
Saturation analysis of ChIP-seq data for reproducible
identification of binding peaks

Peter Hansen,1,2 Jochen Hecht,1,2,3 Daniel M. Ibrahim,1,3 Alexander Krannich,4

Matthias Truss,5 and Peter N. Robinson1,2,3,6
1Institute for Medical and Human Genetics, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; 2Berlin Brandenburg Center
for Regenerative Therapies (BCRT), Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; 3Max Planck Institute for Molecular
Genetics, 14195 Berlin, Germany; 4Department of Biostatistics, Clinical Research Unit, Berlin Institute of Health, Charité–
Universitätsmedizin Berlin, 13353 Berlin, Germany; 5Labor für Pädiatrische Molekularbiologie, Charité–Universitätsmedizin Berlin,
10117, Berlin, Germany; 6Institute for Bioinformatics, Department of Mathematics and Computer Science, Freie Universität Berlin,
14195 Berlin, Germany

Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) is a powerful technology to identify

the genome-wide locations of transcription factors and other DNA binding proteins. Computational ChIP-seq peak calling

infers the location of protein–DNA interactions based on various measures of enrichment of sequence reads. In this work,

we introduce an algorithm, Q, that uses an assessment of the quadratic enrichment of reads to center candidate peaks fol-

lowed by statistical analysis of saturation of candidate peaks by 5′ ends of reads. We show that our method not only is sub-

stantially faster than several competing methods but also demonstrates statistically significant advantages with respect

to reproducibility of results and in its ability to identify peaks with reproducible binding site motifs. We show that Q

has superior performance in the delineation of double RNAPII and H3K4me3 peaks surrounding transcription start sites

related to a better ability to resolve individual peaks. The method is implemented in C++ and is freely available under an

open source license.

[Supplemental material is available for this article.]

Chromatin immunoprecipitation (ChIP) followed by massively
parallel sequencing (ChIP-seq) is designed to detect genome-
wide protein–DNA interaction. ChIP-seq can identify both sharp
peaks typically associated with sequence-specific transcription fac-
tors, as well as broad histone-modification signals (Park 2009; Peng
and Zhao 2011), and has become a central technology for the in-
vestigation of gene regulation. The ChIP-seq procedure involves
formaldehyde-mediated crosslinking of chromatin followed by
fragmentation of protein–DNA complexes into short fragments,
which are then subjected to immunoprecipitation using an anti-
body directed against a protein of interest (e.g., a transcription fac-
tor or a modified histone), thereby enriching genomic segments
that are bound by the protein of interest prior to sequencing
(Laajala et al. 2009).

A crucial challenge in the computational analysis of ChIP-seq
data pertains to finding peaks in ChIP-seq data that correspond to
protein–DNA binding sites. Numerous peak calling algorithms
have been presented,most of which address the same basic analyt-
ical tasks with methods to estimate the mean DNA fragment
length from the data, to shift or extend the reads toward the center
of the binding peak, to identify candidate peak regions, and to
evaluate the statistical significance of the read depth of the candi-
date peaks. The sequence reads represent only the 5′ ends of the co-
precipitated DNA fragments, which are generally 100- to 500-bp
in length. Around true binding sites of the target protein, this
results in a characteristic bimodal distribution of reads on the for-
ward and reverse strands, which depends on the distribution of

fragment lengths in the library and can be exploited for signal
detection and evaluation. Therefore, an initial step in many algo-
rithms is the estimation of the actual fragment-length distribu-
tion. Following fragment-length estimation, in order to better
represent the original DNA fragment rather than just the 5′ se-
quence read, most peak calling algorithms either shift the read
in the 3′ direction toward the peak center or computationally ex-
tend tags to the estimated length of the original fragments.
Regions for hypothesis testing are chosen with a sliding window,
or alternatively, some programs generate a continuous coverage
and specify a minimum height criterion in order to report peaks.
Finally, a variety of statistical tests are applied to identify peaks
as regions with significantly increased read density. Most com-
monly, read distribution is modeled by a Poisson or negative bino-
mial distribution (Pepke et al. 2009).

Numerous peak calling algorithms have been systematically
compared in many studies (Laajala et al. 2009; Pepke et al. 2009;
Wilbanks and Facciotti 2010; Kim et al. 2011; Rye et al. 2011).
However, only a small number of data sets were used in these stud-
ies. Nevertheless, one recurrent conclusion is that the performance
of different peak callers depends on the particular data set exam-
ined (Laajala et al. 2009; Wilbanks and Facciotti 2010), as well as
onmanual “fine-tuning” of the parameters required by the various
algorithms (Wilbanks and Facciotti 2010; Szalkowski and Schmid
2011). In this work, we present an approach to ChIP-seq peak
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calling that is based on saturation analysis of positions within can-
didate peaks. Our method estimates the fragment length from the
data and does not require fine-tuning of parameters for typical
runs. If a control data set is used, the statistical model we use
does not require down-sampling of the control reads. We present
efficient and accurate algorithms for each of the major steps
of computational ChIP-seq analysis and show, using ENCODE
data for 38 experiments, that they outperform previousmethodol-
ogies based on irreproducible discovery rate (IDR) analysis (Li et al.
2011; Landt et al. 2012), motif identification, resolution, and run-
ning time.

Results

In this work, we present a ChIP-seq peak caller called Q, which ex-
ploits a quadratic measure of coverage to identify candidates fol-
lowed by a statistical saturation analysis to call significant peaks.
The Q workflow can be divided into four main phases: (1) estima-
tion of fragment length (Fig. 1), (2) preprocessing of reads (trans-
formation to “qfrags”) (Fig. 2A), (3) analysis of qfrag depth to
identify summits at the center of candidate peaks (Fig. 2B), and
(4) statistical hypothesis testing of candidate peaks with respect
to saturation (Fig. 2C).

Estimation of fragment length by Hamming distance

The estimated fragment length is an essential parameter for nearly
all published peak callers. A commonly used method involves the
calculation of cross-correlation between reads mapped to the for-
ward and reverse strands, thereby taking advantage of the bimodal
peak distribution characteristic of ChIP-seq peaks. The implemen-
tation of this procedure in SPP (Kharchenko et al. 2008) calculates
the shift at which the highest Pearson correlation between the for-
ward and reverse strand is noted. If this procedure is performed af-
ter removal of duplicates, the comparison is based on values of zero
(no read starting at some position) and one (at least one read). We
reasoned that a comparable operation could be performed using
bit operations to calculate the Hamming distance. The position
with the smallest distance corresponds to the position with the
maximum Pearson correlation (Fig. 1; Supplemental Fig. S1).
Therefore, an equivalent result is obtained, but the computation
can be performed three to four times faster on average, based on

an evaluation of the 38 data sets examined in this work
(Supplemental Tables S1, S2).

qfrags: identification of candidate ChIP-seq peaks

Our method replaces the read shifting or extension step of most
other ChIP-seq peak callers with an approach that is intended to
better capture signal from true peaks and to center the called
peak at the middle of bimodal accumulations of reads. We rea-
soned that if a read is located within a true peak, then it is likely
that there will be multiple reads on the opposite strand located
within a window centered at one mean fragment length away
from the read. To capture this intuition, we define qmin = ℓ− x
and qmax = ℓ+ x, where ℓ denotes the estimated mean fragment
length, and x, which reflects deviations from the mean fragment
length, determines the size of the window.

We define a qfrag to be the segment of genomic positions be-
tween any pair of 5′ end positions on the forward and reverse
strand with a distance of at least qmin and at most qmax (Fig. 2A).
The qfrag depth at any one position is the total number of qfrags
that cover the position. The center of the local maximum of qfrag
depth is then defined to be a predicted binding site or “summit”
(Fig. 2B). The region comprising the qmax nucleotides upstream
of and downstream from the summit then represents a candidate
peak that will be statistically tested as described below (Fig. 2C).

We note that a critical point of ChIP-seq peak calling algo-
rithms is the identification and centering of candidate peaks for
statistical testing. Intuitively, ourmethodwill tend to yield a “qua-
dratic” signal around true peaks but only a linear one elsewhere in
the genome. Consider the situation where there are n reads on the
forward strand andn reads on the reverse strand that are located at a
distance of ℓ+ x nucleotides to one another. Our method would
thendefinen2qfrags,whereasmethods that involve readextension
or shifting would identify 2n reads. Approximately speaking, our
method would characterize a “quadratic” number of qfrags sur-
rounding a true peak while identifying only a linear number of
qfrags for nonpeak regions (Fig. 2A). The qfrag method therefore
leads to a different depth distribution than that of the raw reads,
the shifted reads, or the extended reads (Supplemental Fig. S2).

Statistical analysis of peak saturation

To model the signal for a single true binding site, wemade the fol-
lowing two assumptions: First, each fragment end is sequenced

with equal probability from the forward
or reverse strand. Second, there is no pref-
erence for fragment positions to which
the target protein is bound; i.e., given a
fragment of certain length, the target
protein is bound to each fragment posi-
tion with equal probability. The first as-
sumption implies that the 5′ ends of
fragments should accumulate before a
true binding site on the forward strand
and on the reverse strand behind it. The
second assumption implies that the
5′ ends of fragments should be evenly
distributed in a radius of qmin nucleotides
around true binding sites, and at a dis-
tance of more than qmax nucleotides
from the true binding site, the sig-
nal should resemble that of the back-
ground level. We validated our model

A B

Figure 1. Fragment-length estimation. (A) Cross-correlation plot produced by SPP (Kharchenko et al.
2008) for GM12878-BATF-REP1. (B) Hamming distance plot produced by Q for the same data set.
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empirically and found a distribution largely consistent with our
model (Supplemental Fig. S3).

With this distribution in mind, we reasoned that a satura-
tion score might be a good measurement for enrichment. By “sat-
uration” we mean that many individual positions surrounding
the true peak center tend to be occupied by the 5′ end of one or
more mapped reads that belong to qfrags. Our procedure for
identifying qfrags assigns candidate peaks with high saturation
better scores than peaks with the same number of overall reads,
which are distributed to a lower number of positions. The qfrag
methodology thus intends to identify well-saturated candidate
peaks.

We therefore defined saturation as the number of positions
within the tested peak region that are covered by at least one
5′ end position of a qfrag (Fig. 2C). We implemented a statistical
test that is formulated as a binomial test for the number of saturat-
ed positions and derived the binomial parameter p (probability for
any given position to be covered) based on the classical occupancy
problem (Feller 1968).

Although it is possible to call ChIP-
seq peaks based only on the expected
number of reads, assuming a uniform
background distribution (Robertson et
al. 2007), a number of factors such as
GC content, read mappability, DNA re-
peats, copy number variations, and local
chromatin structure can influence read
depth (Feng et al. 2012). For this reason,
ChIP-seq experiments are often accom-
panied by a control experiment in which
generic (nonspecific) IgG is used in place
of the specific antibody. A comparison of
the treatment and control experiments
can then be performed to reduce back-
ground biases in order to be able to
reliably identify read-enriched regions
obtained from ChIP-seq. In general, a
similar number of reads are derived for
the control sample as for the treatment
sample, although the exact number
may be higher or lower. We therefore de-
veloped an implementation of this test
for ChIP-seq experiments performed
with a control experiment. In this case,
we test the difference of saturation be-
tween ChIP and the control experiment
for statistical significance. Our method
does not require down-sampling of reads
from the control experiment (Supple-
mental Fig. S4).

Reproducibility analysis

To evaluate our method, we developed a
test framework based on the IDR proce-
dure (Li et al. 2011; Landt et al. 2012),
which provides a measure of the repro-
ducibility of the ChIP-seq experiments
and is described in detail in the Supple-
mental Methods. We compared the per-
formance of Q to that of the three
widely used peak callers MACS2 (Zhang

et al. 2008; Feng et al. 2012), SPP (Kharchenko et al. 2008), and
PeakSeq (Rozowsky et al. 2009) using 38 published ChIP-seq data
sets from the ENCODE Project Consortium (Supplemental Table
S1). We measured reproducibility of the methods using pseudo-
replicates generated from these data sets.

Figure 3 shows an example of our analysis for RNA polymer-
ase II (RNAPII). Q identifies a larger overall number of overlaps be-
tween the top 100,000 peaks of each pseudoreplicate (60,450
compared with 45,022–46,976 for the other three peak callers)
with a higher correlation coefficient between pseudoreplicates
(Fig. 3A–D).We then applied the change of correspondencemeth-
od (Supplemental Methods) to the data, which estimates the rate
of change of reproducibility for the top n peaks as n ranges from
zero to the total number of overlapping peaks (which was 60,450
for Q). High reproducibility is reflected in a late transition (i.e., at
large n) to a segment with a positive slope (Li et al. 2011). In this
example, the transition occurs at around 15,000 peaks for SPP,
20,000 for MACS2 and PeakSeq, and over 35,000 for Q (Fig. 3E).
We also assessed the overall reproducibility of the replicates using

A

B

C

Figure 2. Qworkflow. (A) A preprocessing step identifies “qfrags” as pairs of reads on opposite strands
located within ℓ+ x nucleotides from one another. In regions of true signal, this has the effect of approx-
imately quadratically amplifying the signal, whence the name of the algorithm. The qfrags are shown as
black lines connecting the 5′ ends of compatible reads. For instance, the red (forward strand) read at the
left edge of the gray box can form a qfrag with any blue (reverse strand) read that is located in the light
gray portion of the box (≥qmin and ≤qmax nucleotides). qfrags are symbolized by black lines between 5′
ends of red and blue reads. (B) The qfrag depth is calculated for each position along the genome.
Candidate regions for hypothesis testing are identified as local qfrag heightmaxima (summits, or predict-
ed binding sites). (C) Candidate regions are defined as the regions comprising the qmax nucleotides up-
stream of and downstream from the predicted binding site, and statistical testing is performed on each
candidate peak based on the saturation analysis in a window defined by 2 · qmax.
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the IDR. For all numbers of selected peaks, Q identifies fewer irre-
producible peaks (Fig. 3F; Supplemental Methods).

We performed the same analysis for all 38 data sets. Themean
number of peaks identified by the four peak callers for any specific
experiment ranged from 5991 to 70,663 (Supplemental Table S3).
In 31 cases, Q displayed the highest number of overlapping peaks
among the top 100,000 peaks (Fig. 4A–C) and, in 33 cases, the
highest Pearson correlation coefficient (Fig. 3A–D; Supplemental
Table S4). To highlight the differences between the four peak call-
ers, we visualized the results by subtracting the mean number of
overlapped peaks for each experiment from the count of peaks
called by each individual peak caller. Overall, the mean normal-
ized peak overlaps for Q are significantly larger than for MACS2,
SPP, and PeakSeq (Fig. 4A–C).

For some data sets, we observed a proportion of overlapping
peaks with very weak signal scores for both replicates that are clas-
sified as reproducible, given a threshold of IDR≤ 0.01. This obser-
vation contradicts the basic concept of the IDR procedure whereby
strong signals aremore reproducible thanweak signals.We system-
atically investigated this phenomenon. In our analysis, Q demon-
strated the best overall compatibility with the IDR procedure
(Supplemental Methods; Supplemental Fig. S5; Supplemental
Table S5).

We then repeated the analysis shown in Figure 4A–C for data
sets that exhibited good overall compatibility with the IDR proce-

dure. For these 21 data sets, we restricted the analysis on reproduc-
ible peaks with IDR≤ 0.01. As with the previous analysis, we found
that for Q the number of mean-normalized, reproducible peak
overlaps is significantly higher than for the other methods (Fig.
4D–F; Supplemental Table S6).

Motif content analysis

One of the major applications of ChIP-seq analysis is to character-
ize transcription factor binding sites (TFBSs) for ab initio motif
discovery or motif enrichment analysis (Zhang et al. 2008;
Machanick and Bailey 2011; Newkirk et al. 2011; Xing et al.
2012; Bardet et al. 2013). We reasoned that true binding sites are
more likely to contain a sequence-binding motif of the corre-
sponding transcription factor than other sequences.We called ini-
tial peak sets using Q,MACS2, SPP, and PeakSeq and took the four-
way intersection of the top 50,000 peaks of each caller as a refer-
ence peak set. We conducted de novo motif analysis on these
peak sets using the motif finder DREME (Bailey 2011) and defined
the 10 most significant DREMEmotifs as the reference motifs. We
then asked what proportion of the 50,000 peaks of the individual
peak callers contained at least one of the reference motifs. This ap-
proach relies on two assumptions. First, the four-way intersection
of the original peak calls is enriched in true peaks, and second, the
overall proportion of peaks that contain at least one of the

A B C

D E F

Figure 3. Reproducibility analysis for RNA polymerase II (RNAPII). The ENCODE data set HeLa-S3-POL2-REP1 is shown as an example. The alignment data
were split randomly into two pseudoreplicates, and peaks were called usingQ,MACS2, SPP, and PeakSeq. (A–D) The scatterplots show the negative decadic
logarithm of P-values of Q (A), MACS2 (B), and PeakSeq (D), and signal values of SPP (C ) for overlapping signals of the two pseudo replicates. Compared
with the overlaps for MACS2 (46,976), SPP (45,759), and PeakSeq (45,022), Q shows a considerably larger overlap (60,450). In addition, Q shows the
highest Pearson correlation coefficient (0.97) compared with three other methods. (E) Change of correspondence curve (Ψ′ plot) (Li et al. 2011). The
peak set derived from Q remains consistent for about 15,000 peaks more than those of the other peak callers. (F ) The plot shows the IDR at different num-
bers of selected peaks. For all peak counts, Q displays a considerably smaller proportion of irreproducible signals.
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reference motifs is a reflection of the accuracy of the individual
peak callers.

We extracted genomic sequences of one estimated fragment
length around the center of the peaks called by each caller, and
masked repetitive regions. All high-scoring occurrences of the ref-
erence motifs (P≤ 0.0001) were determined using FIMO (Grant
et al. 2011). Subsequently, the number of peaks that contain at
least one high-scoring motif occurrence was determined for the
top 50,000 peaks of the individual peak callers.

We applied the motif content analysis to the 38 data sets. In
33 of 38 cases, the top 50,000 peaks of Q include the highest num-
ber of peaks with at least one reference motif (Supplemental Table
S7). On average, the top 50,000 peaks of Q include 4.1% (2063)
more peaks containing at least one reference motif compared
with MACS2, 2.6% (1323) compared with SPP, and 5.7% (2840)
compared with PeakSeq. The mean difference was statistically sig-
nificant (Fig. 5).

Q identifies TSS flanking double summits for RNAPII

and H3K4me3

Wenext focused on the four RNAPII data sets, for which ourmeth-
od had shown the greatest advantage (Figs. 3–5). Pausing RNAPII is
characterized by two separate ChIP-seq peaks located directly up-
stream of and downstream from the transcription start site (TSS)
(Stadelmayer et al. 2014). Visual inspection revealed that Q often
identified TSS flanking double summits (TFDSs) at promoters
where the other peak callers identified a single summit. We there-
fore tested the ability of Q to identify this biologically relevant sig-

nature of pausing RNAPII. Q did indeed detect TFDSs at 39.5%–

48.4%of all RNAPII boundpromoters,while othermethods,main-
ly reporting single summits, identified a substantially smaller num-
ber of TFDSs (10.4%–23.5%) (Supplemental Table S8). Plotting of
the distribution of TFDSs identified by Q showed two clearly de-
fined peaks with one sharp peak 50–100 nt downstream from
and a second, less pronounced peak 150–250 nt upstream of the
TSS separated by a median distance of 375–426 nt. Plotting of the
results of the other peak callers failed to produce similar results
(Fig. 6A; Supplemental Figs. S8, S9).

Nucleosome-depleted regions (NDRs) at TSS are often flanked
by histones marked by H3K4me3 (Cairns 2009; Arya et al. 2010).
We therefore applied the same analysis to the H3K4me3 data
sets for the same two cell types as for RNAPII (Supplemental
Table S1). Q identified TFDSs at 59.2%–70.6% of H3K4me3 bound
promoters, compared with only 12.5%–36.5% for the other peak
callers (Supplemental Table S9). The distribution of H3K4me3
again showed two clearly defined peaks upstream of and down-
stream from the TSS (Fig. 6B; Supplemental Fig. S10). For Q, the up-
stream peak at 250–300 nt is slightly sharper than the downstream
peak at 300–400 nt. Peaks are separated by at least 400 nt and by a
median distance between summits from 710–778 nt (Supplemen-
tal Fig. S11).

The overlap of promoters with TFDS ranges for biological rep-
licates from 78.1%–90.6%, which suggests that TFDSs are repro-
ducibly identified by Q (Supplemental Table S10). Promoters
that have a TFDS for RNAPII overlap by 77.1%–87.0% with pro-
moters that have also a TFDS for H3K4me3. For 63.5%–68.7% of
those overlapping promoters, we observed a pattern in which

A

D E F

B C

Figure 4. Reproducibility analysis for the 38 data sets. (A) Overlapping peak counts for the four peak callers (Q, black; MACS2, red; SPP, green; PeakSeq,
blue). The numbers around the radar plots indicate the individual samples (Supplemental Table S1). (B) Mean normalized numbers for the data shown in A;
the rowmean (data from all four peak callers) was subtracted from each value. (C ) Distribution of themean normalized numbers for the overlapping peaks.
P-values relative to Q were calculated using two-sample, two-sided Wilcoxon tests. (D–F ) Panels are analogous to panels A through C except that the anal-
ysis is restricted to peaks with IDR≤ 0.01. Data sets for which incompatibility with the IDR procedure was observed were excluded from the analysis
(Supplemental Methods, Supplemental Figs. S5–S7; Supplemental Table S5).
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the region between the TFDS of RNAPII is completely contained
in the region between the TFDS for H3K4me3, which is signifi-
cantly more than expected by chance. For our simulation study
(Methods) (Supplemental Table S11), we observed this pattern in
51.3%–58.7% of promoters (empirical P-value <10−4). The results
of these downstream analyses of TFDSs identified by Q are in per-
fect agreement with the architecture of paused open promoters
that are characterized by a large NDR flanked by H3K4me3 modi-
fied histones with interspersed RNAPII (Cairns 2009).

Runtime analysis

Q is implemented in C++ using functionality of SeqAn, a library of
efficient data types and algorithms for sequence analysis (Doring
et al. 2008). As mentioned above, the fragment length estimation
implemented in Q was at least threefold faster than the method as
implemented by SPP (Supplemental Table S2). We also compared
the runtime of all four algorithms for all steps following fragment
length estimation by examining the average runtime across all 38
data sets. Q displayed a threefold to 19-fold improvement in run-
time (Supplemental Table S12).

Discussion

Although ChIP-seq is being used in an ever-increasing range of
genomics experiments, the computational analysis of the data is
not trivial. The called peak regions form the basis of downstream
analysis of transcription factor binding motifs, correlation with
gene expression, transcriptional regulation, histone modifica-
tions, and the correlation of binding profiles of transcription fac-
tors with their biological effects (Pepke et al. 2009; Ibrahim et al.
2013). The accuracy and reproducibility of peak calling are thus
key issues in the computational analysis of ChIP-seq data and
have a major influence on downstream biological analysis.

In this work, we compared Q against three of the most highly
used general purpose peak callers—MACS2 (Feng et al. 2012),
PeakSeq (Rozowsky et al. 2009), and SPP (Kharchenko et al. 2008)
—because these programs have been extensively tested in the
ENCODE Project Consortium (The ENCODE Project Consortium
2012). We demonstrated that Q shows advantages over previous
methodswith respect to reproducibility of the called peaks, consis-
tency of motifs inferred from peak sequences, and runtime.

The Q algorithm leads to a depth distribution distinct from
that of the other peak callers (Supplemental Fig. S2); this in turn

can have a substantial effect on down-
stream biological analysis. For example,
we analyzed in detail the distribution
of RNAPII and H3K4me3 TFDSs in HCT-
116 and HeLa-S3 cells. We found sub-
stantially more RNAPII TFDSs using Q,
which show an overlap of 77.1%–87.0%
with the H3K4me3 TFDSs. Thus, Q
demonstrates a superior resolution that
consistently identifies TFDSs in pro-
moters. This pattern has previously
been associated with RNAPII stalling
and nucleosome depletion. Q opens up
the possibility of investigating this data
with higher reproducibility and higher
resolution.

Our method is based on an algo-
rithm that shifts the focus from an anal-
ysis of peak height on the basis of a

A B C

Figure 5. Motif content analysis for 38 ENCODE data sets. We counted the number of peaks among the top 50,000 called peaks that contained at least
one occurrence of the corresponding transcription factor bindingmotifs. (A) Radar plot of the raw peak counts (Supplemental Table S7). Q called themost
peaks containing at least one referencemotif in 33 of the 38 experiments. The colors of the lines in the radar plot are the same as those shown in the legend
of Figure 4. (B) Radar plot of the mean-normalized peak counts. (C) P-values relative to Q were calculated using two-sample, two-sided, Wilcoxon tests
comparing mean-normalized peak counts.

A B

Figure 6. Distribution of TSS flanking double summits (TFDSs). Each TFDS consists of two summits
directly upstream of and downstream from the TSS. The TFDSs of Q for HCT-116 RNAPII (A) and HCT-
116 H3K4me3 (B) were integrated over all non-overlapping promoters (TSS ± 1500 nt).
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Poisson or negative binomial distribution to the identification and
assessment of peaks that are highly saturated with respect to the
start positions of mapped reads. The concentration on saturation
also allows us to perform an estimation of the fragment length us-
ing fast Boolean operations, resulting in a runtime that is over
three times faster than previous methods that use Pearson correla-
tion. Furthermore, the runtime for peak calling with Q was 3.5 to
18.5 times faster than MACS2, PeakSeq, and SPP. We have addi-
tionally shown that our statistical analysis does not require
down-sampling of reads from the control experiment, which is
commonly used in other tools to enable testing of candidate peaks
for enrichment in the test data set. Q is intended to be used with-
out any parameter tuning, although if desired the estimated frag-
ment length can be set as an argument. Therefore, Q is easy to
use and fast. Q is available under a BSD2 license together with a de-
tailed tutorial at https://github.com/charite/Q.

Methods

Mapping and ChIP-seq

Our procedure starts with aligned reads from a ChIP-seq ex-
periment performed with a specific antibody and optionally
with a control experiment in which the specific antibody is re-
placed by generic immunoglobulins. The reads are aligned against
the forward or reverse strand of a target sequence with l positions.
BAM files were downloaded from ENCODE, and duplicate reads
were removed by rmdup from the SAMtools package (Li et al.
2009).

Fragment-length estimation

The Hamming distance dH(x,y) between the bit strings x = x1x2…xn
and y = y1y2…yn is defined as the number of positions in which the
strings differ; i.e., xi≠ yi. The Hamming distance between two
strings can be efficiently calculated in C/C++ using the bitwise
XOR operator and summing the number of ones in the result.

H(d) =
∑
c[C

dH [nf
c (x+ d),nr

c(x)].

The value of δ is varied from one to 1000, and the shift corre-
sponding to the minimum value of H(δ) is taken as the estimated
fragment length ℓ.

ℓ = argmindH(d).

Summit detection

We define a hit h to refer to the 5′ end of each mapped read that
is assigned to a specific position (pos) and strand of the target se-
quence with l positions, i.e., h = (pos, strand). The outcome of a
ChIP-seq experiment is modeled as a set of hits:

T = {h = (pos, strand)|pos [ {1, . . . , l} ^ strand [ {f , r}}.
If a control experiment (C) is included in the analysis, the hits

for C are defined analogously. Each set of hits is subdivided into
hits on the forward and reverse strand (Tf and Tr for treatment;
Cf and Cr for the control data set). Due to the experimental design
of ChIP-seq experiments, we expect that the number of hits on
each strand is approximately equal; i.e., |Tf | ≈ |Tr | and
|Cf | ≈ |Cr |. According to our null model, the hits of T and C are
evenly distributed across the positions 1,…,l of the target se-
quence, and the hits for the two strands are independently
distributed.

In order to form qfrags, we first estimate the mean fragment
length ℓ as described above. We define qmin = ℓ− x and
qmax = ℓ+ x. We have chosen x = 50 nt for the experiments de-
scribed here. A qfrag is then defined as an ordered pair of hits (hi,
hj), such that hi is on the forward strand, hj is on the reverse strand,
and the distance between the two hits is at least qmin but not more
than qmax nucleotides, qmin≤ hj.pos− hi.pos≤ qmax.

Once the qfrags have been identified, our method searches
for local maxima of the qfrag depth profile that exceeds a given
threshold and is greater than at all other positions within a dis-
tance of qmax nucleotides (Fig. 2B). Each local maximum at posi-
tion i represents a candidate summit; the region i ± qmax, the
candidate peak that is subjected to statistical evaluation (Fig.
2C), as described in the following section.

Saturation score

For each candidate peak centered at position i (i.e., a qfrag depth
profile local maximum at position i), we consider the nucleotide
positions i− qmax,…,i + qmax. For didactic purposes, we will first
describe the saturation score for ChIP-seq experiments that are per-
formed without a control and then describe the full algorithm.

Saturation score: without control experiment

Wedefine the randomvariableQt on the sample spaceΩ = {0,…,2 ·
qmax}, where each possible outcome corresponds to the number of
positions that are covered by the 5′ end of at least one qfrag within
a window of length 2 · qmax centered at position i.

Note that a qfrag is constructed for a given hit h at position
i of the forward strand for each reverse strand hit at positions
i + qmin,…,i + qmax. Position i is covered if there is at least one
such qfrag. Given that there are |Tr | reverse strand hits and
that the target region has a length of l, we expect |Tr |/l hits at
any given position of the target sequence. Because of linearity
of expectation, we can estimate the number of reverse strand
hits at positions i + qmin,…,i + qmax as

lt = (qmax − qmin) · |Tr |
l

.

The subscript t stands for treatment. We can now calculate
the probability for a given hit on the forward strand to be part of
a qfrag using the Poisson distribution Pois(k,λt) in order to calculate
the probability of finding at least one reverse strandhit at positions
i + qmin,…,i + qmax (which is the same as saying that the forward
strand hit at position i forms part of a qfrag):

P(hi is part of qfrag|hi.strand = f ) = 1− Pois(0, lt ).
Since we expect to find |Tf |/l hits on the forward strand at po-

sition i, the expected rate of qfrag starting positions at any given
position i is

|Tf |
l

· (1− Pois(0, lt )).

For hits on the reverse strand, the rate is approximately equal,
because we expect the number of hits on each strand is nearly the
same. If we do not distinguish between strands, we calculate the
expected rate rt of qfrag start and end positions as

rt = 2 · |Tf |
l

· (1− Pois(0, lt )).

Our method models the saturation of positions in the frame-
work of the occupancy problem (Feller 1968). That is, if we placem
balls randomly into n bins, how many bins remain empty?
The probability that one particular ball lands in a certain bin
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is 1/n. Then the probability that the ball does not land in the bin is
(1− 1/n), and the probability that the bin is missed by allm balls is

P(bin remains empty) = 1− 1
n

( )m

� e−m/n.

In our model, we can thus estimate the probability that a giv-
en position i is not covered by the start or end position of a qfrag as
e−rt . Then the probability that a given position is covered by at least
one qfrag start or end position is

pt = 1− e−rt .

In the null model, we assume that each of the 2 · qmax posi-
tions can be represented as an independent and identically distrib-
uted Bernoulli trial. Therefore, Qt has the following binomial
distribution:

Qt � Bin(n = 2 · qmax, p = pt ).
The probability that exactly k positions in awindow of length

2 · qmax are covered by at least one qfrag start or endposition is then

P(Qt = k) = 2 · qmax

k

( )
· pkt · (1− pt )2·qmax−k.

Similarly, the probability that at least k positions in a window
of length 2 · qmax are covered by at least one qfrag start or end po-
sition is

P(k ≤ Qt ≤ qmax) =
∑2·qmax

i=k

2 · qmax

i

( )
· pit · (1− pt )2·qmax−i.

WetakeP(k≤Qt≤ qmax) as thenominalprobabilityof therebe-
ing a ChIP-seq peak surrounding the local maximum at position i.

Saturation score: with control experiment

Wedefine the randomvariableQc on the sample spaceΩ = {0,…,2 ·
qmax}, which is analogous to Qt. Then we define a third random
variable Qd =Qt−Qc, which describes the difference between the
treatment and control samples. Qd can take on values in the sam-
ple spaceΩ = {−2 · qmax,…,0,…,2 · qmax}. Thus, if more positions are
covered by at least one qfrag start or end position in the control set
than in the treatment set,Qd < 0, and if more positions are covered
in the treatment set than in the control set,Qd > 0. The distribution
of Qc is completely analogous to that of Qt:

lc = (qmax − qmin) · |Cr |
l

,

rc = 2 · |Cr |
l

· (1− Pois(0,lc)),
pc = 1− e−rc .

According our null model, we note that Qt and Qc are inde-
pendent according to the null model. Calculating the distribution
of Qd then involves the analysis of the convolution of two inde-
pendent binomial distributions. To gain intuition, imagine we
draw two random numbers, one from Qt and one from Qc. What
is the probability to observe a difference of d? Let us assume for a
moment that d≥ 0. There are 2 · qmax− d + 1 different ways to ob-
serve a difference of d. For instance, there can be zero saturated
positions in the control experiments (Qc = 0) and d saturated posi-
tions in the treatment experiments (Qt = d), or one saturated
position in the control experiments (Qc = 1) and d + 1 saturated po-
sitions in the treatment experiments (Qt = d + 1), and so on up to a
maximum of 2 · qmax− d saturated positions in the control experi-
ments (Qc = 2 · qmax− d) and 2 · qmax such positions in the treat-
ment experiments (Qt = 2 · qmax). To calculate the probability of

observing Qd = d, we have to sum up the 2 · qmax− d + 1 products
for each possible combination.

P(Qd = d) =
∑2·qmax−d

i=0

P(Qt = i+ d) · P(Qc = i).

In general, however, if Qc >Qt, there will be terms where i + d
< 0 and terms where i + d > 2 · qmax. Furthermore, there are terms
where i becomes larger than 2 · qmax. Therefore, we use the preced-
ing equation for d≥ 0 and the following equation for d < 0:

P(Qd = d) =
∑2·qmax−|d|

i=0

P(Qt = i) · P(Qc = i+ |d|).

It is useful to allow for negative differences, which may
be observed if the sequencing depth for the control sample is
much higher than that for the treatment sample. This definition
therefore allows us to use control sample data without necessar-
ily having to down-sample the reads to a level comparable to
that of the test samples (Supplemental Fig. S4). Finally, the proba-
bility that a candidate region represents a ChIP-seq peakwith a dif-
ference in saturated positions of Qd = d between treatment and
control is

P(d ≤ i ≤ 2 · qmax) =
∑2·qmax

i=d

P(Qd = i).

Multiple testing correction

All regions covered by at least one qfrag are tested. P-values are cor-
rected for multiple testing using the Benjamini–Hochberg proce-
dure (Benjamini and Hochberg 1995).

Data preparation

We evaluated the performance of our method based on the analy-
sis of 38 ChIP-seq experiments of the ENCODE Project Consor-
tium. These experiments correspond to 19 biological replicates,
seven cell types, and 17 target proteins (Supplemental Table S1).
Data sets were downloaded from UCSC (Rosenbloom et al. 2013)
in BAM format. Unmapped reads, duplicates, and reads mapping
to chromosomes other than Chromosomes 1–22, X and Y were
removed.

Peak calling

We compared our method to the peak callers MACS2 (version
2.0.10.20120913), SPP (version 1.11), and PeakSeq (version 1.1).
We determined an average fragment length ℓ and a window half
size whs using the cross-correlation analysis of SPP. To ensure a
standardized comparison, we used ℓ as input for all peak callers;
whs was also used as an input parameter for SPP. For the experi-
ments described here, we performed down-sampling for the treat-
ment or control data sets to an equal number of mapped reads as
for the treatment data sets. We performed low stringency analyses
for all peak callers by setting the thresholds appropriately. Peak
lists were sorted by significance and truncated at 100,000 for repro-
ducibility analysis and at 50,000 for motif content analysis. The
parameters used for peak calling are shown in the Supplemental
Methods.

Reproducibility analysis

The IDR procedure is intended to assess the reproducibility of
peaks called in ChIP-seq experiments (Li et al. 2011). We
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performed IDR analysis as detailed in SupplementalMethods. Two
pseudoreplicates (Li et al. 2011; Landt et al. 2012) were created for
each data set by dividing the treatment and control data randomly
into two halves. For each of the four peak callers, we set up a work-
flow for IDR analysis using the recommended parameters. For
Q, MACS2, and PeakSeq, the peaks were sorted by P-value and
for SPP by signal value. The top 100,000 peaks were used as input
for the IDR analysis and for the calculation of the counts of over-
lapping peaks.

Motif content analysis

For the peak callers Q, MACS2, SPP, and PeakSeq peaks were called
using the prepared data sets (Supplemental Table S1) and parame-
ters as described above. Peak lists were sorted as for reproducibility
analysis. Summits were extended upstream and downstream by
one estimated fragment length ℓ.

To get the reference peak set, the top 50,000 peaks were iter-
atively and pairwise intersected using intersectBed of BEDTools
(Quinlan and Hall 2010), requiring an overlap of at least 50%. At
first, the top 50,000 peaks for Q and MACS2 were intersected,
the resulting peak list was then intersected with the top 50,000
peaks of SPP, and the resulting peak list was finally intersected
with the top 50,000 peaks of PeakSeq. In this way, two summits
in a combined peak are separated by a distance of at most 3 · ℓ,
and there is no peak broader than 5 · ℓ.

The genomic sequences of reference peaks were cut out, and
repeats were masked by replacing lowercase letters with Ns.
These sequences were used as input for DREME (Bailey 2011) to
derive the top 10 most significant motifs. For the summits of the
top 50,000 peaks, the genomic sequences ℓ/2 upstream and down-
stream were extracted. These sequences were scanned for occur-
rences of the 10 reference motifs using FIMO (Grant et al. 2011)
with a P-value cutoff of 0.0001. For each of the initial top 50,000
peaks of the different peak callers, the number of peaks that con-
tain at least one motif occurrence was determined.

TSS flanking double summits

We analyzed the H3K4me3 data sets (Supplemental Table 1) in the
same way as we did for the reproducibility analysis of other data
sets. We took the overlap of the top 100,000 peaks as input for
the TFDS analysis. We used the transcript annotation from NCBI
(build 37.2; NCBI Homo sapiens annotation release 104).
Promoters were defined as TSS ± 1500 nt. The total of 29,692 pro-
moters were filtered for 19,722 non-overlapping promoters.

In order to assess whether the observed number of cases in
which for a given promoter the TFDS for RNAPII is completely con-
tained between the TFDS for H3K4me3 occurs by chance, we gen-
erated data simulations as follows: For each promoter that had
been assigned a TFDS for both RNAPII and H3K4me3, we obtained
the distances of the upstream and downstream summit for
H3K4me3 and for RNAPII. We shuffled the observed intervals for
the H3K4me3 TFDSs among these promoters and then examined
the number that show the pattern where the RNAPII TFDS is
completely contained in the H3K4me3 TFDS. In 10,000 simula-
tions, we did not observe even a single case in which the number
of promoters showing this pattern was as high as in the observed
data (empirical P-value <10−4) (Supplemental Table S11).

Software availability

The Q algorithm was implemented in C++, and the source code is
available in the Supplemental Material and under an open-source
BSD2 license at https://github.com/charite/Q. The GitHub site has
a link to a detailed tutorial.
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