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Abstract

Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from
dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving
APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate
for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both
membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths
(CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and
APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the
eigenvalue (lalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when lalt#21. For
different BCLs, control values of lalt were obtained using eigenmode analysis and compared to the first pole of the transfer
function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model,
this pole provided an accurate estimation of lalt. Furthermore, during slow ramp decreases of BCL or simulated drug
application, this approach predicted the onset of alternans by extrapolating the time course of the estimated lalt. In
conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without
making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of
myocardial cell.
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Introduction

In cardiac physiology, alternans designates the alternation of

action potential (AP) parameters (e.g., AP duration (APD), calcium

transient) from beat to beat [1,2]. It leads to dispersion of

refractoriness and represents a well established mechanism of

conduction block and thus of severe reentrant arrhythmias [3,4].

At the cellular level, alternans results from complex dynamic

interactions between membrane potential (Vm), ion currents and

intracellular calcium cycling, which can together lead to different

types of dynamical instabilities [2,5–8].

The classical understanding of the genesis of alternans is based

on the concepts of restitution functions and iterated map models

[5,9–11]. In the classical theory [5,9], the relation between APD

and the previous DI is first characterized by the APD restitution

function f as APD = f(DI). During pacing at a given basic cycle

length (BCL), the next DI can then be inferred as BCL–APD and

the next APD mapped using f. By iteration, successive APDs and

DIs can be reconstructed. The steady state is determined by the

intersection of the line APD = BCL – DI with f. If the slope of the

restitution function a= df/dDI is ,1 at this point, the system is

stable, and if a.1, the system is unstable. Because of the

nonlinear nature of f, this instability results in alternans, period

doubling cascades and chaos via a variety of dynamical routes

[12–14].

However, it has been shown that the criterion a= 1 for the onset

of alternans is only approximate or even inappropriate. Indeed,

alternans can be present even if a,1, or conversely, APD may not

alternate although a.1 [15–18]. These discrepancies can be

explained by the notion of ‘‘memory’’ [5,16,19–23], reflecting the

fact that APD depends not only on the previous DI, but on several

previous DIs and APDs. In multicellular tissue, these discrepancies

can also be explained by the fact that electrotonic interactions and

a steep conduction velocity restitution relation can further affect

the APD restitution slope at which alternans occurs by exerting

important stabilizing or destabilizing effects [15,16,24].

In experiments, restitution is conventionally investigated by

pacing at steady-state and by introducing premature or delayed

stimuli (S1S2 protocol, S1S2 restitution curves), or by decreasing

BCL stepwise and examining steady-state APD vs. DI at the end of

each step (dynamic restitution curves). Results at odds with the

classical theory have then motivated researchers to develop refined

pacing protocols and analyses incorporating the notion of memory

to investigate alternans, such as the ‘‘perturbed downsweep

protocol’’ [17,20,21,25]. To untangle the effects of memory,

recent studies used pacing protocols in which the DI is varied

slowly in a sinusoidal manner, revealing hysteresis between APD

and DI [26], or in a random manner, minimizing the influence of

previous APDs and DIs on the current pacing cycle [22]. With this

latter protocol, it was also demonstrated using regression analysis
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that APD depends on the APDs and DIs during several previous

cycles [27].

In mathematical cardiac cell models, seminal insights have been

obtained using eigenmode analysis [28,29], in which one considers

the deviation of the time course of model parameters from their

steady-state periodic time course during pacing at a given BCL.

This deviation is then decomposed as a sum of eigenmodes

associated to corresponding eigenvalues (l). For every eigenmode,

the time course of model variables is scaled by the corresponding

l after each pacing cycle. When |l|,1, the eigenmode is

attenuated from beat to beat and eventually dissipates. In contrast,

the eigenmode is amplified when |l|.1, which implies instability.

When l is a real number, the sign of l associates the

corresponding eigenmode with either memory (l.0, same

polarity for every beat) or alternans (l,0, polarity changes every

beat). Thus, at least in single cell models, eigenmode analysis

formally defines the exact criterion for the onset of alternans as

lalt = min{Re(l)} = 21. However, eigenmode analysis requires

accessing the internal model variables and, therefore, it is not

feasible experimentally. Thus, applications of eigenmode analysis

have so far been limited to computer simulation studies [30,31]

and no straightforward approach has been designed on this basis

to predict alternans in an experimental setting.

In previous work [24], we introduced the concept of cardiac

tissue as a ‘‘filter’’ transforming an input (e.g., a series of pacing

intervals varying stochastically) into an output (e.g., the series of

APDs or DIs). We examined the filter characteristics in the

frequency domain in terms of gain and phase shift using the

transfer functions between the series of pacing intervals and the

series of APDs (HtRa) and between the series of pacing intervals

and the series of DIs (HtRd), respectively. In the present study, we

developed a generalized framework for a straightforward and

accurate prediction of alternans. We devised an approach

permitting to quantify the eigenvalue lalt and these transfer

functions by using only experimentally measurable quantities

(APD, DI) without the requirement to access internal model

variables. The first step of this approach consists of using pacing

intervals varying stochastically around a mean BCL. In the next

step, the poles (including lalt) and zeros of the transfer functions

HtRa and HtRd are identified by fitting an autoregressive-moving-

average (ARMA) model to the recorded values of APD and DI

[32].

The power of this approach was evaluated in the cardiac cell

model of Sato et al. [8]. This model is formulated in three versions

(based on different sets of model parameters) implementing the

following mechanisms of alternans: 1) Vm-driven (alternans

attributable to the gating kinetics of membrane ion channels,

with a steep APD restitution curve), 2) Ca2+-driven with positive

Ca2+ to APD coupling (large Ca2+ transients generating longer

APDs), and 3) Ca2+-driven with negative Ca2+ to APD coupling

(large Ca2+ transients generating shorter APDs). In the latter two

versions, alternans originates from an instability of Ca2+ cycling

and occurs even in the presence of shallow APD restitution curves,

thus reproducing recent experimental and theoretical findings

[6,7,33]. The three versions of the Sato et al. model thus offered

the advantage to test our approach for three fundamentally

different ionic mechanisms of alternans. For this purpose, we

compared the marker lalt obtained using ARMA model

identification during stochastic pacing with the exact control

value of lalt derived using eigenmode analysis. Our results provide

the proof of principle that the eigenvalue lalt can be estimated

from the time series of pacing cycle lengths, APDs and DIs, and

thus that the criterion lalt = 21 could be utilizable experimentally.

Methods

Cell model and computer simulations
We used the model of Sato et al. [8], who combined the Fox et

al. canine ventricular myocyte model [34] with the model of

intracellular cycling proposed by Shiferaw et al. [33]. As

mentioned above, this model is formulated in three versions

implementing different mechanisms of alternans, including alter-

nans originating from an instability of Ca2+ cycling.

The three different versions of the model were stimulated with

1-ms current pulses of 50 mA/mF as in the original study of Sato

et al. [8], which corresponded approx. to 1.23 times diastolic

threshold. Simulations were run with a constant time step of

0.005 ms. Gating variables were integrated using the method of

Rush and Larsen and other model variables were integrated using

the forward Euler method. Activation time was defined at

depolarization to 235 mV and repolarization time at 285 mV,

respectively. APD was defined as the interval between activation

and repolarization times and corresponded approximately to APD

at 92% of repolarization. Intervals between successive activations

were equivalent to pacing intervals due to the short and quasi

constant latency in response to stimulation.

Eigenmode analysis (using internal model variables),
derivation of transfer functions, and link with classical
restitution slopes, alternans and memory

In all ionic cardiac cell models, including the Sato et al. model,

the state of the cell at any time t is fully described by a vector v of N

linearly independent variables (N = 16 in the Sato et al. model),

and the temporal evolution of the model is described by dv/dt,

which is defined as a function of v. N defines the order of the cell

model.

At a given basic cycle length (BCL), there exists a unique

function that maps vi (v at the onset of the ith stimulus) to vi+1 (at

the onset of the i+1th stimulus). At steady state, v maps onto itself,

defining the steady state vector vBCL. As shown by Li and Otani

Author Summary

Cardiac arrhythmias are frequent complications of heart
disease and an important cause of morbidity and mortality.
The rhythmic activity of the heart relies on the action
potential, a bioelectrical signal characterized by complex
dynamics involving ion currents and intracellular calcium
cycling. When these dynamics become unstable, arrhyth-
mogenic patterns can emerge. A typical example is the
beat-to-beat alternation of action potential parameters, a
phenomenon called alternans, which represents a well
known mechanism precipitating severe arrhythmias. Alter-
nans results from the interaction of action potentials
during consecutive beats. Classically, this interaction is
investigated by describing the dependence of action
potential parameters on previous diastolic intervals and
action potential durations. However, experiments have
shown that quantitative markers derived in this way are
only approximate or even inappropriate to predict
alternans. Here, we devised a novel procedure for the
reliable prediction of alternans, based on introducing small
random variations of pacing intervals followed by signal
processing in the frequency domain. Using a biophysical
model of the cardiac cell, we demonstrate that our
algorithm accurately predicts the onset of alternans during
pacing at an accelerating rate or during the application of
a drug. Our approach may thus open new perspectives for
the clinical evaluation of arrhythmias.

Revealing Cardiac Dynamics by Stochastic Pacing
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[28], the mapping function can be linearized near steady state as

dviz1~Jdvi, ð1Þ

where dv = v2vBCL is a small perturbation of vBCL and J is the

Jacobian matrix of this mapping. The element of J in column c and

row r is defined as

Jcr~Lviz1,r=Lvi,c, ð2Þ

where vi+1,r is the rth element of vi+1 and vi,c is the cth element of vi.

In our simulations, J was computed by introducing a small

perturbation d of the corresponding element of vBCL, applying the

modified v as initial condition and by evaluating hv near the limit

dR0 after running the model for one BCL.

As shown previously [28], the response at BCL is stable if the

eigenvalues l of J all lie within the unit circle in the complex plane

(,1 in absolute value), and the onset of alternans coincides exactly

with one of the eigenvalues (lalt) being equal to 21.

Derivation of transfer functions. To derive the transfer

function between a time series of pacing cycles fluctuating around

BCL and APD, we first need to define and compute a vector a that

describes the deviation of the ith APD (ai) from its steady state value

(aBCL) in response to a perturbation dvi, according to the inner

product

dai~aT:dvi, ð3Þ

where the superscript T denotes transposition. Similar to the

computation of J, individual elements of a were computed in the

simulations by introducing a small perturbation d of the

corresponding element of vBCL, by applying the modified v as

initial condition to simulate the AP, and by evaluating APD near

the limit dR0. We also linearize the change of v resulting from a

small deviation dti of the ith pacing interval (preceding the i+1th

AP) from BCL as

dviz1~dti
:v0BCL, ð4Þ

where v9BCL = dv/dt immediately prior to the onset of stimulation

during steady state pacing at BCL. By combining Eqs. 1 and 4, we

can now describe the behavior of the model in the presence of

deviations dti of the pacing cycle length from BCL as

dviz1~Jdvizdti
:v0BCL: ð5Þ

Application of the Z-transform on Eq. 5 gives:

z:V (z)~JV (z)zT(z):v0BCL, ð6Þ

where V(z) and T(z) are the Z-transforms of dv and dt, respectively.

Solving for V(z) gives

V (z)~(zI{J){1:v0BCL
:T(z), ð7Þ

where I is the identity matrix, and by virtue of the Z-transform of

Eq. 3, A(z) = aT V(z), we obtain

A(z)~aT:(zI{J){1:v0BCL
:T(z), ð8Þ

where A(z) is the Z-transform of da.

The transfer function HtRa(z) between pacing cycles and APD is

therefore

Ht?a(z)~A(z)=T(z)~aT:(zI{J){1:v0BCL: ð9Þ

The inversion of zI–J is rendered more tractable by diagonaliza-

tion of J as J = EDE21, where E is formed by the eigenvectors of J
(in the columns of E) and D is a diagonal matrix formed by the

corresponding eigenvalues l:

Ht?a(z)~aT:E(zI{D){1 E-1:v0BCL: ð10Þ

In Eq. 10, (zI–D)21 is a diagonal matrix with elements of the form

1/(z2l). By explicitly developing the multiplications in Eq. 10,

HtRa(z) can finally be expressed as a fraction of two polynomials:

Ht?a(z)~Pn(z)=Pd(z): ð11Þ

The zeros of HtRa(z) are the roots of the numerator Pn(z), which is

maximally of the Nth degree, and the poles of HtRa(z) are the roots

of the denominator Pd(z) and correspond to the N eigenvalues of J.

In our simulations, these eigenvalues and the roots of polynomials

were computed using established numerical procedures [35].

The transfer function HtRd(z) between pacing cycles and

diastolic intervals can easily be derived from the fact that

dti = dai+ddi. Therefore, T(z) = A(z)+D(z) (D(z) being the Z-

transform of dd) and

Ht?d(z)~D(z)=T(z)~(T(z){A(z))=T(z)~1-Ht?a(z), ð12Þ

which can also be expressed as a ratio of polynomials permitting

the computation of its zeros (the poles remain equal to the

eigenvalues).

The frequency response in terms of gain and phase shift,

corresponding to the ratio of the discrete-time Fourier transforms

of the output (APDs or DIs) and the input (cycle lengths) is

obtained by substituting z = 2pif in the above equations, with

f M [0, 0.5]. f is expressed in beat21, with f = 0.5 beat21

corresponding to the frequency of alternans (once every 2 beats).

Link with classical restitution slopes. The S1S2

restitution slope SS1S2 simply corresponds to

SS1S2~aT:v0BCL: ð13Þ

The dynamic restitution slope Sdyn can be inferred from the steady

state response to a constant and continuous change dt of BCL, i.e.,

to a sustained change at a frequency f = 0. In the Z-domain, f = 0

corresponds to z = e2pif = 1, and Sdyn corresponds to

Sdyn~Ht?a(1)=Ht?d(1): ð14Þ

Autoregressive-moving-average (ARMA) modeling
analysis (based on the memory of previous pacing
cycles), derivation of transfer functions, and link with
classical restitution slopes and alternans

Derivation of transfer functions using the memory model

of previous pacing cycles. The derivation presented above,

based on eigenmode analysis, requires the knowledge of the

internal variables of the cellular model. However, in a practical

Revealing Cardiac Dynamics by Stochastic Pacing
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setting, only a restricted set of quantities are measurable, such as

APD and DI. As proposed previously, the notion of memory in

cardiac tissue can be approached by considering that APD

depends not only on the previous DI but on several previous APDs

and DIs [21,25]:

an~f (dn{1,an{1,dn{2,an{2,:::): ð15Þ

Because pacing cycle lengths tn are linked to an and dn by tn = an+dn,

Eq. 15 can also be formulated as

an~g(tn{1,an{1,tn{2,an{2,:::): ð16Þ

Linearizing Eq. 16 around steady state at BCL for small variations

dan and dtn, we obtain

dan~a1dan{1zb1dtn{1za2dan{2zb2dtn{2z:::,i:e:, ð17Þ

dan{
XM

i~1

aidan{i~
XM

i~1

bidtn{i, ð18Þ

where M is the number of previous cycles accounted by memory.

Eq. 18 represents an autoregressive-moving-average model

(ARMA) with dtn as input series and dan as output series. Its

transfer function is easily obtained using Z-transformation [32]:

Ht?a(z)~

PM

i~1

biz
{i

1{
PM

i~1

aiz
{i

: ð19Þ

From Eq. 19, we see that HtRa(z) is also expressed as a ratio of

polynomials Pn(z)/Pd(z) and that its poles and zeros can be

obtained by finding the roots of Pn(z) and Pd(z).

Comparing the result of the previous section (Eq. 11) with Eq.

19, we first conclude that the transfer functions HtRa(z) and

HtRd(z) or the corresponding sets of poles and zeros implicitly

contain all the information about both alternans and memory in

the framework of restitution. Second, we conclude that memory

(in the sense of Eq. 15) is an implicit characteristic of any model of

order N.1, and that in theory, the number of memory cycles M is

at most equal to the order of the model N (M#N).

It must however be noted that modern cardiac cell models

always exhibit features with very short time scales (e.g., the gates of

the Na+ current) as well as features with considerably longer time

scales (e.g., the filling of the sarcoplasmic reticulum with Ca2+).

Thus, mathematically speaking, cellular models of cardiac

electrical activity belong to the category of stiff systems, for which

it is known that some components dissipate considerably faster

than others. These rapidly dissipating components correspond to

eigenmodes which have eigenvalues close to 0. It then appears

likely that all these models will have only few significant

eigenmodes. Indeed, in the Beeler-Reuter ventricular cell model

[36], Li and Otani observed that a majority of eigenvalues lie close

to 0 and they found only 2 significant eigenmodes [28]. Therefore,

in practice, a majority of poles and zeros will lie close to 0 and will

exert only insignificant influences on the transfer functions.

Consequently, low values of M,,N with only a few coefficients

a and b may suffice to describe the dynamic behavior of a given

model.

Link with classical restitution slopes. The S1S2

restitution slope SS1S2 corresponds to

SS1S2~b1, ð20Þ

and from Eqs. 12, 14, and 19, Sdyn is related to the coefficients ai

and bi of the polynomials Pn(z) and Pd(z) as

Sdyn~

PM

i~1

bi

1{
PM

i~1

(aizbi)

: ð21Þ

In this framework, the ‘‘memoryless’’ map APD = f(DI) [9] with

a= dAPDBCL/dDIBCL represents a particular case with a1 = 2a,

b1 = a, and a2 = a3 = … =b2 = b3 = … = 0, for which the alternans

criteria Sdyn = 1, SS1S2 = 1 and lalt = 21 are all equivalent.

Test protocols with the cell model, ARMA model
identification and data analysis

For each BCL tested (in decremental steps of 5 ms from

1000 ms to 500 ms, and then in steps of 1 ms), the 3 versions of

the Sato et al. model were paced at this BCL until a steady state

1:1 response was obtained or until sustained alternans was

documented. Because our goal was to be as close as possible

(within a reasonable computational limit) to the true steady state

when considering all model variables, steady state was considered

to be attained when the relative beat to beat variation of all model

variables was ,1027. Steady state defined according to this

criterion was obtained after 150–1000 beats. In presence of a

stable 1:1 response, the following protocols and analyses were

conducted:

1.Eigenmode analysis: The transfer functions HtRa and

HtRd were computed as described above (Eqs. 1–12). The

eigenvalue closest to 21 was defined as lalt, and SS1S2 and Sdyn

were derived according to Eqs. 13 and 14. The eigenvalue

closest to +1 was defined as the principal memory eigenvalue,

lmem.

2.Conventional pacing protocols: Steady state DIs and

APDs were used to construct the dynamic restitution curve and

to measure Sdyn. Classical S1S2 stimulation protocols were

used to construct S1S2 restitution curves for various BCLs (i.e.,

S1S1 intervals) and to measure SS1S2. For every BCL at which

the S1S2 protocol was conducted, steady state conditions were

first obtained as described above.

3.Stochastic pacing protocol and ARMA model identi-
fication: After having reached steady state, the cell model was

paced at cycle lengths (CLs) varying randomly around BCL

with a Gaussian distribution having a predefined standard

deviation (SD). The best coefficients a and b relating APD and

cycle lengths according to an ARMA model (Eq. 18) of

predefined order M (2 or 3) were identified using mean square

error minimization [32] in series of 30–100 cycles. The

computed coefficients were used to estimate the transfer

functions HtRa and HtRd together with their poles and zeros.

SS1S2 and Sdyn were estimated according to Eqs. 20 and 21.

HtRa and HtRd were also computed directly from the discrete

Fourier transforms (DFT) of APDs, DIs and pacing cycle

lengths (CL) as HtRa(f ) = DFT(APD)/DFT(CL) and

HtRd( f ) = DFT(DI)/DFT(CL).

Revealing Cardiac Dynamics by Stochastic Pacing
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The results of these three analyses were compared and

evaluated in terms of the ability of SS1S2, Sdyn and lalt to predict

the onset of alternans in the different versions of the Sato et al.

model. In some simulations, a random error was added to APD to

mimic experimental measurement error.

Results

Occurrence of alternans, main eigenvalues and rate
adaptation in the three model versions

Figure 1 A depicts steady-state APD vs. BCL in the three

versions of the Sato et al. model and illustrates the bifurcations to

alternans. The shortest BCLs at which alternans was absent during

steady state pacing were 308 ms, 330 ms and 370 ms in the Vm-

driven model, the Ca2+-driven model with positive Ca2+ to APD

coupling and the Ca2+-driven model with negative Ca2+ to APD

coupling, respectively. Shortening these BCLs by 1 ms resulted in

sustained alternans.

In Figure 1 B, the corresponding eigenvalues with an absolute

value .0.1 are represented. As predicted by eigenmode analysis

[28], the onset of alternans occurred exactly when lalt. reached

21 in all three model versions. The principal memory eigenvalue

lmem remained close but always less than +1 at all BCLs tested. All

the other eigenvalues were close to 0. Eigenvalues with an absolute

value ,0.1 (not shown) correspond to eigenmodes which dissipate

by .99% after 2 beats, and which therefore have only very small

influences on the dynamics of the model.

The time course with which the model stabilizes towards steady

state can be inferred from lmem. Because lmem is the eigenvalue

closest to 1 (in absolute value), it determines the slowest time scale

in the model. During pacing at a given BCL, the corresponding

eigenmode (Emem) decays as

Emem!lmem
n, ð22Þ

where n is the number of beats. The time constant of this process is

t~{1=ln lmem ð23Þ

(expressed in number of beats), i.e.,

t~{BCL=ln lmem: ð24Þ

in absolute time units. This time constant is shown in Figure 1 C

and D. Thus, in the Sato et al. model, accommodation of model

Figure 1. Bifurcation to alternans and eigenvalues in the three model versions. A: APD vs. BCL at steady state pacing (relative beat to beat
variation of model variables ,1027). The vertical dotted lines denote the bifurcations to alternans. B: Eigenvalues with an absolute value .0.1 vs. BCL.
The eigenvalue closest to 21 is the alternans eigenvalue lalt. The eigenvalue closest to +1 is the principal memory eigenvalue lmem. C: Time constant
of memory (expressed in number of beats, Eq. 23). D: The same time constant expressed in units of time (Eq. 24).
doi:10.1371/journal.pcbi.1002399.g001

Revealing Cardiac Dynamics by Stochastic Pacing
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variables (and thus of APD) to a given pacing rate occurs with a

time constant in the range of 10–40 beats, which corresponds to 8–

40 s, depending on BCL.

Restitution curves in the three model versions
Figure 2 illustrates dynamic and S1S2 restitution curves

obtained using conventional pacing protocols. The dynamic

restitution curves were generated from the steady state APD and

DI values at each individual BCL (i.e., at each S1S1 pacing cycle

length). Each S1S2 restitution curve was then obtained by

introducing a modified cycle length (S1S2 interval) and by

representing the APD of the subsequent AP vs the previous DI.

With this approach, a family of S1S2 restitution curves was

obtained.

In all versions of the model, S1S2 and dynamic restitution

functions never overlapped. As shown previously [19], this absence

of overlapping proves that APD depends on more parameters than

the previous DI. In the Vm-driven model, the S1S2 restitution

curves formed the closest pattern gathered around the dynamic

restitution curve, and the S1S2 restitution curves were always

monotonically increasing. In contrast, in the two Ca2+-driven

versions of the model, the S1S2 restitution curves deviated

substantially from the dynamic restitution curve, especially at

larger DIs. In the Ca2+-driven model with positive Ca2+ to APD

coupling, the prominent increase of APD at long DIs was the

consequence of larger Ca2+ transients, resulting in AP prolonga-

tion. In the Ca2+-driven model with negative Ca2+ to APD

coupling, the S1S2 curves were non monotonic and each curve

exhibited a segment with a negative slope. This phase of

decreasing APD with increasing DI was the consequence of larger

Ca2+ transients, resulting in this case in AP shortening.

Cherry and Fenton [23] introduced the concept of ‘‘memory

amplitude’’ as a measure of short term memory. This measure is

defined as the range of APD values covered by the S1S2 restitution

curves at a predefined long DI. For DI = 800 ms, memory

amplitude was 25, 152 and 151 ms in the Vm-driven and the

Ca2+-driven model versions with positive and negative Ca2+ to

APD coupling, respectively. According to this criterion, the Ca2+-

driven models exhibit a larger amount of short term memory

compared to the Vm-driven model. However, memory amplitude

and lmem cannot be compared directly, because the former reflects

APD changes over 2 (or a very few) beats, whereas the latter

reflects the longest time scale of the model dynamics.

Example analysis using ARMA model identification and
transfer functions in the Ca2+-driven model with positive
Ca2+ to APD coupling

In the example illustrated in Figure 3, the Ca2+-driven cell

model with positive Ca2+ to APD coupling was first paced at a

constant BCL of 400 ms and exhibited a stable 1:1 response at

steady state. Subsequently, the cell was paced at CLs varying

randomly with a SD of 5 ms around 400 ms. Figure 3 A depicts

simulated APs and Figure 3 B represents successive CLs, DIs, and

APDs. As shown in Figure 3 B, the series of APDs during random

pacing was well fitted by a 3rd order ARMA model, accounting for

.99% of APD variance with a residual variance ,1%. The pole

of the ARMA model closest to 21 was 20.780, very near to

lalt = 20.790 computed using eigenmode analysis.

Figure 3 C compares the transfer functions HtRa and HtRd of

the ARMA model with those derived using eigenmode analysis

and those calculated directly from the ratios of the Fourier

transforms of the APD, DI and CL time series. The three

computations were all in agreement. Furthermore, the transfer

functions obtained with the ARMA model matched almost exactly

those predicted using eigenmode analysis, except at low frequen-

cies ,0.05 beat21.

Figure 2. Dynamic and S1S2 restitution curves in the three model versions. Each panel represents the dynamic restitution curve, i.e.,
steady-state APD vs. DI (blue) and several S1S2 restitution curves (labels indicate BCL, i.e., the S1S1 pacing cycle length). For each S1S2 restitution
curve, a broad range of S1S2 intervals were explored, yielding DIs from 0 to 1000 ms. The intersections of the S1S2 restitution curves with the
dynamic restitution curve are marked with red diamonds. The vertical gray bars denote memory amplitude at DI = 800 ms.
doi:10.1371/journal.pcbi.1002399.g002
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These transfer functions represent the model behavior in terms

of gain and phase shift in the frequency domain. The negative gain

of HtRa indicates that at a mean CL of 400 ms, variations of APD

are small relative to variations of CL, and thus that the effects of

APD restitution are moderate. Conversely, the gain of HtRd

around 0 shows that CL variations translate primarily to DI

variations. However, the increase of HtRd to +3.5 dB at f = 0.5

beat21 indicates that DI variations at higher frequencies are

actually amplified, revealing the propensity of the model to

generate alternans.

Comparative analysis of alternans markers in the three
model versions

Figure 4 shows the restitution portraits of the three model

versions in more detail and compares the behavior of the S1S2 and

dynamic restitution slopes (SS1S2 and Sdyn, respectively) and the

markers lalt (alternans eigenvalue) and ztd1 (first zero of the

transfer function HtRd) as a function of BCL. The restitution

portraits (Figure 4 A) reflect the clearly distinct restitution dynamic

in the three model versions. In these portraits, it is once more

apparent that dynamic and S1S2 restitution curves are not

equivalent, a behavior which reflects memory [17,20].

Figure 4 B first explores the behavior of the different markers

extracted with the different methods, as BCL approaches the

bifurcation to alternans. In all versions of the model, the

conventional slopes SS1S2 and Sdyn derived using eigenmode

analysis were indistinguishable from those obtained using

conventional restitution protocols. However, both SS1S2 and Sdyn

were poor predictors of alternans as they always were ,1 at the

critical BCL at which alternans appeared. In contrast, lalt was

always exactly 21 at the onset of alternans as predicted by theory.

The behavior of ztd1 further reflects the different dynamic

mechanisms governing restitution. While ztd1 remains near 0 in

the Vm-driven model, it follows a nearly parallel course to lalt in

the Ca2+-driven models, but with ztd1 . lalt for positive Ca2+ to

APD coupling and ztd1 , lalt for negative Ca2+ to APD coupling.

Figure 4 B then explores the ability of stochastic pacing

combined with ARMA model fitting to estimate these different

markers. This approach permitted the robust estimation of both

lalt in all three versions of the ventricular cell model, and this

estimation was excellent at regimes when lalt was close to 21 (a

feature which is essential for the practical prediction of alternans).

Similarly, ztd1 could be accurately estimated when it was larger

than .0.5 (in absolute value). When these markers were close to 0

(e.g., in the Vm-driven model), the estimation became less reliable,

in agreement with the notion that poles and zeros near 0 exert

only a small influence on the dynamics of a time series, which

renders their identification difficult [32,37].

The combination of stochastic pacing and ARMA model fitting

also permitted the reliable estimation of SS1S2 according to Eq. 20

without actually conducting an S1S2 protocol. However, the

estimates of Sdyn with the ARMA model according to Eq. 21 were

prone to a large variability (not shown). This is explained by the

fact that HtRa and HtRd obtained with the ARMA model do not

capture the transfer functions with a sufficient reliability at very

low frequencies (see Figure 3 C). Because Sdyn is given by HtRa and

HtRd at f = 0 (Eq. 14), the estimation of Sdyn with ARMA model

fitting is thus prone to be less robust.

Aspect of the transfer functions at pacing regimes closer
and closer to the bifurcation to alternans

Representations of frequency response spectra are intuitively

easier to interpret than corresponding sets of poles and zeros.

Therefore, we investigated how the aspect of the transfer functions

HtRa and HtRd behaves at regimes closer and closer to the

bifurcation to alternans. As a reference, we first computed these

transfer functions for the classical first-order memoryless restitu-

tion function APDn = f(DIn21) [9] with a slope a= df/dDI at the

operation point. These transfer functions are HtRa = a/(z+a) and

HtRd = z/(z+a), with z = e2pif, as can be deduced from Eqs. 12 and

15–19 and as we showed previously [24]. They are represented in

Figure 5 A for a ranging from 0.1 to 0.9. The transfer functions in

Figure 3. Example analysis in the Ca2+-driven model with positive Ca2+ to APD coupling. The model was paced at cycle lengths (CLs)
varying randomly around 400 ms with a SD of 5 ms. A: Example APs, together with the convention regarding the numeration of CLs (t), APDs (a) and
DIs (d). B: CLs, DIs, APDs during 100 consecutive beats, estimation of APD based on a 3rd order ARMA model (Eq. 18), and residual. The identified
coefficients were: a1 = 20.2329, a2 = 20.7401, a3 = 0.0395, and b1 = 0.1351, b2 = 20.1058, b3 = 20.0293. The poles of the ARMA model were
p1 = 20.780, p2 = 0.053, p3 = 0.961. C: Comparison of the transfer functions HtRa and HtRd (gain and phase shift) derived using eigenmode analysis,
computed from the ARMA model coefficients and obtained directly from ratios of discrete Fourier transforms (DFTs, on 512 consecutive cycles),
respectively.
doi:10.1371/journal.pcbi.1002399.g003

Revealing Cardiac Dynamics by Stochastic Pacing

PLoS Computational Biology | www.ploscompbiol.org 7 March 2012 | Volume 8 | Issue 3 | e1002399



the three versions of the Sato et al. model are then shown in

Figure 5 B–D for BCLs approaching the bifurcation to alternans.

From Figure 5, it is apparent that the relationship between

stochastic variations of CL and resulting variations of APD and DI

is nonlinear, non-additive and frequency-dependent. At CLs far

from the alternans regime (darker purple curves), restitution was

less involved and CL variations translated primarily into variations

of DI, while APD variations were comparatively small. This is

reflected by a gain close to 0 dB for HtRd and a negative gain

(attenuation) for HtRa. However, for all models and at regimes

progressively closer and closer to the bifurcation to alternans

(lighter redder curves), CL variations resulted in a more and more

positive gain for both HtRd and HtRa at frequencies .0.4 beat21,

with a peak at 0.5 beat21. This observation can be interpreted as

an increasing propensity to alternans. This gain reached values up

to 20 dB, which corresponds to amplification by a factor of 10.

Thus, in regimes close to the development of alternans, variations

of APD and DI may reach a level which is comparatively one

order of magnitude higher compared to variations of CL.

The behavior of the transfer functions in the Vm-driven model

(Figure 5 B) was qualitatively similar to that in the first-order

model, suggesting a low level of memory in the Vm-driven Sato et

al. model. In contrast, the behavior in the Ca2+-driven models was

clearly different. With positive Ca2+ to APD coupling (Figure 5 C),

the curves appear skewed towards the right. With negative Ca2+ to

APD coupling (Figure 5 D), the aspect is fundamentally different.

First, at f = 0.5 beat21, the phase shift of HtRa is 22p instead of

2p, a difference explained by the presence of a zero (ztd1) more

negative than lalt. Second, a singularity appears at f = 0.5 beat21

in HtRd (abrupt change in polarity) when this zero leaves the unit

circle at 21 (see Figure 4 B). Thus, all these transfer function

‘‘portraits’’ are able to picture and reveal the dynamical differences

regarding both the propensity to alternans generation and

memory in the different models.

Similar to Figure 3, all these transfer functions could be

estimated using the stochastic pacing protocol and ARMA model

identification, with small deviations in the low frequency range

,0.05 beat21. This range corresponds to time scales of .20 beats

Figure 4. Behavior of alternans markers in the three model versions. A: Restitution portraits of APD vs. DI established using a dynamic
restitution protocol combined with S1S2 protocols (close-ups of Figure 2). Each portrait consists of a dynamic restitution curve and a family of S1S2
restitution curves at various BCLs. These S1S2 restitution curves are only shown in the neighborhood of their intersections with the dynamic
restitution curve (operation points, red diamonds). The oblique dotted lines denote a slope of 1. B: APD bifurcation diagrams (close-ups of Figure 1 A),
conventional slopes (SS1S2 and Sdyn) and transfer function markers (alternans eigenvalue lalt and first zero of the transfer function HtRd ztd1) as a
function of BCL, identified using eigenmode analysis (EA), conventional restitution protocols (RP), and ARMA model identification during stochastic
pacing (SD of CL: 5 ms), respectively. ARMA model identification was conducted on series of 30 successive cycles using a 3rd order model; data points
with error bars represent mean6SD for n = 37 simulations. Vertical dotted lines denote the BCL at which alternans appears.
doi:10.1371/journal.pcbi.1002399.g004
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and is thus determined by long-lasting effects of memory (poles

and zeros near +1), which cannot be captured accurately by the

ARMA model. These effects manifest themselves in Figure 5 B–D

as inflections of both the gain and the phase shift curves at f,0.05

beat21.

Prediction of the onset of alternans during a ramp
decrease of BCL

The analyses presented above were conducted in stationary

regimes, for which mean BCL and cellular properties did not

evolve with time. However, in electrophysiological experiments,

the propensity to alternans is typically assessed by decreasing BCL

(either stepwise or progressively) until alternans appears. There-

fore, we examined whether determination of lalt using ARMA

model identification would permit to anticipate the onset of

alternans during a slow decrease of BCL. Results with the Ca2+-

driven model with positive Ca2+ to APD coupling are shown in

Figure 6.

In Figure 6 A, the model was paced using a protocol consisting

of CLs decreasing progressively (20.1 ms/beat) to which random

Gaussian variations (SD: 1 ms) were added. The resulting series of

APDs and CLs were then segmented in windows of 30 cycles with

an overlap of 15 cycles, and lalt as well as SS1S2 were estimated

from the data in each window using a 2nd order ARMA model. In

the illustrated example, lalt progressively approached 21 and the

onset of alternans coincided with the moment when lalt reached

21 (vertical dotted line). Thus, observing the course of lalt as it

gets closer to 21 allows anticipating alternans.

Figure 6 A shows once more that SS1S2 is a poor predictive

marker, as its value was only 0.4 at the onset of alternans. In

Figure 6 B, the model was paced using the same ramp protocol as

in Figure 6 A, but without adding random CL variations, i.e., using

a control ramp protocol without stochastic variations. Although

manifest APD alternans appeared later than in Figure 6 A, the

difference series of APD (DAPD = APDi – APDi21) reveals that

microscopic alternans (micro-alternans) actually appeared at the

same moment as anticipated in Figure 6 A from the behavior of

lalt. Similar results were obtained with the Vm-driven model and

the Ca2+-driven model with negative Ca2+ to APD coupling.

In an experimental setting, APD is always subject to

measurement error. To evaluate how our analyses would be

influenced by measurement error, we conducted 10 simulations as

Figure 5. Aspect of the transfer functions at regimes closer and closer to the bifurcation to alternans. A: Transfer functions HtRa and
HtRd in a theoretical first-order memoryless model given by APDn = f(DIn21), with a being the slope of f. B, C and D: Transfer functions HtRa and HtRd

in the three versions of the Sato et al. model, computed by eigenmode analysis at various BCLs.
doi:10.1371/journal.pcbi.1002399.g005
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in Figure 6 A and added a random Gaussian error on the APD

time series before the evaluation of lalt and SS1S2. In these

simulations, the SD of the random CL deviations was increased to

5 ms and the SD of the error added to APD was 1 ms. As

illustrated in Figure 6 C, adding noise to the APD time series

resulted in an underestimation of lalt (in absolute value) and a

larger variability of the estimates, which necessitated increasing the

number of cycles used for ARMA model fitting to 150. However,

the estimation of lalt became progressively more accurate as it

approached 21, and extrapolating the time course of lalt towards

its intercept with the line lalt = 21 permitted to anticipate the

onset of alternans as in the control situation without adding noise

to APD. Interestingly, the estimation of S1S2 was not influenced

by measurement noise.

It is also informative to analyze lalt as a function of BCL, as

done in Figure 6 D for the data presented in Figure 6 A and C. In

this analysis, linear regression of lalt vs. BCL was conducted for

data points with lalt.20.85. By extrapolating the regression line

to lalt = 21, it was possible to anticipate the BCL at which

alternans developed.

Prediction of alternans during progressive IKs block
We then evaluated whether estimating lalt during a slow change

of cellular properties would also allow anticipating the onset of

alternans. The Vm-driven model was paced at a stationary rate

(BCL = 320 ms) and the conductance of the slow delayed rectifier

K+ current (IKs) was progressively reduced at a rate of 0.2% per

second, starting from its nominal value of 100%, to mimic the slow

application of an IKs channel blocker. Figure 7 A depicts the

behavior of APD, DI and lalt (estimated in windows of 30 cycles as

in Figure 6 A) during stochastic pacing (mean CL: 320 ms; SD of

CL: 1 ms). As in Figure 6 A, lalt progressively approached 21 and

alternans appeared when lalt reached 21. This indicates that

observing the course of lalt as it gets closer to 21 may also allow

anticipating alternans during pharmacologic interventions.

Figure 7 B represents the control situation, in which the model

Figure 6. Predicting alternans in the Ca2+-driven model with positive Ca2+ to APD coupling during ramp pacing. A: CL, APD, DI, lalt and
SS1S2 during the ramp decrease of CL with superimposed variations (SD = 1 ms). lalt and SS1S2 were estimated every 15 beats using a 2nd order ARMA
model from APDs and CLs in a window spanning the 30 preceding cycles. B: CL, APD and the difference series of APD (DAPD = APDi – APDi21) during
the ramp decrease of CL without stochastic variations. C: Top: CL, APD and DI during the ramp decrease of BCL with superimposed CL variations
(SD = 5 ms). Middle and bottom: Analysis of lalt and SS1S2 in n = 10 simulations, with and without adding a Gaussian error (SD = 1 ms) to APD,
simulating experimental measurement error. lalt and SS1S2 were estimated every 75 beats using a 2nd order ARMA model from APDs and CLs in a
window spanning the 150 preceding cycles. Data are presented as mean (bold lines) 6 SD (shaded areas). In all panels, vertical dotted lines indicate
the onset of macroscopic alternans (in A and C) and of micro-alternans (in B). D: Prediction of alternans by analyzing lalt vs. mean BCL in the windows
in which lalt was evaluated. Left: using a SD of BCL of 1 ms (windows of 30 cycles). Middle: using a SD of BCL of 5 ms (windows of 30 cycles). Right:
using a SD of BCL of 5 ms, after adding a Gaussian error on APD (SD = 1 ms; windows of 150 cycles). The green lines represent linear regression on
data points with lalt.20.85, and the dotted orange arrows represent the extrapolation of these regression lines towards lalt = 21. The occurrence of
alternans is marked with vertical dotted lines.
doi:10.1371/journal.pcbi.1002399.g006
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was paced at a constant CL of 320 ms without random variations,

but with the same decrease of IKs conductance. Manifest alternans

appeared later than in Figure 7 A, but micro-alternans (visible in

the DAPD series) appeared at the same moment as anticipated

from the evolution of lalt.

The sensitivity of the estimation of lalt on noise added to the

APD time series was investigated in Figure 7 C with an approach

similar to that used in Figure 6 C. A random Gaussian error was

added on the APD time series before the evaluation of lalt and the

simulation was repeated 10 times. In these simulations, the SD of

the random CL deviations was 2 ms and the SD of the error

added to APD was 1 ms. The number of cycles used for ARMA

model fitting was adjusted to 150. Adding noise to the APD time

series resulted in a slight underestimation of lalt (in absolute value)

but did not affect the time of its intercept with the line lalt = 21.

Thus, predicting the onset of alternans was not precluded by the

noise added to APD.

Superiority of ARMA model identification compared to a
time domain analysis

To investigate whether ARMA model identification during

stochastic pacing offers a significant advantage over a simpler time

domain analysis consisting of quantifying the decay of APD

oscillations following a perturbation, we examined the response of

the Sato et al. model to a step change of BCL. An example is

illustrated in Figure 8 A for the Ca2+-driven model with positive

Ca2+ to APD coupling after a step decrease of BCL from 400 to

390 ms. The step decrease of BCL caused transient decaying APD

alternans, followed by an exponential convergence of APD to its

new steady state at BCL = 390 ms. These two patterns reflect the

alternans and memory eigenmodes, respectively. To quantify the

decay of the alternans eigenmode, an exponential function was

fitted to the absolute value of the APD difference series (|DAPD|).

The time constant of this function provided an estimate of lalt of

20.800, which was close to the control value of 20.820 derived

using eigenmode analysis. However, as shown in Figure 8 B, this

estimation was compromised when noise was added to APD

(SD = 0.1 ms). In Figure 8 C, this time domain method is

compared statistically to ARMA model identification during

stochastic pacing (SD of APD: 5 ms; 3rd order ARMA model,

identification over 30 cycles). In the presence of noise, the

variability of lalt estimates was significantly smaller for ARMA

model identification during stochastic pacing. Similar results were

obtained at other BCLs and for the two other versions of the cell

model. Thus, in the presence of noise, ARMA model identification

is more robust than quantification of the exponential decay of

APD alternation following a step decrease of BCL.

Discussion

Alternans is a clinically relevant phenomenon leading to

dispersion of refractoriness, which precipitates conduction block

and reentrant arrhythmias [2–4]. The prediction of cardiac

arrhythmias and the understanding of their underlying mecha-

nisms have always represented a great challenge in both research

and cardiology practice. For these reasons, understanding

electrical restitution and alternans has been the topic of numerous

studies for more than four decades, starting with the classical one-

dimensional iterated map model of Nolasco and Dahlen [9]. The

dynamic mechanisms leading to alternans are manifold: they

involve not only complex interactions between ion currents and

Ca2+ handling at the cellular level, but also intercellular

interactions at scales ranging from tissue to the whole organ [2].

Because of this multiplicity of mechanisms and the complexity of

Figure 7. Predicting alternans in the Vm-driven model during a progressive decrease of IKs conductance. A: CL, APD, DI and lalt during
stochastic pacing (mean CL: 320 ms; SD of variations: 1 ms). lalt was estimated every 15 beats using a 2nd order ARMA model from APDs and CLs in a
window spanning the 30 preceding cycles. B: CL, APD and the difference series of APD (DAPD) when pacing at a CL = 320 ms without variations. C:
Top: CL, APD and DI during stochastic pacing (mean CL: 320 ms; SD of variations: 2 ms). Middle and bottom: Analysis of lalt in n = 10 simulations, with
and without adding a Gaussian error (SD = 1 ms) to APD, simulating experimental measurement error. lalt was estimated every 75 beats using a 2nd

order ARMA model from APDs and CLs in a window spanning the 150 preceding cycles. Data are presented as mean (bold lines) 6 SD (shaded areas).
In all panels, vertical dotted lines indicate the onset of macroscopic alternans (in A and C) and of micro-alternans (in B).
doi:10.1371/journal.pcbi.1002399.g007
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cardiac dynamics, predicting alternans and arrhythmias still

remains a difficult endeavor.

A new unified framework for restitution, alternans and
memory

In the present study, we revisit restitution by examining it in a

generalized framework based on eigenmode analysis, a sound

mathematical approach for the characterization of dynamical

systems. Previous studies based on eigenmode analysis [28,29]

have shown that in cardiac electrophysiology, alternans and

memory are actually the two faces of the same dynamics. By

looking into eigenmode analysis in the frequency domain, we first

showed that in the linear limit, the eigenmode description of a

cardiac cell is equivalent to the description using a memory model

of cardiac restitution. Both descriptions can be understood in

terms of transfer functions. In the frequency domain, memory and

alternans can then be regarded as the two extremes on the

frequency axis, which ranges from 0 to 0.5 beat21. Based on

engineering notions of signal processing, we then devised a

practical method to determine these transfer functions together

with their poles and zeros using only time series of CLs, APDs and

DIs. Our key finding is that the propensity to alternans can be

quantified and monitored and thus the onset of alternans can be

anticipated using the eigenvalue (first pole) lalt obtained via

ARMA model identification during pacing at intervals varying

randomly. The results of the computer simulations, conducted

with models exhibiting three fundamentally different ionic

mechanisms of alternans, not only support the general validity of

this approach but also suggest that it may also be applied in non

stationary regimes such as during a slow acceleration of the

(average) pacing rate or the progressive application of a drug. Our

approach is general because it can be applied to any model based

on a biophysical description of ion currents as well as any higher-

dimensional iterated map model of cardiac dynamics, such as the

models of Vinet et al. [10], Chialvo et al. [13] or Qu et al. [38], for

which eigenmode analysis can also be conducted and thus the

transfer functions determined.

Our approach develops its full strength when pacing at

randomly varying intervals is considered. Our simulations provide

the proof of principle that stochastic pacing permits the estimation

of the transfer functions HtRa and HtRd and thus of their first pole

as a marker for the propensity to alternans. It is worth to note that

in our simulations, ARMA model identification was excellent in

Figure 8. Superiority of ARMA model identification during stochastic pacing vs. a time domain analysis after a step change in BCL.
A: Response of the Ca2+-driven model with positive Ca2+ to APD coupling to a step decrease of BCL from 400 to 390 ms. Top: Pacing protocol. Middle:
Difference between APD and steady state APD at BCL = 390 ms, showing transient decaying alternans followed by an exponential convergence to
steady state. Orange and green dotted lines denote the components determined by the alternans and memory eigenmodes, respectively. Bottom:
Absolute value of the APD difference series, reflecting the decay of the alternans eigenmode. The red curve illustrates the best fit with an exponential
function, yielding lalt = 20.800. B: Same data and analysis as in A, but with a Gaussian noise added on APD (SD = 0.1 ms, top panel), yielding
lalt = 0.643. C: Comparison of lalt obtained with different methods, with eigenmode analysis serving as control. In the presence of noise added to
APD, stochastic pacing and ARMA model identification was superior to the time domain analysis with exponential fitting (n = 37; * p,0.05, two-tailed
Fisher-Snedecor’s F-test on variance).
doi:10.1371/journal.pcbi.1002399.g008
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estimating SS1S2, even in the presence of measurement noise.

Thus, the S1S2 restitution slope can actually be determined by

stochastic pacing without the need to conduct an S1S2 protocol.

However, the performance of ARMA model identification to

estimate Sdyn was low. This observation is explained by the fact

that the determination of Sdyn (using Eq. 21) is exquisitely sensitive

to errors in the determination of the higher order coefficients of

the ARMA model and that these errors cannot be decreased by

increasing the order of the ARMA model. Indeed, in our

simulations, .99% of APD variance was already described with

a model of order 2 or 3, and increasing this order provided neither

a better description of the dynamics, neither a higher reliability in

computing lalt or restitution slopes. This indicates that the

dynamics of the Sato et al. model, which has 16 variables, can

be well represented by a lower dimensional model of order 2 or 3

in near stationary regimes. This also explains that the estimation of

Sdyn using ARMA model identification is prone to a large

variability, and thus that it would not be superior to a conventional

pacing protocol in a practical experimental setting.

In this study, we used APD and DI as the system’s output time

series. It must be noted that our approach can also be used to

derive the transfer function between pacing cycle lengths and any

other output parameter such as the peak Ca2+ transient or the

peak of a given ion current. Therefore, in an experimental setting,

ARMA model identification during stochastic pacing could also be

applied on series of peak Ca2+ transients, or, a fortiori, on local

conduction velocities or mechanical parameters (e.g., peak force or

shortening). Our approach also offers the advantage to be

versatile. For example, exploring the frequency response of the

Ca2+ transient in addition to the response of APD may uncover

additional insights regarding the primary cause of alternans

(voltage vs. Ca2+ driven), which may be pertinent in determining

appropriate clinical therapeutic strategies (e.g. conventional

pharmacotherapy targeting ion channels vs. new agents that

may target the cellular Ca2+ handling machinery). This analysis

was however beyond the scope of this work.

Relation and consistency with previous studies
As demonstrated in the Methods section, the classical one-

dimensional memoryless map [9] represents a particular case for

which the criteria Sdyn = 1, SS1S2 = 1 and lalt = 21 are equivalent.

However, the equivalence of these criteria breaks down as soon as

cardiac dynamics exhibit memory. Memory can thus be defined as

any deviation from the first order map behavior. Thus, the notion

of memory clearly explains why, in a more general setting, any

prediction of alternans based on Sdyn or on SS1S2 [17,18] should

not be expected to be reliable.

In a theoretical study, Tolkacheva et al. [25] derived criteria for

alternans and stability based on measuring dynamic and S1S2

restitution slopes in an iterated map model given by APDn+1 =

f(APDn,DIn). The authors then generalized their analysis to

mapping models with an arbitrary amount of memory [21]

(corresponding to Eq. 15). The mapping models were investigated

in the time domain using the perturbed downsweep protocol. We

note that our framework is fully consistent with their time domain

analyses, as it yields, for example, an equivalent result for Sdyn.

However, our approach provides additional insights in the Z and

frequency domains and links restitution to eigenmode analysis. As

a principle, frequency domain analysis permits to understand

cardiac dynamics in response to any arbitrary sequence of pacing

intervals, including stochastic pacing and pacing at cycle lengths

varying in an oscillatory manner.

In this latter context, the recent studies of Wu and Patwardhan

deserve attention. To demonstrate memory effects, these investi-

gators paced a ventricular cell [26] or a mathematical cell model

[39] while controlling the DI and varying it as a sinusoidal

function with a period of 100 beats. This sinusoidal variation

resulted in hysteresis of APD vs. DI, i.e., in a phase shift between

both. Because a sinusoidal pacing protocol can be regarded as

probing the transfer functions at the corresponding frequency

(f = 0.01 beat21), memory effects should become apparent at this

frequency in graphical representations of transfer functions.

Accordingly, at frequencies #0.01 beat21, the three versions of

the Sato et al. model are characterized by manifest phase shifts

(Figure 5 B–D), whereas the phase shift is vanishingly small in the

memoryless first-order model (Figure 5 A). While a sinusoidal

pacing protocol thus represents a suitable approach to probe

memory, the advantage of the stochastic pacing protocol is that it

examines all frequencies at the same time, thus probing both

alternans and memory.

Perspectives, limitations and challenges
Stochastic pacing and ARMA model identification would be

straightforward to implement in any electrophysiological appara-

tus. Therefore, our approach could readily be translated to in vitro

and in vivo models, opening the perspective of new diagnostic

approaches during clinical investigation of heart rhythm disorders.

In the future, one could for example envision stochastic pacing for

clinical electrophysiological testing as a built-in extension to

cardiac mapping systems or implanted defibrillators for the

purpose of risk-stratification.

Obviously, our theoretical framework must withstand the

challenge of experimental validation. Because experimental data

such as APD measurements are always subject to measurement

error and because APD variability may also result from the

stochastic gating of ion channels [40], it will first be necessary to

carefully optimize the SD of stochastic pacing variations, the

number of cycles used for ARMA model identification and the

order of the ARMA model. Our simulations suggest that our

approach performs well as long as the system remains near its

linear limit. If the SD of CL is set to be too large, our approach will

eventually be limited by nonlinearities in the system and some

stimuli may fall in the refractory period. To minimize the intrinsic

variability of APD, it may then be appropriate to use small pieces

of cardiac tissue in which this intrinsic variability is strongly

decreased by gap junctional coupling between individual cells

[40]. It will also be necessary to evaluate the effects of other

sources of variability in both experiments and further computer

simulations. Nevertheless, our computational results indicate that

our approach should be robust in predicting the onset of alternans.

From a theoretical point of view, it will also be necessary to

extend the theory to multicellular systems in order to understand

the influences of intercellular interactions, the effects of conduction

velocity restitution [41,42] and the consequences of multidimen-

sional phenomena such as wavefront curvature [43]. In particular,

it has been shown in spatially extended systems that electrotonic

interactions can exert a large influence on the occurrence of

alternans and the APD restitution slope at which alternans occurs

[16,23]. Furthermore, the occurrence of alternans can be

significantly modulated by steep conduction velocity restitution

slopes [15]. These aspects will require a careful computational

evaluation. Such computational studies will permit to understand

the possibilities and limitations of our framework in greater detail,

and they are expected to provide additional insights into

dynamical phenomena emerging at multicellular scales, such as

spatially discordant alternans [41,42].
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Conclusion
In conclusion, stochastic pacing combined with ARMA model

identification represents a novel frequency domain approach to

study cardiac dynamics. This approach should be applicable

experimentally for the accurate evaluation of the propensity to

alternans and the prediction of its onset. Because its mathematical

foundation does not make any a priori assumptions about the ionic

mechanisms of alternans, it pertains to any type of myocardial cell

or tissue, irrespective of species, disease status or pharmacological

interventions.
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