C3H10T1/2 cells into the skeletal muscle of
immunodeficient mice. HO was developed at the trans-
planted site after six weeks, suggesting Activin-A induces
extraskeletal bone formation in FOP [49].

To reveal the molecular mechanisms of the enhanced
chondrogenesis evoked by Activin-A and to discover poten-
tial therapeutic targets, a high-throughput screening (HTS)
system was established using FOP-iMSCs. From the screen-
ing of nearly 7000 small-molecule compounds, the mTOR
signaling pathway was identified as important in the exces-
sive chondrogenesis seen in FOP-iMSCs. Rapamycin, a com-
monly used mTOR inhibitor and commercially available

drug, repressed HO in FOP-iMSC-transplanted mouse
extensively. According to a DNA microarray assay, ENPP2
(also known as autotaxin) was indicated to act upstream of
mTOR signaling, upregulating the chondrogenesis activity
of FOP-iMSCs in response to Activin-A [50].

The FOP study shows that iMSC-based hereditary dis-
ease models and drug discovery platforms can reliably repro-
duce disease phenotypes and offer tremendous advantage for
exploring drug candidates and critical disease mechanisms,
accelerating the development of novel therapies (Figure 2).

2.3. iMSC-Based Experimental Therapies and Challenges. As
the origin of iMSC derivation, iPSCs can be obtained from
any adult tissue source and used to generate an abundance
of iMSCs at low passage [51]. Furthermore, the abilities of
iMSCs to differentiate into multiple tissues, produce a broad
variety of cytokines and paracrine factors, regulate immune
response, secrete exosomes, and exhibit mitochondrial trans-
fer function suggest they could be potential cell sources for
therapeutic purposes.

A number of animal studies using iMSCs have shown
significant benefits on tissue regeneration and repair. iMSCs
promote periodontal regeneration and new mineralized
tissue formation when implanted into rat periodontal defect
models [29]. The transplantation of iMSC-induced osteo-
blast into the calvarial defects of mice was found to support
bone formation at the defect site [46]. iMSCs also exert stem
cell factor-dependent recovery of cigarette smoke-induced
apoptosis/proliferation imbalance in airway cells [52]. After
being implanted into an ischemic site in mouse hindlimb,
iMSCs significantly attenuated the physiological status to a
degree superior than adult BM-MSCs [53]. The repair ability
of iMSCs in myocardial infarction, cigarette smoke-induced
cardiac remodeling, and dysfunction mouse model has also
been observed [54, 55]. Similar to the ischemia in hindlimb,
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Figure 2: iMSC-based disease modeling and drug discovery of FOP. iMSCs generated from FOP patient-derived iPSC clones (FOP-iMSC)
and gene-corrected (rescued) iPSC clones (resFOP-iPSC) could be applied to in vitro disease modeling, drug screening, and in vivo drug
efficacy evaluation.
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the cardiac wound repairing and proangiogenic potency of
iMSCs were superior to those of BM-MSCs and umbilical
cord blood-derived MSCs [56]. The greater therapeutic
potential of iMSCs may be due to their superior survival
and engraftment (for more than 5 weeks) after transplanta-
tion [52].

In addition, iMSCs are safe and efficient as immune mod-
ulators in both inflammation and autoimmunity diseases,
presumably due to their ability to suppress abnormal
immune response [57–59]. An in vitro study indicated that
iMSCs remarkably impair the proliferation and cytolytic
function of NK cells. Again, this effect by iMSCs was stronger
than that of BM-MSCs, suggesting iMSCs could be a useful
therapeutic choice to inhibit allograft rejection [38]. After
transplantation into streptozotocin-diabetic mice, iMSCs
ameliorated diabetic polyneuropathy (DNP) [60].

Exosomes assembled from iMSCs exhibit therapeutic
potential in several animal disease models [56, 61]. Recent
studies report that tissue repairing ability of iMSC via mito-
chondrial transfer mechanism exhibit superior effect on the
mouse model of anthracycline-induced cardiomyopathy
and cigarette smoke-induced lung damage compared with
BM-MSCs [62, 63].

There are a large number of clinical trials using MSCs in
various diseases, including cardiovascular diseases, hepatic
diseases, neurological disorders, and autoimmune diseases
(http://ClinicalTrials.gov). However, before iMSCs can serve
as an alternative source of MSCs in the clinic, several obsta-
cles must be overcome [64]. Because they are derived from
iPSCs, iMSCs need to be carefully tested for alterations in
oncologic genes [65]. The classic method to induce iPSCs
involved the use of a retrovirus to overexpress c-Myc, a pro-
tooncogene that increases reprogramming efficiency by inhi-
biting the tumor repressor gene p53, which can increase the
probability of tumor formation. Safe and effective factors
along with nonviral gene delivery systems are expected to
enhance the safety profile of iMSCs for clinical application
[66–70]. Furthermore, the purity and quality of the iMSCs
must be considered. Sorting iMSCs by the positive expression
of MSC markers and the negative expression of pluripotency
markers and testing the potential of oncogenesis on animal
models should be performed before advancing iMSCs to
the clinic [71].

3. Conclusion and Future Perspectives

iMSCs are a potentially abundant source of MSCs for dis-
ease modeling, drug discovery, and regenerative medicine
[27]. To further advance iMSC-based therapeutic applica-
bility and minimize the risk of immunoreaction after
administration, it is necessary to optimize iPSC and iMSC
production protocols. Removing oncogenic or other unsta-
ble factors and employing xeno-free culture condition at
the reprogramming and differentiation induction step
are necessary. The combination of new approaches into
iMSC platforms, such as 3D organoid and gene editing
technologies, might render iMSCs more valuable for further
clinical application.
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