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Introduction

Traumatic brain injury (TBI) is one of the most serious forms 
of trauma‑induced injuries and is a leading cause of morbidity 
and mortality. Nearly, 80% of TBI are classified as mild 
with Glasgow Coma Scale (GCS) score of 13–15, 10% as 
moderate (GCS 8–12), and 10% as severe (GCS 3–7).[1] 
Patients with severe TBI often presents with extracranial 
injuries (23%–41%), which may result in poor outcome.[2‑5] 
Various theories (e.g., second hit hypothesis) have elucidated 
that concomitant injuries may increase both peripheral and 
central inflammatory responses and exacerbate structural and 
functional deficits associated with TBI.[6,7] In fact, low GCS is 
also linked to severity of extracranial injuries.[7] The effects of 
concomitant injuries are heterogeneous and have been shown 
to vary with injury site and severity in adult trauma patients.[8] 
Whereas the vast majority of patients with mild TBI make a 

complete and uneventful recovery, a small proportion might 
deteriorate due to the development of potentially lethal 
intracranial bleeding and/or brain swelling, diagnosis and 
management of which may be delayed by anesthesia and 
surgery for extracranial procedures. Further, secondary insults 
such as hypotension, hypoxemia, hypercarbia, hypocarbia, 
hyperglycemia, hypoglycaemia, and hyperthermia during 
resuscitation and perioperative period might exacerbate 
the primary brain injury. As a result, it becomes prudent 
to institute simultaneous neuroprotective and neurorescue 
measures for optimal neurological outcome.

The primary goal in case of polytrauma is to transfer the 
patient to the nearest emergency department (ED) as early 
as possible. If required, the patient should be transferred 
to multispecialty trauma center after initial resuscitation 
and stabilization in the ED. Subsequently, the priorities of 
management must be identified and executed in an orderly 
fashion. It is clear, therefore, that only urgent surgery should 
be undertaken at this time. Thus, certain important questions 
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need to be answered: (i) which surgery is urgent? (ii) which 
anesthetic techniques should be used? and (iii) for how long 
is the patient at risk? For patients with more serious head 
injuries, the problems are those of establishing priorities for a 
number of procedures which should seemingly all be carried 
out immediately but frequently, for practical reasons, have to 
be carried sequentially, in different departments or even in 
different hospitals. For such patients, what are the priorities? 
How should the patient be managed during and between 
the procedures? Availability of innumerable scoring systems 
for the assessment of the injured patient makes it imperative 
that the choice of the severity score accurately match the 
application. The commonly used scores in a polytrauma 
patient are abbreviated injury scale, injury severity score, 
and revised trauma score in addition to GCS. In this article, 
we have highlighted the management strategies of such issues 
based on recent advances and guidelines.

Resusci tat ion and Preoperat ive 
Preparation

The traditional approach to complete preanesthetic check‑up 
is clearly not feasible in a patient with massive trauma. A brief 
history outlined by the mnemonic SAMPLE (Signs and 
symptoms, Allergies, Medications, Past medical/surgical 
history, Last oral intake, Events related to injury) along with 
relevant clinical examination (airway, breathing, circulation, 
neurological examination, and extracranial injuries) may be 
feasible and should suffice the necessary medical information.[9] 
Signs and symptoms of intracranial hypertension (ICH) or 
impending herniation, such as altered level of consciousness, 
pupillary dysfunction, lateralizing signs, extremity weakness, 
or Cushing’s triad (hypertension, bradycardia, and irregular 
respirations) should alert the need for urgent interventions 
to control intracranial pressure (ICP). Of note, mild head 
injury or spinal injury is not associated with immediate 
life‑threatening consequence. On the contrary, a ruptured liver 
or spleen requires urgent abdominal exploration.

Based on the high probability of progressive cerebral edema, 
TBI patients with GCS ≤8 will require urgent endotracheal 
intubation.[10] Moreover, due to impaired neurological 
status and depressed airway reflexes, tracheal intubation is 
deemed necessary to prevent aspiration. All TBI patients 
requiring intubation should ideally undergo rapid sequence 
induction (RSI). In addition, all TBI patients should be 
suspected to have coexisting cervical spine injury (CSI) 
unless excluded. The reported incidence of cervical spine 
trauma in head‑injured patients has generally ranged from 
4% to 8%.[11] Extreme caution should be exercised to prevent 
excessive neck manipulation during intubation. Established 

techniques such as manual in‑line stabilization alone or in 
combination with video‑laryngoscopes are often used. Flexible 
fibreoptic laryngoscopy does not seem to be feasible during 
emergency situations; however, it can be a useful resort in 
expert hands. Again, tracheal intubation should be smooth 
and gentle to prevent hemodynamic responses and an increase 
in ICP. Nasotracheal intubation is contraindicated in cases 
with basilar skull fractures.[12] Hypoxia and hypotension 
are independent predictors of morbidity and mortality and 
should be corrected promptly.[13] Blood loss from the ruptured 
viscus and diuresis resulting from mannitol administered 
to decrease ICP may contribute to hypovolemia. In such 
situation, hypertonic saline (HTS) is recommended to reduce 
ICP. The pertinent advantages of HTS include hemodynamic 
stability, attenuation of inflammatory cascade, and lesser/
no rebound cerebral edema as compared with mannitol.[14] 
Furthermore, multisystem injuries without hemorrhage results 
in the release of vasodilating mediators causing relative 
hypovolemia and hypotension.[15] The role of anesthesiologist 
along with team of treating trauma surgeon and neurosurgeon is 
to take a concerted approach to management while continuing 
resuscitation.

The optimal time for surgical intervention is unclear and must 
be individualized according to the status of ICP, presence of 
intracranial mass, stability/instability of neurological state, 
and severity of associated injuries. The decision to move the 
patient urgently for surgery may be for systemic injury, head 
injury, or both. As part of emergency treatment protocol, 
ultrasound‑based extended FAST (E‑FAST) examination 
can rapidly rule out pneumothorax, hemothorax, peritoneal, 
and pelvic bleeding/hematoma without any risk of radiation.[16] 
Computed tomographic (CT) scan of the head and abdomen 
is useful in diagnosis; it helps in deciding about the lesion 
to be dealt first. Radiological examination of neck should 
also be performed as patients with substantial head injury 
might have associated CSI. Laboratory values especially 
hematocrit, blood group and Rh typing, coagulation profile, 
blood glucose, and arterial blood gas (ABG) analysis should 
be done on urgent basis. Thromboelastography (TEG) or 
rotational thromboelastometry (ROTEM) as a point of care 
test may be appropriate; the standard laboratory tests in the 
setting of trauma are of poor sensitivity and associated with 
a lag period. By the time investigation reports are available, 
concerned anesthesiologist should ensure adequate ventilation, 
optimal perfusion and systemic blood pressure (BP), normal 
blood sugar, electrolytes, and acid‑base parameters. There are 
instances when enough time to obtain a CT scan due to severity 
of extracranial injury (splenic rupture/liver laceration) is not 
available. Under such scenario, rapid bedside, noninvasive 
estimation of ICP with the use of ultrasonography [e.g., optic 
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nerve sheath diameter, transcranial Doppler (TCD)] and 
near‑infrared spectroscopy (NIRS) gives a fair idea of the 
coexisting raised ICP.

N e u r oa n e s t h e t i c  P r in c ip l e s  i n 
Extracranial Surgeries

Anesthetic drugs
Intravenous (IV) and inhalational agents exert diverse effects 
on cerebral blood flow (CBF), cerebral blood volume (CBV), 
and CMRO2. The IV agents including thiopental, propofol, 
and etomidate reduce CMRO2, which results in cerebral 
vasoconstriction and a decrease in CBF, CBV, and ICP. 
However, thiopental and propofol may result in significant 
hypotension and a reduction in cerebral perfusion pressure 
(CPP).[17,18] Etomidate has limited effect on mean arterial 
pressure (MAP). Besides, it decreases CMR and hence 
ICP, with a net increase in CPP.[19] While there are no data 
examining ketamine as an induction agent in TBI, it has been 
shown to decrease ICP in painful interventions in the intensive 
care unit (ICU).[20,21] All the volatile anesthetic agents 
such as halothane, isoflurane, sevoflurane, and desflurane 
decrease CMRO2 but at the same time also cause cerebral 
vasodilatation, thereby increasing CBF, CBV, and ICP. 
Halothane dilates cerebral vessels the most and thus is almost 
obsolete in neurosurgical practice. Other agents may be used 
with a minimum alveolar concentration of <1.[22] Furthermore, 
nitrous oxide (N2O) increases CBF, CMRO2, and ICP and 
should be ideally avoided in severe TBI.[23] N2O should not be 
used prior to dural opening if there is suspicion of pre‑existing 
intracranial air. There are no data demonstrating improved 
TBI outcomes based on the type of anesthetic agents; a 
balanced anesthetic technique is, thus, acceptable.

Either succinylcholine or rocuronium can be used to facilitate 
RSI. Although succinylcholine may increase ICP secondary 
to increased carbon dioxide production and afferent muscle 
activity, this effect is transient and may be offset by short‑term 
hyperventilation. It should be borne in mind that the inability 
to secure a definitive airway poses far more risk than the 
transient increase in ICP.[24] Rocuronium (1.2 mg/kg) can also 
achieve rapid intubating conditions similar to succinylcholine, 
but it has longer duration of action. Although neuromuscular 
blocking agents decrease oxygen consumption and may 
transiently decrease ICP as they eliminate thoracic skeletal 
tone and thereby increasing venous drainage; their use during 
the postoperative period is generally not recommended.[25] 
Narcotics such as fentanyl or sufentanil can be used for 
supplemental analgesia but they may cause hypotension, which 
may result in compensatory vasodilatation and increase in 
ICP. Remifentanil, an ultra‑short acting narcotic, should be 

used cautiously due to the frequent occurrence of profound 
reduction in BP and heart rate (HR). Dexmedetomidine, 
an alpha‑2‑adrenergic agonist, has favorable properties of 
conscious sedation, sympatholysis, analgesia, and lack of 
respiratory depression. Moreover, it has been shown to 
decrease ICP secondary to decrease in CBF and CMR, in 
addition to decreasing anesthetic and opioid requirements.[26,27]

Oxygenation and ventilation
Hypoxemia (PaO2 <60 mmHg) linearly increases CBF, 
CBV, and ICP, and thus should be avoided. Addition 
of positive end‑expiratory pressure (PEEP) improves 
oxygenation by recruiting collapsed alveoli[28]; however, 
high PEEP (>15 cmH2O) therapy has been shown to 
increase ICP and compromise CPP in adults.[29] The tenet of 
perioperative ventilation in head injury patient is to maintain 
normocapnia. Both hypercapnia and hypocapnia have 
been shown to worsen perioperative outcome.[30] Although 
hypocapnia decreases CBF by causing vasoconstriction, 
concomitant reduction in CMRO2 is not ensured and thus 
predisposes to cerebral ischemia. Hyperventilation with 
PaCO2 not below 25 mmHg should be used judiciously 
during intraoperative period only for short‑term control of 
ICP in patients at risk of developing herniation.

CPP and hemodynamic targets
Intraoperative hypotension (IH) during craniotomy for TBI 
is not common. Sharma et al. suggested the incidence of IH 
in adult patients during craniotomy to be as high as 65%. 
Independent risk factors for IH were multiple CT lesions, 
subdural hematoma, maximum CT lesion thickness, and 
anesthesia duration. IH was not affected by the choice of 
anesthetic agent.[31] There is widespread ambiguity regarding 
optimal CPP in TBI patients. Initially, the recommendation 
was to keep CPP >70 mmHg with vasopressors. However, 
a subsequent study suggested that outcomes were better with 
a lower CPP, possibly because of a reduced incidence of acute 
respiratory distress syndrome (ARDS) secondary to reduced 
vasopressor usage.[32] Vasopressors are commonly used to 
augment CPP in the setting of TBI, although data comparing 
these drugs are limited. Norepinephrine has more predictable 
and consistent effect on augmentation of CPP as compared 
with dopamine.[33] Moreover, norepinephrine increases the 
level of brain tissue oxygen and also significantly reduces 
the regional oxygen extraction fraction.[34] One single‑center 
retrospective study of patients with severe TBI who received 
phenylephrine, norepinephrine, or dopamine reported that 
phenylephrine resulted in the maximum increase in MAP and 
CPP from baseline.[35] The 4th edition of the Brain Trauma 
Foundation (BTF) guidelines recommends maintenance of 
SBP at ≥100 mmHg for patients 50‑ to 69‑year old and 
at ≥110 mmHg for patients 15‑ to 49‑ or >70‑year old to 
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decrease mortality and improve outcomes (Level III). CPP 
should be maintained between 60 and 70 mmHg.[36]

Fluid and blood component therapy
Concerns regarding intraoperative fluid management depend 
on the type of fluid (crystalloids versus colloids), osmolarity 
of the fluid, and restrictive versus liberal approach fluid 
therapy. Vigorous fluid resuscitation is often necessary but 
may aggravate cerebral edema. Thus, fluid therapy should 
be targeted to maintain euvolemic and isotonic or mild 
hypertonic state and should be ideally goal‑directed based on 
dynamic indicators of fluid responsiveness. Hyperglycemia, 
which worsens the consequences of cerebral ischemia, and 
hypo‑osmolality, which can increase the brain edema, should 
be avoided. Thus, hypo‑osmolar glucose containing solutions 
are avoided. Iso‑osmolar crystalloids such as 0.9% normal 
saline and Plasmalyte A are recommended as the fluids 
of choice. Lactated Ringers’ (LR) solution is relatively 
hypotonic to plasma (calculated osmolarity of 275 mosm/L 
but a measured osmolality of 254 mosm/L due to incomplete 
dissociation). As such, large volume of LR solution should 
be avoided so as to prevent increase in cerebral edema. 
In large volumes’ resuscitation, a combination of isotonic 
crystalloids, colloids, and blood transfusion may be the best 
choice. Although anemia is consistently associated with 
worse outcomes among patients with TBI, transfusion of 
red blood cells to correct anemia is also associated with 
worse outcomes. Currently, there is insufficient evidence 
regarding the optimal hemoglobin (Hb) threshold for 
transfusion after TBI. Current clinical practice guidelines 
from trauma and critical care specialties recommend a target 
Hb of 7–9 g/dL.[37] The British Committee for Standards 
in Haematology similarly recommends a target threshold of 
7–9 g/dL for patients with TBI, but for patients with evidence 
of cerebral ischemia, the Hb target increases to >9 g/dL.[38] 
Severe TBI has been associated with increased activation 
of various inflammatory mediators, which, in turn, leads to 
consumption of existing coagulation factors and activation of 
anticoagulation pathways. As such, early monitoring of the 
coagulation profile is warranted. In the setting of polytrauma, 
this resulting TBI coagulopathy can contribute to ongoing 
acute hemorrhage both within the brain and at other sites, 
thereby increasing blood product requirements necessary for 
adequate resuscitation. Depending on the coagulopathy, fresh 
frozen plasma, platelet‑rich concentrates, cryoprecipitate, or 
isolated coagulation factors can be transfused. Recombinant 
factor VIIa (rFVIIa) has been used off‑label as an adjunct 
in the reversal of warfarin therapy and management of 
hemorrhage after trauma. However, some studies have failed 
to show a clinical benefit of rFVIIa in early management of 
TBI.[39] In addition, it has been shown to negatively impact 
recovery and functional status at discharge in the severely 

injured patient with polytrauma.[40] Intra‑abdominal packing to 
control hemorrhage may result in a rise in ICP and should be 
avoided in these patients. Tranexamic acid is an antifibrinolytic 
drug and has been shown to decrease mortality in adult trauma 
patients (The Clinical Randomization of Antifibrinolytics in 
Significant Hemorrhage [CRASH‑2] trial) and currently is 
being investigated in patients with TBI (CRASH 3 trial).[41] 
Erythropoietin (EPO) is generally effective in treating anemia 
and is relatively more effective in treating end‑stage renal 
disease or hematological diseases. In addition, it has 
neurocytoprotective, anti‑inflammatory, and anti‑apoptotic 
actions.[42] A recent post hoc analysis of the EPO‑TBI trial 
revealed that EPO administration was associated with a 
potential differential improvement in 6‑month mortality in TBI 
patients with more severe extracranial injury.[43] In a recent 
meta‑analysis (6 RCTs, 1,041 patients), the authors observed 
that EPO significantly reduced the occurrence of mortality 
but did not significantly reduce poor functional outcome. 
There were no significant differences in the occurrence of 
complications, such as deep vein thrombosis, between the 
treatment groups.[42]

Glycemic control
Hyperglycemia worsens neurological outcome after 
TBI.[44,45] Age ≥65 years, severe head injury (GCS <9), 
preoperative hyperglycemia, and acute subdural hematoma are 
independent predictors of intraoperative hyperglycemia.[46,47] 
Causes of hyperglycemia after TBI include an increase 
in gluconeogenesis and glycogenolysis from catecholamine 
response, cortisol release, and glucose intolerance. As such, 
dextrose containing fluids should be avoided except in cases 
of established hypoglycaemia. On the contrary, aggressive 
treatment of hyperglycemia should also be done with caution 
due to the potential for an increased risk of hypoglycemia 
and its potentially devastating neurological consequences if 
unrecognized and untreated.[48] Given the potential impact of 
both hyperglycemia and hypoglycemia, intermittent monitoring 
of blood glucose concentrations during intraoperative care is 
suggested.

Management of ICH
Updated BTF guidelines state that ICP >22 mmHg should 
not be left untreated. The management of increased ICP 
includes a stepwise approach that comprises of preventing 
excessive neck flexion or rotation, maintaining slight head 
elevation, ensuring appropriate sedation and analgesia, 
avoiding hypercapnia, allowing intermittent CSF drainage 
through external ventricular drain (EVD), administering 
osmotherapy with mannitol or hypertonic saline, and instituting 
mild hyperventilation for short‑term control of ICP. Refractory 
ICH might require decompressive craniectomy (DC), 
therapeutic hypothermia, or barbiturate coma. Latest trials 
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have shown that though DC decreases ICP and the length 
of stay in the ICU but is associated with more unfavorable 
outcomes on extended Glasgow Outcome Scale (GOS‑E) at 
6 months.[49,50] During transportation of patients to and from 
the OR, it is important to individualize decision to travel with 
EVD open versus closed to CSF drainage. If traveling with 
EVD clamp, ensure clamping at both proximal port on EVD 
and distal port on CSF collecting system.

Positioning
A slight head up (30°) position is advocated if it does not 
interfere with the surgical procedure and is hemodynamically 
tolerated by the patient. However, elevated head position may 
compromise the surgical management of intra‑abdominal 
injuries. Thus, the optimal head position varies from patient 
to patient, and even from time to time in an individual. Care 
should be taken to avoid hyperflexion, hyperextension, extreme 
lateral flexion, and rotation of the head to prevent obstruction 
of cerebral lymphatic and venous outflow. Impairment of 
cerebral venous outflow can cause intraoperative cerebral 
edema, increased ICP, ischemia, and cerebral infarction.[51] 
Other complications related to positioning includes pressure 
sores and injuries to peripheral nerves and major nerve plexus. 
Proper eye‑padding is important to avoid exposure keratitis. 
All the bony prominences should be properly padded to 
prevent pressure sores.

Temperature management
Induced hypothermia causes reduction in CMRO2, 
CBF, and ICP. However, therapeutic advantage of 
hypothermia is offset by complications, such as hypotension/
hypertension, bradycardia, arrhythmias, hyperglycemia, 
sepsis, coagulopathy, and rebound increase in ICP during 
and after rewarming.[52,53] Early (within 2.5 h) and 
short‑term (48‑h postinjury) prophylactic hypothermia is 
not recommended to improve outcomes in patients with 
diffuse head injury.[36] Importantly, hyperthermia should 
be avoided because it causes increase in cerebral metabolic 
demand, lipid peroxidation, inflammation, excitotoxicity, and 
may lower seizure thresholds.[54] Thus, the current practice 
is to maintain normothermia.

Perioperative steroids
A number of studies in adults including the large multicenter 
MRC CRASH (Medical research council; corticosteroid 
randomization after significant head injury) trial have shown 
no benefit with the use of steroids in TBI.[55] Complications 
such as adrenal suppression, hyperglycemia, increased risk of 
infection, and gastrointestinal bleeding attributed to steroid 
administration have been shown to worsen outcome. The 
4th BTF guidelines recommend against the use of steroids 
for improving outcome or reducing ICP.

Seizure prophylaxis
Post‑traumatic seizures (PTS) are a major cause of secondary 
brain injury following TBI and are associated with higher injury 
severity and worse outcomes.[56] PTS affect patients through 
multiple mechanisms: by increasing or prolonging cerebral 
hypoxia, increasing release of excitotoxic neurotransmitters, 
increasing CMRO2 and ICP, and by causing fluctuations 
in systemic BP.[57,58] Recent data suggest that seizures occur 
in up to 20% of patients with TBI. These seizures are 
usually nonconvulsive in nature and cannot be detected 
clinically, making continuous electroencephalography (cEEG) 
recordings a vital tool in diagnosis and management.[59] 
Prophylactic administration of phenytoin has been shown to 
reduce the incidence of early but not late PTS after 7 days 
of injury.[60,61]

Antibiotic prophylaxis
Penetrating TBI might cause local wound infection, meningitis, 
ventriculitis, or cerebral abscess formation. The risk of systemic 
infection is much higher in severe extracerebral injuries and 
is associated with higher morbidity and mortality.[62] Broad 
spectrum antibiotic prophylaxis is universally recommended to 
be started as early as possible in all TBI cases with extracranial 
injuries and continued for at least 6 weeks.[63]

Thromboprophylaxis
Patients with TBI are at significant risk of experiencing 
thromboembolic events.[64] The risk is further multiplied in 
concomitant CSI, lower limb long bone, and pelvic bone 
fractures and patients on mechanical ventilation. Options 
for prevention include mechanical (graduated compression 
stockings or intermittent pneumatic compression), 
pharmacological (low‑dose or low‑molecular‑weight heparin) 
prophylaxis, or a combination of both. Pharmacological 
thromboprophylaxis is usually initiated 48–72 h after surgical 
intervention and in the absence of other contraindications.[65]

Multimodal Monitoring

Routine monitoring should include non‑invasive BP, 
ECG, percentage of oxygen saturation (SpO2), end‑tidal 
carbon dioxide (EtCO2), temperature, and urine output 
measurements. Direct arterial monitoring is used to achieve 
beat‑to‑beat control of BP so that extensive swings can 
be treated quickly. When monitoring an arterial line, one 
must zero the transducer at the level of the right atrium or 
phlebostatic axis. However, when calculating CPP during 
the management of TBI and in sitting position surgeries, the 
arterial transducer should be positioned at the level of 
the external auditory meatus (corresponding to the level 
of Circle of Willis).[66] Central venous pressure (CVP) 
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monitoring allows more rational approach to fluid 
replacement, particularly when osmotic diuretics are used. 
ABG should be performed to confirm levels of acid‑base, 
carbon dioxide, hemoglobin or hematocrit, and electrolytes. 
Special emphasis should be placed on PaCO2 monitoring as 
a means of assessing the level of hyperventilation. The pupils 
should be monitored for anisocoria, if the face is accessible. 
ICP monitoring should be done in comatose patients due to 
severe head injury (GCS <9) with abnormal CT scan or in 
patients with normal CT scan with two of the features, such 
as age >40 years, motor posturing, or SBP <90 mmHg.[36] 
The placement of intraventricular catheter allows accurate 
measurement of ICP as well as therapeutic drainage of CSF 
if required. Routine ICP monitoring in mild to moderate 
head injury is not recommended; however, case‑by‑case 
assessment may be warranted. Other neurological monitoring 
techniques such as TCD, jugular venous oximetry (SjvO2), 
brain tissue oxygen tension (PbtO2) monitoring, NIRS, 
and cerebral microdialysis are being used in TBI patients, 
but their use in polytrauma patients is yet to be established. 
SjvO2 monitoring allows detection of episodes of desaturation 
associated with raised ICP. The normal range of SjvO2 is 
60%–70% and episodes of SjvO2 <50% in severe TBI 
are commonly due to ICH and systemic causes, such as 
hypoxia, hypotension, and pyrexia.[67] SjvO2 monitoring 
also aids in therapeutic hyperventilation. Brain PbtO2 
monitoring is useful in providing a focal measurement 
of cerebral oxygenation and critical perfusion thresholds 
and can warn against impending ischemia associated with 
hyperventilation. The normal brain PbtO2 usually ranges 
from 20 to 35 mmHg and the ischemic threshold ranges 
from 10 to 15 mmHg.[68] Literature also supports the use 
of continuous EEG monitoring in TBI patients due to high 
incidence (33%) of seizure activity resulting in prolonged 
elevation in ICP and signs of in vivo metabolic stress.[69] 
Other neuromonitoring tools, such as somatosensory‑evoked 
potentials and motor‑evoked potentials have a complementary 
role, surveying the integrity of the neural tracts as an indicator 
of prognosis or illness progression in both acute brain and 
spinal injuries.

Considerations for Specific Surgeries

Abdominal surgeries
In polytrauma patients, there can be generalized increase in 
multiple compartmental pressures. Elevated intra‑abdominal 
pressure (IAP) not only increases ICP secondary to the 
increase in intrathoracic pressure and CVP but also 
decreases cardiac, renal, hepatic, and gastrointestinal 
functions.[70] In a prospective study by Citerio et al., patients 
with moderate to severe head injury showed an increase in 

ICP through placement of an external water bag (15 L) 
on the patient’s abdomen.[71] Typically, intra‑abdominal 
hypertension (IAH) is defined as IAP >12 mmHg. 
Abdominal compartment syndrome (ACS) is defined as 
IAP >20 mmHg [with or without an abdominal perfusion 
pressure <60 mmHg] associated new onset organ 
dysfunction/failure.[72] The World Society for the Abdominal 
Compartment Syndrome (WSACS) has developed the 
stepwise management of IAH and ACS. In refractory ACS, 
decompressive laparotomy (DL) is recommended in both 
TBI and non‑TBI patients.[72] In a retrospective analysis of 
102 patients with severe TBI, both DC and DL were done 
in 24 patients with a mean IAP of 28 mmHg. Mean ICP 
significantly decreased from 28 to 19 mmHg.[70] Similarly, 
Miglietta et al. reported two cases of refractory ICH with 
raised IAP who were treated successfully by abdominal 
compartment decompression.[73] However, to perform DL 
in IAH without ACS to reduce ICP in TBI patients is still 
a matter of debate. Laparoscopy, though minimally invasive, 
can increase ICP secondary to abdominal insufflation and 
IAH and thus should be used cautiously, in patients who 
present with baseline elevated ICP.[74] The use of gasless 
laparoscopy has not been shown to increase ICP in animal 
model and can be the other option to be considered in the near 
future.[75] Head down tilt which is a frequent requirement in 
many exploratory laparotomies should also be minimized to 
prevent aggravation of raised ICP.

Orthopedic surgeries
There is no concrete evidence to support either early or delayed 
fixation of long bony fractures in patients with head injuries.[76] 
Clinical factors that determines the appropriateness of early 
long‑bone stabilization include severity of the brain injury (GCS, 
CT scan, ICP), severity of pulmonary dysfunction (PaO2/
FIO2, lung compliance, positive end‑expiratory pressure), and 
evidence of hypotension. Compound fractures can be debrided 
and cleaned during resuscitation and stabilization. Fixation 
of the long‑bone fracture can be delayed until physiological 
parameters are stabilized. Preferably, long‑bone fixation 
should be undertaken after 48–72 h. Skeletal traction and 
Thomas splint improves anatomical alignment and functional 
results. These can be used in the interim period until fracture 
fixation is undertaken. Induced hypotension is sometimes 
requested by orthopedic surgeons during spine stabilization 
procedure in patients with intact spinal cord function or fixed 
cord injury. Many of these patients suffer concomitant head 
injury, and the cerebral circulation may behave abnormally. 
Certainly, induced hypotension is contraindicated in patients 
with known head injury. But even in patients who have only 
suffered a brief concussion, the use of this technique remains 
hazardous because the autoregulatory capacity may still be 
impaired.
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Maxillofacial surgery
The incidence of head injuries associated with maxillofacial 
trauma has been reported to be as high as 67% and the most 
frequent maxillofacial injury is the fractured mandible.[77] 
Upper facial dislocation and zygomatic–orbital–maxillary 
complex fracture significantly more often co‑exists with skull, 
dura mater or cranial nerve injuries, and zygomatico‑orbital 
fracture with the injuries of the brain.[78] The number of 
facial fractures has also been shown to be inversely related 
to GCS.[77] Early fixation of facial fractures is associated 
with better esthetic results. However, principles similar to 
those with long bone fractures apply in this situation and 
maxillofacial surgery can be delayed till optimization of ICP. 
A conservative approach is reasonable in simple fractures, and 
displaced fractures can be managed with miniplate and screw 
fixation.[79] In severe injury, the airway remains the priority; 
however, low GCS and longer duration of surgery have been 
associated with poor overall outcome.[80]

Role of Regional Anesthesia

With certain limitations of GA, a regional technique may seem 
preferable in a patient with a recent head injury. However, 
these techniques have their own disadvantages.

Epidural anesthesia
Standard epidural injections of 5 or 10 mL of anesthetic 
solutions (or 0.9% saline) produced a substantial rise in ICP in 
two patients who had suffered a head injury more than a week 
previously, explicable as the effect of compression of the dural 
sac shifting CSF back into the intracranial compartment.[81] 
It was concluded that epidural anesthesia should be used 
with extreme caution in patients with decreased intracranial 
compliance. The dramatic effect of epidural injection on ICP 
in the presence of an intracranial mass lesion has also been 
demonstrated in an animal model.[82] Tentorial herniation 
can also occur if dura is punctured. If epidural anesthesia 
is used, injections should be of small volume and made very 
slowly. A patient receiving anti‑thrombotic or thrombolytic 
therapy should have cautious administration of neuraxial 
anesthesia. A drug‑free period is often required prior to and 
after administration of neuraxial blockade and/or catheter 
placement. This time period has been recently updated (Fourth 
Edition) by the American Society of Regional Anesthesia and 
Pain Medicine (ASRA), in conjunction with the European 
Society of Anaesthesiology (ESA).[83]

Spinal anesthesia
Despite the standard teaching that spinal anesthesia is 
contraindicated following head injury because of the risk of 
precipitating tentorial herniation, there are several circumstances 
where lumbar puncture has been widely used in patients with 

reduced intracranial compliance without apparent adverse 
effect: to diagnose subarachnoid hemorrhage and intracranial 
infections,[84] and in the management of both benign ICH and 
refractory increase in ICP in severely head injured children.[85] 
A patient who has suffered a mild head injury without clinical 
manifestations including normal CT scan is unlikely to be at 
risk from a spinal anesthetic, but this conclusion cannot be made 
in the absence of a CT scan. However, there are no studies in 
literature on this aspect of anesthesia in head injured patients.

IV Regional Anesthesia and tourniquets
There are several case reports on the effect of ICP in 
head‑injured patients of deflating arterial tourniquets applied 
to the lower limbs to improve operating conditions.[86‑88] In 
each case, tourniquet release was followed by a rise in ICP 
which, together with the normal and expected fall in BP which 
occurs at this time, resulted in a substantial fall in CPP. As 
ICP was being monitored in each case, immediate measures 
could be taken to correct the situation and none of the patients 
apparently suffered any sequel. Tourniquet release has been 
shown to significantly increase end tidal carbon dioxide tension, 
an indirect monitor of plasma carbon dioxide tension.[89] The 
effect of releasing an arm tourniquet is, of course, likely to be 
smaller. Another potential danger from the use of tourniquets 
is the possibility of sudden severe bleeding when the tourniquet 
is released and this, in conjunction with the rise in ICP, can 
produce significant effect on the neurological outcome.

Peripheral nerve blocks
In contrast to the potential problems with epidural, spinal, or 
IV regional anesthesia techniques, local nerve blocks seem to 
be a good choice for providing anesthesia in patients with head 
injury. An additional problem which is common to all regional 
techniques, however, is the question of sedation. Patients with 
a recent injury may be uncooperative, but their response to 
sedation may be unpredictable, and if respiratory depression 
or airway obstruction occurs, the result could be hazardous.

Peripheral nerve blocks (PNBs) such as digital or ankle 
blocks or blocks of a major plexus such as brachial, sciatic, 
or femoral may be acceptable as long as conscious sedation 
is maintained. Care must be taken to avoid a local anesthetic 
induced seizure. Ultrasound‑guided nerve blocks improve 
precision and accuracy. PNBs are being increasingly used 
for management of postoperative pain. They are administered 
either as a single injection or continuous infusion via a 
perineural catheter.[90]

Emergence and Recovery

Patients with severe head injury usually need continuing 
postoperative care in the neurointensive care unit, and their 
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trachea should not be extubated at the end of the procedure. 
In patients with mild to moderate head injury, it is not 
unreasonable to allow the patient wake up at the end of the 
procedure. Care must be taken to prevent excessive coughing 
and bucking that may cause transient rise in ICP with increased 
risk of venous bleeding. Continuation of care in ICU is directed 
toward enhancing the healing process and preventing or 
treating any complication. Appropriate analgesia and sedation 
should be ensured to prevent deleterious complications of 
pain. Optimization of BP, glucose levels, temperature, 
electrolytes and acid‑base status, correction of coagulation 
abnormalities, and optimal nutritional support should be the 
utmost concerns. A multidisciplinary rehabilitation approach 
should be employed to promote early recovery and facilitate a 
smooth transition to positive long‑term outcome.

Conclusion

TBI with concomitant extracranial injuries presents a 
myriad of challenges. Management of such patients requires 
thorough understanding of neuroanesthetic considerations. 
Selection of anesthetic drugs that minimally interferes with 
cerebral dynamics, maintenance of hemodynamics and CPP, 
optimal utilization of multimodal monitoring, and aggressive 
rehabilitation approach are the key factors for improving 
overall patient outcome.
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