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The ontogeny of the heart describes its development from the fetal to the
adult stage. In newborn mammals, blood pressure and thus cardiac perform-
ance are relatively low. The cardiomyocytes are thin, and with a central core
of mitochondria surrounded by a ring of myofilaments, while the sarcoplas-
mic reticulum (SR) is sparse. During development, as blood pressure and
performance increase, the cardiomyocytes become more packed with
structures involved in excitation–contraction (e-c) coupling (SR and myofila-
ments) and the generation of ATP (mitochondria) to fuel the contraction. In
parallel, the e-c coupling relies increasingly on calcium fluxes through the
SR, while metabolism relies increasingly on fatty acid oxidation. The devel-
opment of transverse tubules and SR brings channels and transporters
interacting via calcium closer to each other and is crucial for e-c coupling.
However, for energy transfer, it may seem counterintuitive that the increased
structural density restricts the overall ATP/ADP diffusion. In this review,
we discuss how this is because of the organization of all these structures
forming modules. Although the overall diffusion across modules is more
restricted, the energy transfer within modules is fast. A few studies suggest
that in failing hearts this modular design is disrupted, and this may
compromise intracellular energy transfer.

This article is part of the theme issue ‘The cardiomyocyte: new revelations on
the interplay between architecture and function in growth, health, and disease’.
1. Introduction
The heart must work continuously to pump blood around in the body to reach
all the capillaries, where it provides the tissues with oxygen and nutrients as
well as takes away CO2 and waste products. The pumping action is performed
by cardiomyocytes, specialized cells with myofibrils that contract to perform
mechanical work in response to an elevation of Ca2+ during the excitation–
contraction (e-c) coupling. As the heart must work continuously, contracting
to pump blood and relaxing to refill, for energy supply, it depends mainly on
ATP from oxidative phosphorylation in the mitochondria.

In newborn mammals, cardiac performance is relatively low. As it increases
during ontogeny, the cardiomyocytes change morphology, e-c coupling and
energetics to enhance performance. As there are relatively few studies on neo-
natal mammals, we can learn a lot from studying cardiomyocytes from other
species with similar characteristics. In particular, the cardiomyocytes from
fishes bear resemblance to cardiomyocytes from neonatal mammals. In the fol-
lowing, we will describe the ontogeny of cardiomyocytes in mammals in terms
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of morphology, e-c coupling and energy transfer. When poss-
ible, we will draw parallels between cardiomyocytes from
neonatal mammals and fishes.

In most mammal species, cardiac performance in terms of
stroke work is lower at birth than in adults. During develop-
ment, blood pressure and cardiac output increase, and thus
the heart must perform more mechanical work. In rats, rest-
ing diastolic blood pressure increases from approximately
20 to approximately 60 mmHg [1]. In rabbits, mean arterial
blood pressure doubles from 50 mmHg at two weeks of age
to 100 mmHg in adults [2]. In mice, the mean arterial blood
pressure is 30 mmHg at birth, and increases to 80 mmHg in
the adult [3,4]. Overall, during development the mammalian
heart enhances its performance to generate a three times
higher blood pressure. In order to produce these higher
pressures and fuel the greater mechanical work, cardiomyo-
cytes change their morphology.

The pressure developed by the left ventricle in neonatal
mammals is similar to the mean ventral aortic blood pressure
of 30–50 mmHg in trout, cod and several other fish species
[5–7]. This is interesting to note, when we throughout the
text (see below) compare cardiomyocytes from neonatal
mammals and fishes. Although fishes are very different
from mammals and operate at lower and varying body temp-
eratures, it is interesting that the cardiomyocyte morphology,
e-c coupling and energetics are similar to that of neonatal
mammals, which produce similar arterial pressures. This is,
of course, a simplification, as the hearts of some fish species
produce much lower pressures [7], whereas the heart of the
very active tuna can produce mean aortic pressures up to
90 mmHg [8]. The latter is close to adult mammalian levels,
while the tuna cardiomyocytes retain the overall morphology
of fish cardiomyocytes [9]. It is likely that wall stress of the
ventricle has a greater influence on morphology than the
absolute pressure. In fish heart, the inner, spongy myocar-
dium divides the ventricle into several smaller luminae
with smaller wall stress than the large, central lumen seen
in mammalian hearts [10,11]. For simplicity, we mainly
compare neonatal mammalian cardiomyocytes with cardio-
myocytes from trout, as this is one of the most studied
fish species and the one we have used for studies of
energy transfer.
2. Changes in morphology during ontogeny
Figure 1 illustrates the differences between neonatal mamma-
lian, fish, and adult mammalian cardiomyocytes. Their
overall characteristics are listed in table 1. Cardiomyocytes
from neonatal mammals are spindle-shaped and with a
smooth cell membrane, which in muscle cells is called the sar-
colemma. They have a diameter of 5–10 µm [26,39,40]. Inside
the cell is a central core of mitochondria surrounded by a ring
of myofilaments. Mitochondria and myofilaments each take
up approximately 30% of the cell volume [30]. The sarcoplas-
mic reticulum (SR) is present, but sparse and looks to be
positioned mainly just below the sarcolemma [26]. This
resembles the overall morphology of cardiomyocytes from
most fishes, including trout, mackerel and tuna
[9,10,15,21,25,36,38].

During development, the mammalian cardiomyocytes
grow in size and change shape to become cylindrical. The
main cylinder of the cells has a diameter of 20–30 µm. They
sometimes branch and can thus connect to several adjacent
cells through the intercalated discs at the end of each
branch. As the cells grow in size, the sarcolemma forms inva-
ginations termed transverse tubules (t-tubules) [26,39,41]. The
t-tubules branch within the cell to form an elaborate system
of both transversal and longitudinal tubules, which are con-
tinuous with the sarcolemma, but have a higher density of
proteins involved in e-c coupling [42,43]. Owing to the
t-tubules, the sarcolemmal surface area relative to the cell
volume is much larger in adult mammalian cardiomyocytes
(table 1). In mature cardiomyocytes, we find the characteristic
crystal-like pattern of the mitochondria, as they are organized
in a regular pattern in between the multiple rows of myofila-
ments [36,37]. For each sarcomere, there is sometimes one
large, but more often two small mitochondria delimited by
the t-tubules running along the z-lines. This is shown in
figure 2, which is a confocal image of a live cell in which
the mitochondria and the sarcolemma are labelled in red
and green, respectively. The alternating rows of mitochondria
and myofilaments take up 30–40% and 50–60%, respectively,
of the cell volume [30,44]. The SR takes up a relatively small
volume, but it forms an extensive, continuous membrane net-
work throughout the cell [28] and has a relatively large
surface area [44].
3. Changes in excitation-contraction coupling
during ontogeny

The e-c coupling changes in conjunction with the mor-
phology of the cardiomyocytes. As the heart rate increases,
the action potential (AP) shortens [41]. In adult cardiomyo-
cytes, the AP triggers Ca2+ influx into the cytosol across the
sarcolemma through L-type Ca2+ channels (LTCCs). This
Ca2+ influx triggers the Ca2+ induced Ca2+ release (CICR)
from the SR through ryanodine receptors (RYRs). For the
cell to relax again, Ca2+ is removed from the cytosol by
the sarcoendoplasmic reticulum Ca2+ ATPase (SERCA), the
Na+/Ca2+-exchanger (NCX) operating in forward mode and
the plasma membrane Ca2+ ATPase (PMCA). During devel-
opment, there is a change in the relative contribution of
these Ca2+ flux pathways.

In neonatal cardiomyocytes, Ca2+ enters the cell through
LTCCs as well as reverse action of the NCX (NCXrev). How-
ever, NCXrev is the dominant transsarcolemmal Ca2+ influx
pathway, and the main influx pathway coupled to CICR
[35]. This scenario is in line with structural studies showing
that in neonatal cardiomyocytes, a larger fraction of NCX
and a smaller fraction of LTCC colocalize with RYR, and
almost exclusively at the periphery of the cell [26,40]. CICR
only contributes to approximately 40% of the Ca2+ transient
[35]. Owing to the sparse SR and its smaller role in e-c coup-
ling, the Ca2+ transients rise faster at the edges of the cell than
in the centre [41].

A similar pattern of e-c coupling is found in fishes,
where sarcolemmal Ca2+-fluxes are also relatively more
important than SR Ca2+-cycling [45]. The Ca2+-fluxes in car-
diomyocytes from neonatal rabbits and fish are similar. In
trout cardiomyocytes, NCXrev is also the main transsarco-
lemmal Ca2+ influx pathway contributing approximately
30% of the total Ca2+ influx, whereas LTCC contributes
approximately 20%, and CICR 50% to the overall Ca2+ tran-
sient [34]. In trout cardiomyocytes, the Ca2+-transient also
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Figure 1. Schematic of (a) fish cardiomyocyte, (b) neonatal mammalian cardiomyocyte, and (c) adult mammalian cardiomyocyte drawn on the basis of the refer-
ences in table 1. The sarcolemma is shown in green, the myofilaments in grey, the SR in blue, and mitochondria in red. Neonatal mammalian and fish
cardiomyocytes have a smooth sarcolemma, which is shown on the top and bottom, because their diameter is relatively small. The myofilaments are situated
peripherally, as a ring surrounding the central core of mitochondria. The SR is more irregular in fish cardiomyocytes, where it has no specific relation to the myofi-
brillar bands, whereas in neonatal cardiomyocytes, the SR is peripheral with the periodicity corresponding to the z-lines and m-band. Adult mammalian
cardiomyocytes are thicker and with more internal membrane structures. The sarcolemma invaginates to form transverse tubules (t-tubules). It is only shown
on the top side of the figure, because the cell is four to five times wider than fish and neonatal cardiomyocytes. There are multiple, parallel, interchanging
rows of myofilaments and mitochondria. The SR wraps around t-tubules, myofilaments and mitochondria.
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rises faster at the edges than in the centre of the cell [22].
However, there is great variation between different species
of ectothermic vertebrates, which have different behaviour
and preferred temperature. In general, active species
rely more on Ca2+-cycling through the SR than sedentary
species [45].

In adult mammalian cardiomyocytes, the e-c coupling
changes to become more reliant on CICR from the SR



Table 1. Characteristics of fish, neonatal and adult mammalian cardiomyocytes. (The characteristics in this table were used for the schematic drawings in figure 1 to
illustrate the similarities between fish and neonatal mammalian cardiomyocytes. The values for fish cardiomyocytes are mainly from papers on trout. However, for
the quantitative assessment of SR area per cell volume, data was only found from tuna, where the SR is expected to be more extensive than in most other fish
species. The values for adult mammalian cardiomyocytes are mainly from rat and mouse. Within each table cell, references are in square brackets.)

fishes neonatal mammals adult mammals

ventricular morphology outer compact and inner spongy layer,

trabecular sheets form smaller luminae

radiating from the central lumen [10–12]

compact wall and

central chamber

[13]

compact wall, central chamber

mean aortic pressure (mmHg) 40–60 (trout) [5] approximately 30

[3,4]

approximately 100 [14]

cardiomyocyte length (µm) 100–170 [15–17] 70 [18] 120–140 [18–20]

cardiomyocyte diameter (µm) 4–8 [15–17,21,22] 8 [18] 22–32 [18–20]

cardiomyocyte volume (pl) 1.1–3.4 [15–17] 30–35 [20]

t-tubules No No Yes

sarcolemma µm2 area

µm−3 cell vol

approximately 1.2 [15,16,23] 1.05 [24] 4.5–8.5 [20]

myofibril positioning usually a single peripheral ring [10,21,22,25] single peripheral ring

[26,27]

multiple rows throughout the cell

[28]

myofibrillar volume 45–55% [10,29] 30% [30] 55–60% [30]

SR positioning mainly peripheral, but some in the cytoplasm

[9,10,21]

mainly peripheral

[26]

continuous network throughout

the cell, junctional SR

associated with the t-tubules is

connected by network SR

[28,31]

SR µm2 area µm−3 vol 0.15–0.25 (tuna) [9,32] 0.18 [24] 0.27–1 [19,24,33]

SR contribution to Ca2+ fluxes

in e-c coupling

highly variable between species, 50% in trout

[34]

40% [35] 70–90% [19,35]

mitochondrial positioning central core, sometimes a few peripheral

[9,10,16,21,25,36]

central core [26,27] subsarcolemmal, perinuclear and

intermyofibrillar [36,37]

mitochondrial volume 22–45% [9,15,16,23,29] 32% [30] 31–40% [19,30]

apparent KM ADP of respiration 100–200 [25,38] 70–90 [18,30] 250–300 [18,30]
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triggered by Ca2+-influx through LTCCs. Concomitant with
the development of t-tubules, the co-localization of NCX
and RYR gradually declines [26], while co-localization of
LTCC and RYR increases, and a larger fraction of the LTCC-
RYR couplings are internal, along the t-tubules, rather than
peripheral, on the cell surface [39,40]. CICR contributes to
approximately 70–90% of the Ca2+ transient [19,35], and
the Ca2+ transients are spatially homogeneous, with a
synchronous rise at the edges and in the centre of the cell [41].

The changes in e-c coupling, that are observed during
ontogeny, rely not only on changes in protein expression,
but to a large extent also on the cardiomyocyte morphology.
As noted above, the SR forms a continuous network through-
out adult mammalian cardiomyocytes [28], and the close
contacts of the SR network with the sarcolemma are crucial
for adequate Ca2+ dynamics. In adult cardiomyocytes, the
majority of LTCCs in the sarcolemma and RYRs in the junc-
tional SR co-localize internally, at the t-tubules [40], where
the close association of the sarcolemma and SR membranes
leads to the formation of the dyadic space. Within the
dyadic space, LTCCs and RYRs form couplons, which are
only approximately 12 nm apart [46,47]. Within these
couplons are Ca2+ microdomains in which the Ca2+ concen-
trations are much higher than in the surroundings, and this
is critical for the LTCC regulation of CICR. Indeed, Ca2+

release events are delayed in loose dyads, in which the dis-
tance between RYR and LTCC is larger than in compact
dyads [48]. An increased number of orphaned RYR clusters
outside of dyadic space leads to dyssynchrony of the Ca2+

transient [49–51]. Thus, the formation of t-tubules regulated
by BIN1 (amphiphysin) and the tight coupling between
LTCC and RYR held in place by junctophilin is the structural
prerequisite for a rapid, synchronous Ca2+ release and, thus,
contraction [52–54].

The Ca2+-fluxes in e-c coupling change with adrenergic
stimulation enhancing cardiac performance during the
fight-or-flight response. Stimulation of β-adrenergic receptors
interacting with Gs-protein activates adenylyl cyclase to pro-
duce cyclic AMP (cAMP), which in turn binds to and
activates protein kinase A (PKA). PKA phosphorylates several



2 µm

10 µm
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Figure 2. Organization of mitochondria and t-tubules in adult rat cardiomyocytes. (a) Overall confocal image of a live cardiomyocyte. Mitochondria (red) were
labelled for 10 min with 250 nM MitoTracker® Deep Red FM (ThermoFisher). The sarcolemma (green), including t-tubules, was labelled with 500 nM CellMask™
Orange (ThermoFisher). (b–d) Zoom of the white rectangle in panel (a), showing the t-tubules (b), the mitochondria (c) and the merged image (d ). Note the
regular pattern of mitochondria, the highly organized network of t-tubules, and how densely these structures are packed.
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proteins involved in e-c coupling such as the LTCC, RYR,
phospholamban and troponin I. This results in an increased
LTCC open probability and Ca2+-influx [55] and a faster SR
Ca2+ uptake, as the phosphorylation of phospholamban
removes its inhibition of SERCA [56]. The result is a positive
inotropic, lusitropic and chronotropic effect, i.e. increased con-
traction, enhanced relaxation and faster heart rate,
respectively. This functional adrenergic response has been
well studied in adult mammalian cardiomyocytes, but few
studies have addressed this in neonatal mammalian cardio-
myocytes, and we have not been able to find a direct
comparison of whether adrenergic stimulation affects neo-
natal and adult mammalian cardiomyocytes differently. In
neonatal cardiomyocytes, adrenergic stimulation increases
the LTCC Ca2+-current [57], but although phospholamban is
phosphorylated, this does not always affect the Ca2+ transi-
ents, reflecting the functional state of the SR [58].
Adrenergic stimulation also increases the LTCC Ca2+-current
in fish cardiomyocytes, but the magnitude of the response is
species-dependent [15,59]. In fishes with a relatively well
developed SR, adrenergic stimulation also leads to greater
recruitment of the SR, but it is uncertain whether this is
owing to the larger LTCC Ca2+-influx [60], a direct effect on
RYR and phospholamban, or both.

4. Changes in metabolism during ontogeny
Whereas energy for the ion fluxes during excitation comes
from their electrochemical gradient, the re-establishment of
ion gradients during relaxation costs energy in the form of
ATP. SERCA consumes 1 ATP per 2 Ca2+ and PMCA
consumes 1 ATP per Ca2+. The NCX does not consume
ATP directly but is coupled through the electrochemical gra-
dient of Na+ to the Na+/K+ ATPase, and thus indirectly
consumes 1 ATP per Ca2+ transported out of the cell. Usually,
the main consumption of ATP is by myosin ATPase as the
sarcomeres contract. However, this varies with the mechan-
ical load, heart rate and inotropic state. The ATP
consumption of actomyosin is directly related to the pressure
developed by the heart and the volume of blood pumped,
and there is a linear relationship between cardiac oxygen
consumption and the pressure–volume area of the working
heart [61]. It has been estimated that of the ATP consumed
by the heart, approximately 60% was for myosin ATPase
[61,62], 30% for e-c coupling, and approximately 10% for
basal metabolism [63].

The sources of ATP in the heart also change during onto-
geny. In the fetal stage, cardiac metabolism is adapted to the
slightly hypoxic conditions in utero, and hearts of newborn
mammals are more hypoxia-tolerant than in the adult stage
[64]. Of the total ATP, approximately 40% is generated by
glycolysis, approximately 45% is generated by oxidative phos-
phorylation of glucose and lactic acid, while the remaining
approximately 15% is generated by oxidative phosphorylation
of fatty acids [65]. Fish also have a higher glycolytic capacity
and are more hypoxia-tolerant than mammals [66,67].
After birth, mammalian cardiomyocytes exhibit a shift in
metabolism. In most species, cardiac oxygen consumption
increases during development, and the cardiomyocytes rely
increasingly on the uptake and oxidation of fatty acids [65].
In the adult mammalian heart, 70–95% of ATP is generated
by oxidative phosphorylation in the mitochondria [62].
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5. Energy transfer and the creatine kinase system
A key question in cardiac energetics concerns energy transfer,
i.e. how ATP and ADP circulate between ATPases and mito-
chondria, and whether the energy transfer changes in
response to the changes in intracellular structure during the
development. Energy transfer can occur by direct diffusion
of ATP and ADP, and/or by creatine kinase (CK) facilitated
diffusion.

CK catalyses the following, reversible reaction: ADP +
phosphocreatine +H+ ↔ ATP + creatine. In the adult mam-
malian heart, there is one mitochondrial isoform (Mi-CK)
and three cytosolic isoforms (MM, MB and BB-CK). Mi-CK
is bound to the outer surface of the inner mitochondrial mem-
brane and forms complexes with the voltage-dependent
anion channel (VDAC) in the outer mitochondrial membrane
(OMM) and adenine nucleotide translocase (ANT) in the
inner mitochondrial membrane [68]. The cytosolic MM-CK
is structurally bound near the main ATPases in cardiomyo-
cytes, such as myosin ATPase [69], SERCA [70], the Na+/K+

ATPase [71] and the ATP-sensitive potassium channel, KATP

[72]. The binding of MM-CK near these ATPases in the cardi-
omyocytes makes it an efficient buffer of the phosphorylation
potential, which determines the amount of energy released
by ATP hydrolysis [68]. Indeed, the CK system is recognized
as a temporal energy buffer, using phosphocreatine to regen-
erate ATP at times when ATP consumption exceeds energy
generation.

The role of CK in the heart is still a subject of research. It
was suggested to be more important as a spatial energy
buffer facilitating energy transfer between mitochondria
and ATPases, because it generates an additional diffusional
circuit between ATPases and mitochondria [73]. Furthermore,
creatine and phosphocreatine diffuse faster than ADP and
ATP, and are present in relatively high concentrations,
which allows build-up of larger diffusion gradients [68] with-
out impacting the phosphorylation potential. This could be
important in cells with long diffusion distances between
ATPases and mitochondria, or with intracellular diffusion
barriers restricting diffusion [74].
6. Use of the apparent KM ADP of mitochondrial
respiration to probe intracellular diffusion

As probably the simplest way to assess diffusion in cardiomyo-
cytes, the apparent KM ADP is estimated from recordings in the
respirometer, where the respiration of permeabilized fibres or
cardiomyocytes is recorded while stepwise increasing the con-
centration of ADP until the respiration rate is maximal.
Permeabilized fibres are prepared from small pieces of the
heart wall, which are gently dissected with fine tweezers to
separate small bundles of cells [75]. Fibres or isolated cardio-
myocytes are then treated with saponin, which selectively
permeabilizes the sarcolemma allowing the experimenter to
affect the intracellular environment [76]. If the permeabilized
fibres or cardiomyocytes are provided with substrates for the
citric acid cycle (typically glutamate, malate, pyruvate and suc-
cinate), the respiration rate increases upon addition of ADP. The
apparent KM ADP is the ADP concentration that stimulates res-
piration to half of the maximum respiration rate. In isolated
mitochondria, which are taken out of their structural setting,
the apparent KM ADP is 5–20 µM, but permeabilized fibres or
cardiomyocytes from adult mammals have a higher apparent
KM ADP of approximately 200–400 µM [18,73,75,77–79]. This
difference between isolated mitochondria and permeabilized
fibres or cells is frequently attributed to the diffusion restrictions
imposed by intracellular structures. Indeed, when recorded in
the respirometer, the apparent KM ADP indicates the difficulty
with which ADP diffuses from the medium outside the
cells to the mitochondrial inner membrane [80], and the
measurements correspond to the integrated response of all
mitochondria in the cell, including mitochondria from the
most central region to the parts of the cell close to the
sarcolemma.

The higher apparent KM ADP in permeabilized cells com-
pared to isolated mitochondria indicates that this overall
diffusion is restricted [75], as the KM ADP would correspond
to the concentration gradient between the solution and the
mitochondrial inner membrane required to sustain the mito-
chondrial ADP-consumption through ADP diffusion. From
outside the cells, ADP can encounter several barriers that
may prolong or hinder the diffusion. It was suggested that
unstirred layers surrounding permeabilized fibres result in
unphysiologically long diffusion distances before ADP in the
solution has even encountered the cells [81]. In addition, per-
meabilized fibres can form aggregates leading to longer
diffusion distances than assumed for separate cells. However,
by combining experimental and modelling approaches, it
was demonstrated on single permeabilized cardiomyocytes
from rat heart that also when taking unstirred layers into
account, the high apparent KM ADP is caused by barriers
inside the cells [82]. Difference in diffusion distance, though,
was found when comparing the apparent KM ADP in permea-
bilized trout fibres and cardiomyocytes with fibres having a
much higher KM ADP [38]. This was attributed to the difficul-
ties in preparation of the fibres from such thin and fragile
cells as trout cardiomyocytes leading to relatively thick fibres
[38]. In addition to diffusion distances, the apparent KM ADP

can be impacted by the relative activities of mitochondrial
ATP synthesis and surrounding ATPases. As shown by
Kongas et al. [83], increasing the endogenous ATPase activity
can lead to a reduction of the apparent KM ADP.

Thus, while estimating the apparent KM ADP is very useful
to get an impression of the overall diffusion restrictions within
the cell, experiments on fibres or where the relative contri-
butions of ATP synthesis and ATP consumption could
change, such as during a treatment, must be interpreted with
caution. However, as noted above, quantitative analyses of
data from isolated, permeabilized rat cardiomyocytes have
demonstrated the intracellular nature of the diffusion barriers.
Knowing the identity and location of these barriers is impor-
tant for understanding the physiological role of the CK system.
7. Creatine kinase and the apparent KM ADP
In the 1990s, it was suggested that the high apparent KM ADP

in adult cardiomyocytes was owing to diffusion restriction
caused by the OMM. The physiological advantage would
be that energy transfer of ADP/ATP between mitochondria
and ATPases would take place through the CK system [84].
Diffusion restriction by the OMM leads to the formation of
an isolated compartment in the mitochondrial intermem-
brane space with concentrations of ADP/ATP differing
from those outside the mitochondria. This would enhance
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the generation of phosphocreatine by Mi-CK [85] in addition
to the direct transfer of ATP and ADP between ANT and Mi-
CK [86]. Thus, it was suggested that a relatively impermeable
OMM would let most of the energy transfer take place
through the CK system, and this was, as noted above, ben-
eficial in terms of faster diffusion and rapid buffering of the
phosphorylation potential near ATPases.

The importance of CK as a facilitator of energy transfer in
muscles with intracellular diffusion barriers was supported
by the finding that its acute inhibition lowered the phos-
phorylation potential near ATPases to such an extent that
cardiac function was impaired [87]. Furthermore, a compari-
son of different muscle types found that with an increase in
aerobic capacity, there is a concomitant increase in the appar-
ent KM ADP of respiration as well as Mi-CK expression [73,88].
Thus, when comparing different types of muscles, the
expression of Mi-CK correlates with the increase in apparent
KM ADP. Again, this backed up the theory that diffusion
restriction by the OMM shifted energy transfer to take place
through the CK system.
77:20210321
8. Energy transfer when creatine kinase is
inhibited: lessons from transgenic mice

There are several transgenic mouse models, in which CK is
inhibited by knockout of its different isoforms (CK KO
[89]), or of the enzymes involved in creatine synthesis and
uptake (arginine : glycine amidinotransferase [90], guanidi-
noacetate methytransferase (GAMT, [91]) and creatine
transporter [92], respectively). Inhibition of CK affects the
skeletal muscle phenotype [89,93–96], but studies on the
heart have been equivocal [97] and should be interpreted
with caution [98]. In general, cardiac performance of CK
KO and GAMT KO mice is normal at baseline levels and
only compromised at very high workloads [99–102].

If diffusion restriction by OMM caused channelling of
energy transfer through the CK system, and this was crucial
for cardiomyocyte function, it is conceivable that inhibition of
the CK system would lead to compensatory changes in the
permeability of the OMM. In permeabilized cardiac fibres
from transgenic mice lacking Mi-CK, the apparent KM ADP

was the same as in wild-type (WT) [103]. In fibres from CK
KO mice lacking both the cytosolic and mitochondrial CK
isoforms, the apparent KM ADP was lower than in WT, and
mitochondria seemed to intercalate between the myofibrils
[104]. However, in cardiomyocytes from creatine-deficient
GAMT KO mice, where the CK system is inhibited by lack
of creatine, the apparent KM ADP as well as mitochondrial
organization was the same as in WT littermates [105], and
there were no changes in alternative energy transfer systems
[106]. Thus, in transgenic mouse models with an inhibited
CK system, there is no clear correlation between the function
of Mi-CK and the apparent KM ADP. This is because the OMM
is not the only diffusion barrier within cardiomyocytes.
9. Intracellular diffusion barriers form modules
within the cells

More recently, it has become clear that intracellular diffusion
restriction is not just owing to the OMM but has multiple
causes. The search for multiple factors imposing diffusion
restrictions intensified in 2001, when experimental works
demonstrating that there is an unexpected coupling between
ATPases and mitochondria in the cardiomyocytes were pub-
lished [104,107,108] leading to the declaration that the
cytoplasm in the heart cannot be considered as a well-
mixed bag anymore [109]. Diffusion barriers are formed by
membrane structures as well as protein dense areas. The
main barriers are the OMM and the SR [110]. When consider-
ing just one mitochondrion and the ATPases around, it may
seem counterintuitive that the OMM and SR separate
ATPases from the mitochondria and thus hinder energy
transfer. However, the barriers are not only at the level of
the OMM, but also in the cytosol [86,111]. As noted in the
beginning, adult mammalian cardiomyocytes have multiple
interchanging rows of myofibrils and mitochondria and a
continuous SR connecting to the t-tubules throughout the
cell. This overall organization of intracellular membrane
structures, as they envelop the myofibrils, leads to the for-
mation of modules. These modules have also been termed
intracellular energetic units [108]. The diffusion of ATP and
ADP out of these modules is restricted, and ATP/ADP are
expected to preferentially circulate only between neighbour-
ing ATPases and mitochondria within the module.

The modules are not completely isolated from each other,
but the barriers between them cause a considerable slowing
of the overall diffusion in adult cardiomyocytes. Note, that
the term ‘overall diffusion’, means diffusion across several
modules. This is shown in figure 3, left panel. The diffusion
is anisotropic, being faster in the longitudinal than in the
radial direction [113]. An analysis of raster image correlation
spectroscopy data from rat cardiomyocytes suggests that dif-
fusion barriers within the cells form a lattice with the
dimensions of approximately 0.8 µm in the radial and
approximately 0.9 µm in the longitudinal direction [112].
These dimensions are in agreement with the structure of
the sarcomeres surrounded by SR and mitochondria with
barriers also formed by the t-tubules, m-bands and z-lines
[114]. Although diffusion between modules is slow, diffusion
within modules is relatively fast, as illustrated in figure 3,
right panel. The diffusion coefficient of fluorescently labelled
ATP is approximately 300 µm2 s−1 in water and approxi-
mately 200 µm2 s−1 in physiological solution containing
bovine serum albumin. The overall diffusion coefficient is
24 and 35 µm2 s−1 in the radial and longitudinal direction
[112]. This estimate is significantly smaller than ionic mobility
found for frog skeletal muscle [115], but very close to the
estimations of overall diffusion coefficient through analysis
of heterogeneity of mitochondrial autofluorescence (23–
30 µm2 s−1) [111] and imposed heterogeneity of cAMP
(32 µm2 s−1) [116]. While the overall diffusion is relatively
slow, the diffusion coefficient within each module is approxi-
mately 80% of that in physiological solution, i.e. 160 µm2 s−1

[112]. Thus, diffusion within each module is approximately
five times faster than the overall diffusion measured across
multiple modules.

The modular design has the effect that when recording
the respiration of permeabilized cardiomyocytes while
adding ADP to the solution outside the cells, peripheral mod-
ules restrict the diffusion to more central modules. Indeed,
when changing the ADP concentration outside the cardio-
myocytes, the peripheral mitochondria respond before the
central mitochondria, as is observed in pictures of how mito-
chondrial autofluorescence changes with the concentration of



24 µm2 s–1

35 µm2 s–1

160 µm2s–1

Figure 3. Schematic illustration of a section of an adult mammalian cardiomyocyte. On the left, the cell is shown in full width, but not full length, with sarcolemma
(green) on the top and bottom invaginating to form t-tubules. The many parallel rows of mitochondria (red) and myofilaments (grey) in contact with t-tubules as
well as the SR (blue) form modules within the cell. Whereas the diffusion coefficient in solution is 200 µm2 s−1, the overall diffusion coefficient across several
modules is 80–90% lower (24 and 35 µm2 s−1 in the transversal and longitudinal direction, respectively). On the right is shown an enlargement of the black
square illustrating a single module, i.e. a sarcomere surrounded by mitochondria, t-tubules and SR. Within each module, the diffusion coefficient is estimated
to be 80% of the coefficient in solution, i.e. 160 µm2 s−1. Diffusion coefficients are from Illaste et al. [112].
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ADP outside the cell [111]. A three-dimensional modelling
study of the cardiomyocyte with modules separated by bar-
riers was able to reproduce several data from respiration
experiments, including the high apparent KM ADP [117].
This also explains why the mitochondria have a higher affi-
nity for endogenous ADP generated by ATPases than for
exogenous ADP added to the solution outside the cells
[107]. Thus, the apparent ADP-affinity recorded in permeabi-
lized cardiomyocytes is only apparent, and it cannot be
extrapolated to represent the ADP-affinity of individual mito-
chondria within the cell.

There are several advantages of themodular design of cardi-
omyocytes. In terms of energy transfer, it reduces diffusion
distances and leads towhat is termed ‘direct adenine nucleotide
channelling’. In adult cardiomyocytes, direct adenine nucleotide
channelling frommitochondria tomyosinATPase and SERCA is
almost or as efficient a source of ATP as the CK system [30,104].
In addition, the modular design can have a protective effect
when things go wrong. For example, within a cardiomyocyte,
individual mitochondria may experience oscillations of the
membrane potential without affecting the neighbouring mito-
chondria [118]. Although healthy mitochondria are reported to
be connected in a large reticulum [119], their network is
dynamic, and malfunctioning mitochondria are physically sep-
arated from their neighbours [120]. This allows damaged
mitochondria to be removed by autophagy and replaced with
new and fully functional mitochondria [121]. While this may
affect the contractile performance of the sarcomere within the
module in question, thediffusionbarriers betweenmodules pro-
tect neighbouring modules. Thus, if there is minor damage
within individual modules, they can be replaced without too
much effect on the rest of the cell. This is particularly important
in cardiomyocytes, which are terminally differentiated. As they
cannot divide and proliferate, damaged cells cannot be replaced,
but modules within the cells can be renewed.

While most of the modelling approaches focus on intermyo-
fibrillar mitochondria for the sake of simplicity, it should be
noted that during the functional recordings of respiration or
autofluorescence, it is not possible to distinguish them fromperi-
nuclear or subsarcolemmal mitochondria. The three different
subpopulations of mitochondria have their own morphology
and biochemistry [122]. As subsarcolemmal and a large part of
the perinuclear mitochondria are also positioned next to sarco-
meres in addition to other local ATPases, we expect that all
three subpopulations of mitochondria participate in the for-
mation of modules. However, the local energy transfer for
perinuclear and subsarcolemmal mitochondria warrants further
studies.
10. Energy transfer within modules
The barriers between modules explain approximately 50% of
the overall diffusion restriction with the remaining 50% being
at the level of the OMM, but it is not possible to distinguish
whether it is owing to the SR and/or the OMM [111]. The
OMM is permeable through the pores formed by the VDAC.
Indeed, VDAC has been termed the ‘gatekeeper’ of the OMM
[123], and its voltage-sensitivity and permeability is regulated
by multiple factors such as tubulin-binding [124], hexokinase
interaction [125], and glutamate [126,127]. The heart expresses
three different isoforms of VDAC (VDAC1, 2 and 3) with
VDAC1 and VDAC2 being the dominant isoforms [128]. The
role of the VDAC is not only to regulate the access of ATP
and ADP to the mitochondria. It also regulates the access of
many other molecules such as ions, NADH and substrates
for the citric acid cycle (pyruvate from glycolysis and fatty
acids). In particular, the importance of VDAC in the regulation
of mitochondrial Ca2+-uptake is receiving increased attention
[129,130].

The structural prerequisite for mitochondrial Ca2+-uptake
is a close association between the SR and the mitochondria.
This allows the formation of microdomains with high Ca2+

concentrations, as is necessary for Ca2+ uptake through the
mitochondrial Ca2+ uniporter, which has a low Ca2+ affinity
of 10–30 µM [131]. To the best of our knowledge, the SR-
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mitochondria microdomain Ca2+ concentration has not been
measured in cardiomyocytes, but mathematical modelling
suggests that mitochondrial Ca2+-uptake does not play a
role in e-c coupling on a beat-to-beat basis [132]. However,
it stimulates several dehydrogenases in the citric acid cycle
as well as the ATP synthase and may be important for the
regulation of ATP generation [133]. Three-dimensional high-
resolution images of intracellular structures in cardiomyo-
cytes suggest that the SR and mitochondria are juxtaposed
mainly near the t-tubules, where transversal branches of SR
wrap the t-tubules on one side and connect to the mitochon-
dria on the other side. Some juxtaposition is also observed
where longitudinal branches of the SR follow the perimeter
of the mitochondria, connecting neighbouring transversal
branches [28,134]. In the places where the SR is juxtaposed
to the mitochondria, the RYRs and mitochondria are up to
approximately 200 nm apart [135]. On the one hand, the SR
may shield the mitochondria from ADP from the myofila-
ments, but on the other hand, it allows for the direct
energy transfer between mitochondria and SERCA that has
been observed in cardiomyocytes [104]. Furthermore, the
SR may be associated with the mitochondria for other pur-
poses than Ca2+ transport and energy transfer. Some
studies have suggested that the SR is continuous with the
endoplasmic reticulum (ER), and may carry out the same
functions such as protein synthesis and folding [136]. This
is in agreement with a recent paper demonstrating ribosomes
localized near the z-lines throughout adult rat cardio-
myocytes [137]. Thus, the SR-mitochondria contacts in
cardiomyocytes may serve the same purpose as mitochon-
dria-associated ER membranes in other cell types, where
they participate in, for example, lipid synthesis and transfer,
mitochondrial dynamics, and autophagy [138]. The extent
of shielding depends on how large a fraction of the mitochon-
drial surface area is shielded by the SR. In HeLa cells, it was
estimated that 5–20% of the mitochondrial network surface
area is in close contact with the SR [139]. It would be very
interesting to see a similar quantitative analysis from cardio-
myocytes of how large a fraction of the mitochondrial
membrane is closely associated with the SR.

Recent studies suggest that submitochondrial heterogeneity
in VDAC isoform distribution should also be considered.
Although the roles of the different VDAC isoforms may to
some extent be overlapping, they are also distinct. It seems that
VDAC1 interacting with IP3-receptors, and VDAC2 interacting
with RYR2 are aimed at Ca2+ shuttling, whereas VDAC1 inter-
action with ANT and hexokinase is aimed at metabolite
shuttling [130]. It is likely that submitochondrial localization of
different VDAC isoforms is also involved in the regulation of
their function, and it is an appealinghypothesis that in the regions
ofmitochondria-SR contact, VDAC2and RYR2 form couplons for
exchange of Ca2+, while outside these contact regions, VDAC1
and ANT form couplons for exchange of ATP/ADP [130]. If
most of the VDACs aimed at metabolite shuttling are outside
the regions of mitochondria-SR contact, then shielding by the
SR would have a relatively small impact on the energy transfer
between myofilaments and mitochondria. Experiments demon-
strating that mitochondria are almost or as good a source of
ATP for myofibrillar contraction as CK [30,104] suggest that
shieldingby theSRdoesnot hinderenergy transfer betweenmito-
chondria and myosin ATPase function to a significant extent.

If the diffusion restriction by the OMM does not limit the
performance of myosin ATPase and SERCA, it raises
questions about the physiological role of the CK system. As
noted above, transgenic mouse models suggest that Mi-CK
is not needed to facilitate energy transfer across the OMM,
at least at baseline levels of activity. This speaks in favour
of that the main role of the CK system in the heart is as a tem-
poral energy buffer, regenerating ATP when the ATP-demand
exceeds the ATP generation by mitochondria. This could
happen during abrupt changes in workload such as during
a fight-or-flight response. The role of the CK system as a
spatial energy buffer is still not clear. It is conceivable that
spatial energy buffering might be necessary at high work-
loads. As noted above, the performance of CK and creatine-
deficient hearts is limited at high workloads [99,102].
Measurements using nuclear magnetic resonance magnetiza-
tion transfer have shown that, under some conditions, energy
transfer between mitochondria and ATPases is carried via
combined diffusion of ATP and phosphocreatine. However,
owing to the noise limitations, it was impossible to get
more specific estimates of energy transfer via CK for different
heart workloads [140]. In order to quantitatively estimate CK
contribution through mathematical models, we need to know
more about the distribution and dynamics of diffusion bar-
riers within cardiomyocytes. Indeed, most, if not all, of the
studies on diffusion barriers within the cell were performed
on relaxed, quiescent permeabilized fibres or cardiomyocytes
with glutamate and malate as respiratory substrates. This
hardly reflects the situation in vivo, where the cardiomyocytes
receive multiple substrates for the citric acid cycle and oxi-
dative phosphorylation. Glutamate reduces the open
probability of VDAC [126], and it is conceivable that the sub-
strate dependency of the apparent KM ADP [141] is owing to
substrate regulation of VDAC open probability. Furthermore,
the cardiomyocytes in vivo continuously contract and relax
against a load. Tubulin, being an important part of the cytos-
keleton, is a known regulator of VDAC permeability [124]
and could be a mediator of mechanical regulation of VDAC
open probability. Therefore, while recordings on permeabi-
lized cardiomyocytes can give us an idea about the
communication within the cells, they cannot be extrapolated
to the situation in vivo. In permeabilized cardiomyocytes, the
fraction of VDAC molecules that were accessible to ADP was
surprisingly small, approximately 2% [111], but this is likely
to be different and dynamic in the working heart.
11. Changes in diffusion barriers and energy
transfer during ontogeny

As noted in the beginning, cardiomyocytes from newborn
mammals are slender and have a single, peripheral ring of myo-
filaments surrounding a central core of mitochondria, and a
sparsely developed SR. Their morphology is very similar to
that of trout cardiomyocytes (figure 1 and table 1). In permea-
bilized fibres from neonatal mammals, the apparent KM ADP is
approximately 80 µM [30]. As measurements on fibres can be
difficult to interpret, it is notable that isolated, permeabilized
trout cardiomyocytes have an apparent KM ADP of 100–
200 µM [25,38]. This suggests that although these cardiomyo-
cytes lack the modular structure, there are still barriers
present restricting the diffusion of ADP from the medium to
the mitochondrial inner membrane. This is in agreement with
50% of the overall diffusion restriction being at the level of
the OMM [111]. Again, it is not possible to determine whether
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this is owing to the permeability of the OMM and/or shielding
by the SR, but as the SR is less developed, it is tempting to
speculate that most of this is owing to the OMM.

In terms of facilitated energy transfer by CK, it should be
noted that in neonatal mice and rabbits, Mi-CK activity is
low, and it is not yet coupled to respiration [30,142]. Trout car-
diomyocytes also have very low expression of Mi-CK [25].
Thus, although there seems to be diffusion barriers at the
level of the OMM, they do not need Mi-CK to facilitate
energy transfer. This could relate to their lower performance.

During development, the cardiomyocytes loose most of
their cytosolic space to become densely packed with t-tubules,
myofilaments, SR and mitochondria (figure 1). As the density
of structures increases, the apparent KM ADP increases [18,30]
indicating a decrease in the overall diffusion inside the cells
(table 1). However, the structures form modules keeping
energy transfer local between adjacent mitochondria and
ATPases. Thus, as the cardiomyocytes develop multiple inter-
changing rows of myofibrils and mitochondria, the positioning
of intermyofibrillar mitochondria brings the source of ATP to
where it is needed to fuel the contraction of the cardiomyocyte.
20210321
12. Changes in diffusion barriers in disease
There are few functional studies of what happens to the dif-
fusion barriers in diseased hearts. After acute ischaemia
and coronary artery ligation, the apparent KM ADP is lower
[143,144] indicating a loss of diffusion barriers. This can be
partially explained by rupture of the OMM [143,144], but
changes in the overall organization of intracellular membrane
structures should also be considered. Although there may be
some differences depending on the aetiology, cardiomyocytes
from failing hearts, overall, exhibit swelling and loss of
t-tubules, clusters of mitochondria and disorganization of
the SR [28,39,49,52]. This would disrupt the modular organ-
ization of cardiomyocytes and could have a detrimental
effect on energy transfer. This would also explain why the
cardiac phenotype of creatine-deficient mice, where the mod-
ules are intact, is relatively mild, whereas post-ischaemic and
failing hearts benefit from overexpression of CK to facilitate
energy transfer [145,146].
13. Summary
Whereas most of this review has focused on diffusion barriers
and how they govern energy transfer within the cell, it started
with a description of how the overall morphology, e-c coupling
and energetics change during ontogeny in mammals. In
addition, parallels were made between cardiomyocytes from
fishes and neonatal mammals. The latter information was
included to illustrate the bigger picture: cardiomyocytes with
similar workloads—such as in fishes and neonatal
mammals—are remarkably similar in both morphology, e-c
coupling, energetics and energy transfer. Thus, studies of
different species can provide information about general prin-
ciples in cardiac physiology. As mammals develop, cardiac
performance increases and the cardiomyocytes adapt to the
higher workload. They grow in diameter and become more
structurally packed. Multiple interchanging rows of myofila-
ments and mitochondria take up approximately 90% of the
cell volume and are intersected by t-tubules and the SR. The
juxtapositioning of the SR with t-tubules and mitochondria
forms microcompartments with higher Ca2+ concentrations
than in the cytosol, and these are crucial for rapid and ade-
quate Ca2+ signalling in e-c coupling. The picture is more
complicated when looking at energy transfer, where it is coun-
terintuitive that the OMM and perhaps the SR restrict diffusion
of ADP and ATP between ATPases and the mitochondria.
However, the overall organization of the SR and mitochondria
together with protein dense parts of the sarcomeres formmod-
ules within the cells. This modular design keeps diffusion
distances relatively short. Thus, whereas e-c coupling relies
on microcompartments for better communication through
Ca2+, energy transfer relies on macrocompartments for a
tight communication between ATPases and mitochondria.
Studies on mice, in which the CK system is inhibited, suggest
that the modular design of cardiomyocytes ensures a sufficient
energy transfer at baseline workloads. However, in failing
hearts with disorganized structures, energy transfer may be
compromised as the modules are disrupted.
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