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Recent advances in various single-cell RNA sequencing (scRNA-seq) technologies have
enabled profiling the gene expression level with the whole transcriptome at a single-cell
resolution. However, it lacks the spatial context of tissues. The image-based
transcriptomics in situ studies (e.g., MERFISH and seqFISH) maintain the cell spatial
context at individual cell levels but can only measure a limited number of genes or
transcripts (up to roughly 1,000 genes). Therefore, integrating scRNA-seq data and
image-based transcriptomics data can potentially gain the complementary benefits of
both. Here, we develop a computational method, SpatialMap, to bridge the gap, which
primarily facilitates spatial mapping of unmeasured gene profiles in spatial transcriptomic
data via integrating with scRNA-seq data from the same tissue. SpatialMap directly models
the count nature of spatial gene expression data through generalized linear spatial models,
which accounts for the spatial correlation among spatial locations using conditional
autoregressive (CAR) prior. With a newly developed computationally efficient penalized
quasi-likelihood (PQL)-based algorithm, SpatialMap can scale up to performing large-scale
spatial mapping analysis. Finally, we applied the SpatialMap to four publicly available
tissue-paired studies (i.e., scRNA-seq studies and image-based transcriptomics studies).
The results demonstrate that the proposed method can accurately predict unmeasured
gene expression profiles across various spatial and scRNA-seq dataset pairs of different
species and technologies.

Keywords: scRNA-seq, spatial transcriptomics, generalized linear spatial model, integrative analysis, penalized
quasi-likelihood

1 INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is becoming an established experimental technique for
transcriptome profiling to study the functional states of individual cells and to reveal all possible cell
types/states (Tim and Satija, 2019; Ma et al., 2020; Lindeboom et al., 2021). Current scRNA-seq
technologies/protocols allow whole-transcriptome sequencing in an unbiased manner (Picelli et al.,
2014; Zheng et al., 2017; Mereu et al., 2020). However, these protocols commonly result in the
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dissociation of tissue of origin to single cells and therefore loss of
spatial context. Since the isolated cells are out of their original
tissue matrix or natural microenvironment, altered
transcriptional states do not truly reflect the natural states of a
cell within the tissue of origin (Ståhl Patrik et al., 2016; Burgess,
2019; Sun et al., 2020; Zhu et al., 2021), which is a crucial step
toward understanding spatial heterogeneity of complex tissues
(Antebi et al., 2017; Levy-Jurgenson et al., 2020; Saviano et al.,
2020) ].

Single-molecule fluorescence in situ hybridization (smFISH)
or image-based transcriptomics in situ studies (Battich et al.,
2013) provide an unprecedented opportunity to decipher the
functional states on the spatial landscape at single-cell or even
subcellular resolution within the context of tissue of origin, such
as MERFISH (Xia et al., 2019) and seqFISH (Shah et al., 2018).
However, these protocols usually only assay a limited number of
genes or transcripts and therefore biased transcriptome profiling
of one particular cell. Although a recent evolution of sequential
fluorescence in situ hybridization (e.g., seqFISH+) achieves
super-resolution imaging and multiplexing of genes up to
around 10,000 per cell (Linus Eng et al., 2019; Xia et al.,
2019), it always involves the heavy computational burden with
increasing data storage (Strell et al., 2019).

Overall, scRNA-seq technologies allow whole-transcriptome
profiling but for the loss of spatial context, while image-based
transcriptomics in situ studies maintain spatial context but profile
a limited number of genes. Therefore, to bridge such a gap, an
integrative analysis of scRNA-seq studies and image-based
transcriptomics in situ studies is potentially able to gain
complimentary benefits from both of them. Recently, many
integrative methods were developed to map the single cells
dissociated from scRNA-seq protocols to the spatial landscape
of the same tissues of origin (James et al., 2014; Achim et al., 2015;
Satija et al., 2015), while only one machine learning method,
SpaGE, was developed for predicting the missing gene expression
measurements in the spatial data via integrating with scRNA-seq
data from the same tissue (Abdelaal et al., 2020). SpaGE integrates
spatial and scRNA-seq datasets to predict unmeasured expression
profiles in their spatial configuration. On the one hand, however,
SpaGE requires the data transformation step of both data prior to
performing the integrative analysis. However, it is documented in
many other studies that analyzing normalized data can be
suboptimal as this approach fails to account for the
mean–variance relationship that existed in raw counts (Sun
et al., 2017; Lun, 2018). On the other hand, SpaGE ignores the
spatial correlation among spatial locations and therefore lost the
spatial heterogeneity modeling in the analysis.

In this article, we develop SpatialMap, a robust statistical
method to predict unmeasured gene expression profiles of
each cell in spatial transcriptomic data through the integration
with scRNA-seq data from the same tissue. SpatialMap relies on
the generalized linear spatial models that directly model the count
nature of gene expression levels of spatial transcriptomics data
and accounts for the spatial heterogeneity using conditional
autoregressive (CAR) prior (Julian and Kooperberg, 1995).
Moreover, we develop a computationally efficient algorithm
based on the penalized quasi-likelihood (PQL) algorithm (Sun

et al., 2019). Finally, we apply SpatialMap on four tissue-paired
datasets consisting of scRNA-seq data and image-based spatial
transcriptomics data on the same tissue. The results demonstrate
that SpatialMap can accurately predict unmeasured gene
expression profiles across various spatial and scRNA-seq
dataset pairs and would be, especially conducive to spatial
downstream analysis when the image-based spatial data are
poor in transcript profiles.

2 RESULTS

2.1 SpatialMap Overview
We developed a computational method, SpatialMap, to predict
unmeasured gene expression levels of the spatial landscape using
scRNA-seq data (Figure 1A). We briefly provide an overview of
SpatialMap;more details are available inMethods andMaterials.We
take spatial and scRNA-seq gene expression matrices as inputs; to
characterize spatially expressed patterns with genes, we examine one
gene at a time. For each genemeasured by image-based technologies,
we model the raw read counts with a Poisson distribution, i.e.,

yi ~ Poi Niλi( ), i � 1, 2, . . . , n, (1)
where Poi(·) is the Poisson distribution, Ni is the summation of
the total number of counts across all genes for spatial spot i, and λi
is an unknown Poisson rate parameter, which can be modeled as
the linear combination of the following terms:

log λi( ) � α + xiβ + gi + ei, (2)
where α is an intercept; xi refers to the cell-type-specific
expression-level computed by scRNA-seq for the ith pixel, and
β is its corresponding coefficient; ei is the residual term that is
independently and identically distributed following N (0, σ2 (1 −
h2)), with σ2 and h2 being the scaling factors; and gi is a random
effect modeling the spatial correlation pattern among spatial
pixels with kernel functions, i.e.,

g � g1, g2, . . . , gn( )
T ~ MVN 0, σ2h2K( ), (3)

whereMVN (·) denotes the multivariate normal distribution and
the variance–covariance matrix K is a kernel function of the n
spatial pixels. We set h2 ∈ [0, 1], explaining the expression
variance in log (λi) owing to the random noise g. e is a n-
vector following MVN (0, σ2 (1 − h2)I) with I being an n by n
identity matrix that models an independent sequencing error. In
addition, we also use conditional autoregressive (CAR) models as
the prior distributions for spatial random effects with spatial data.
By Brook’s Lemma, the joint distribution of spatial random
effects can be modified as:

g ~ MVN 0, σ2h2 D − αsW( )−1( ), (4)
where αs is a parameter that controls spatial dependence (αs = 0
implies spatial independence and αs = 1 collapses to an intrinsic
conditional autoregressive (IAR) specification). D = diag (mi) is
an n by n diagonal matrix with mi = the number of neighbors for
pixel i.W is the adjacency matrix (wii = 0, wij = 1 if i is a neighbor
of j, and wij = 0 otherwise.
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FIGURE 1 |Overview of SpatialMap. (A) Pipeline of SpatialMap. SpatialMap takes tissue-paired image-based spatial data (contain about 1,000 genes) and scRNA-
seq data (contain about 20,000 genes) as inputs, aiming to predict expression patterns for spatially unmeasured genes using a generalized linear spatial model. (B)
Pearson correlations between predictions and original values of randomly selected 100 genes from experiments on the SeqFISH dataset. The mean values are 0.402,
0.168, and 0.108; minimum values are 0.074, −0.178, and −0.078; and maximum values are 0.878, 0.560, and 0.583 for SpatialMap, SpaGE, and Seurat,
respectively. Each dot represents an individual gene. (C) Pearson correlations between predictions and original values of SPARK-selected 35 genes from experiments on
the SeqFISH dataset. The mean values are 0.607, 0.377, and 0.355; minimum values are 0.024, −0.079, and −0.158; andmaximum values are 0.899, 0.764, and 0.899
for SpatialMap, SpaGE, and Seurat, respectively. (D) Visualization of predicted spatial expressions. Pearson correlations are 0.825, 0.814, and 0.894 for SpatialMap-
performed genes Shank1, Agap2, and Eef1a2, respectively. Color represents the relative gene-expression level (purple, high; green, low) (E) Pearson correlations
between predictions and original values using different kernel functions in SpatialMap. “CAR 1” to “CAR 9” indicates CAR prior concerning spatial parameters being 0.1
to 0.9, and “Sigma 1” to “Sigma 5” indicates the Gaussian kernel with five chosen various scaling parameters. Color represents different kernels used in SpatialMap.
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With the tissue-paired scRNA-seq data and spatial image-
based data, we denote xi as the average gene expression level
across all cells within one particular cell type. The construction of
generalized linear spatial models is regarded as the most crucial
step. On the one hand, directly modeling on counts avoids
information loss caused by the data normalization and scaling
process. On the other hand, introducing random effects not only
accommodate the widespread independent sequencing error but
also explain nonindependent error among pixels due to the
affinity in the physical space, fully carrying over-dispersion of
sparse spatial transcriptome. Through parameter estimation and
statistical inference, the spatial distribution of genes shared by
scRNA-seq and spatial techniques can be figured out and served
as references for predictions of genes without spatial resolution.

Cross-validation is used to display the power of SpatialMap in
reproducing spatially expressed patterns. Specifically, genes
shared by tissue-paired spatial and scRNA-seq datasets are
used as ground truth. We remove one gene at a time and set
the rest as the observed data to fit the generalized linear spatial
model (GLSM). Here, for each removed gene, we choose its most
correlated gene among the shared data, computed by their
scRNA-seq expression profiles, as the reference gene, to
predict the spatial patterns of the removed gene using
estimates. Finally, correlations between predicted values and
their ground truth are used for performance evaluation. We
also perform prediction evaluation under different
downsampling setups and kernel functions.

2.2 SpatialMap Outperforms SpaGE and
Seurat on STARmap and seqFISH Datasets
We first applied SpatialMap on the tissue-paired seqFISH
datasets (Linus Eng et al., 2019). There were 9,879 shared
genes measured by both spatial and single-cell datasets,
collected at 913 spatial pixels by the seqFISH technique in the
cortex, subventricular zone, and choroid plexus of the mouse
brain. For convenience, we only leverage 1,000 randomly selected
genes for simulation experiments. We aim to attest excellent
prediction performance of SpatialMap, compared with state-of-
the-art methods, SpaGE and Seurat. We randomly select 100
genes and apply SpatialMap to the rest of the genes to figure out
their spatial distribution for further prediction. SpaGE and Seurat
are also performed based on the same settings, respectively. We
evaluated the prediction performance by calculating the Pearson
correlation between the originally measured spatially resolved
genes and their corresponding prediction values. SpatialMap
outperforms SpaGE and Seurat with a mean Pearson
correlation at 0.388 (average at 0.388 with a standard error at
0.023), compared to a mean at 0.167 and 0.108 for SpaGE and
Seurat, respectively (Figure 1B). Moreover, the best prediction
for the Syngap1 gene reaches a Pearson correlation at 0.878, using
SpatialMap, and the highest correlations are 0.560 (Sema6b) and
0.582 (Slain1) (for SpaGE and Seurat, respectively).

We wonder whether having more measured spatial genes is
always beneficial to predict the spatial patterns of unmeasured
genes. To answer that, we take the number of known genes into
account as sensitivity analysis. We fixed 100 genes as a test set and

downsampled the remaining 100, 200, 300, 400, 500, and 600
genes to fit the model. However, the average Pearson correlations
show only a slight change in prediction performance with a
maximum at 0.3973 and a minimum at 0.3963. We check average
correlations between the test set and their reference genes under
different downsampling setups, and the results show similar
minor changes, as the minimum average correlation is 0.1962
and the maximum average correlation is 0.2549, increasing with
the number of known genes. Therefore, we may suspect that
prediction performance is related to the correlation between
unmeasured genes and their reference genes, rather than the
number of known genes to fit the model.

Furthermore, since we are concerned with spatial gene-
expression patterns, we test the prediction performance for
spatially specific genes. SPARK is a method for detecting genes
with spatial expression patterns in spatially resolved
transcriptomics studies (Sun et al., 2020). SPARK directly
models the count data generated from various spatially
resolved transcriptomics techniques through generalized spatial
linear models. We apply SPARK on the seqFISH dataset and
select 35 significant (adjusted p − value< 0.05) spatially expressed
genes. Prediction and correlation evaluation is performed, and
the results indicate higher reproducibility of the spatially
expressed genes (Figure 1C). The average Pearson correlation
achieves 0.607, and the best result even reaches 0.898 (Cnp). We
visually compared some highly correlated genes, Shank1, Agap2,
and Eef1a2 (Figure 1D). SpatialMap recovers their spatial
patterns well, while SpaGE and Seurat failed to do so. They
mistakenly predicted Shank1 to be highly expressed across the
tissue, while Agap2 remains sparse everywhere.

In addition, we demonstrate the performance of SpatialMap
about different kernels with parameters. The Gaussian kernel
function with various scaling parameters and CAR prior with
different spatial parameters are tested based on 100 genes
(Figure 1E). Pearson correlations indicate that SpatialMap is
stable to sort kernel functions and shows robustness in parameter
selections. We next applied SpatialMap to the tissue-paired
STARmap dataset (Wang et al., 2018). There are 994 shared
genes, collected at 1,549 spatial pixels by the STARmap
technique, in the mouse’s primary visual cortex. At first, we
are interested in reproducing the spatial distribution of known
cortical layer marker genes and interneurons. A total of 12 genes
including seven excitatory neuron markers (Slc17a1, Nov, Cux2,
Rorb, Sulf2, Pcp4, and Ctgf) and five inhibitory neuron markers
(Gad1, Pvalb, Sst, Npy, and Vip) remained as a test set. We
performed prediction on the rest of the 982 genes using SpaGE
and Seurat to benchmark the performance of SpatialMap. We
evaluated the prediction performance by calculating the Pearson
correlation between the originally measured spatially resolved
genes and their corresponding prediction values. The results
indicate that SpatialMap outperforms SpaGE and Seurat on
spatial pattern reproduction, with a mean Pearson correlation
at 0.522, compared to 0.388 and 0.437 for SpaGE and Seurat,
respectively (Figure 2B). To be more accurate, 100 spatially
resolved genes are selected for testing prediction performance
(Figure 2C). We performed using SpaGE and Seurat to
benchmark SpatialMap; moreover, different kernel functions
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FIGURE 2 | Performance evaluation on STARmap and osmFISH datasets. (A) Visualization of predicted spatial expressions. Pearson correlations are 0.320, 0.295,
0.518, 0.736, and 0.564 for SpatialMap-performed genes Nov, Rorb, Pcp4, Gad1, and Vip, respectively. (B) Pearson correlations between predictions and original
values of 11 known marker genes from experiments on the STARmap dataset. The mean values are 0.522, 0.388, and 0.438; minimum values are 0.295, 0.177, and
0.158; and maximum values are 0.736, 0.565, and 0.650 for SpatialMap, SpaGE, and Seurat, respectively. (C) Pearson correlations between predictions and
original values of randomly selected 100 genes from experiments on the STARmap dataset. Themean values are 0.250 (average at 0.194 with a standard error at 0.0235
among 10 repeat predictions), 0.142, and 0.129; minimum values are 0.0005, −0.172, and −0.144; and maximum values are 0.734, 0.646, and 0.582 for SpatialMap,
SpaGE, and Seurat, respectively. (D–G) UMAP visualization of clustering performance on the osmFISH dataset. (D,E) Leiden clustering and UMAP based on original 33
genes from the osmFISH dataset, colored by cluster number (D) and cell type annotation labels (E). (F,G) Leiden clustering and UMAP based on 43 genes by predictions
using SpatialMap, colored by cluster number (F) and cell type annotation labels (G). Dots represent individual spatial pixels.
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with various parameters for the covariance matrix in SpatialMap
are tested as well. Pearson correlations demonstrate that
SpatialMap works generally better than the other two methods
and is fairly stable concerning different parameters.

We visualize spatially expressed patterns of predictions
together with the original truth value for more intuition
(Figure 2A). Only part of the genes, Nov, Rorb, Pcp4, Gad1,
and Vip are visualized, with the Pearson correlations at 0.328,
0.291, 0.514, 0.719, and 0.575, respectively. Notably, Gad1 and
Vip, known markers of inhibitory neurons, displayed sparse
spatial patterns but showed fairly high reductions using
SpatialMap. Therefore, it may indicate the compatibility of
SpatialMap to the sparse spatial transcriptome. As can be seen
from the aforementioned simulations, although correlations
between SpatialMap-predicted values and the original truth are
low, it has quite improved power over SpaGE and Seurat and is
sufficient to clearly show spatial patterns.

2.3 SpatialMap Accurately Predicts
Unmeasured Gene Expression Profiles of
OsmFISH and MERFISH Datasets
The OsmFISH (Codeluppi et al., 2018) dataset consists of only 33
marker genes of mouse somatosensory cortex tissue by the cyclic
smFISH technique. The mouse somatosensory cortex was then
divided into 11 specific regions by identifying the spatial-
dominant cell types on a single section in previous studies
(Codeluppi et al., 2018). Cross-validation on the OsmFISH
dataset showing poor performance is one of the critical reasons
for the missing association that is attributed to the small sample size
(Wang et al., 2022). In the original dataset, Leiden clustering was
performed on all 33 gene-expression profiles. However, visualization
by UMAP (performed using five dimensions) does not clearly show
distinct clusters (Figures 2D,E). Therefore, we consider improving
the clustering based on predicting more spatially resolved gene
patterns. After performing SpatialMap, UMAP visualization
showed clear clusters (Figures 2F,G), consistent with the fact that
two clusters far apart are also anatomically separate. Therefore, by
predicting the spatial expression profiles, it is helpful to optimize the
spatial clustering, which is conducive to the division of a data-driven
spatial organization.

Next, based on the previous simulation experiments,
SpatialMap has shown great predictive power in leave-n-
genes-out cross-validations. However, all of these results were
achieved using relatively small-scale spatial datasets, with
SeqFISH, STARmap, and OsmFISH measured on just around
1,000 pixels. This raises the question of whether SpatialMap is
capable of applications on larger-scale spatial datasets. To
evaluate this performance, the MERFISH (Xia et al., 2019)
spatial dataset together with its corresponding scRNA-seq
dataset pair, collected from the preoptic region of the
thalamus in mice, was used for simulations. The MERFISH
dataset contains transcriptomics profiles of 160 genes
measured on 4,975 pixels. Of these, 155 genes were selected in
previous studies as the markers of different cell populations or
associated with various neuronal functions. A total of 139 genes
were shared, and four marker genes were selected for four main

cell types, inhibitory neuron (Gad1), mature OD cells (Mbp),
ependymal cells (Cd24a), and mural cells (Myh11). We apply
SpatialMap to reproduce their spatial patterns and perform
visualization compared with SpaGE and Seurat.

The results indicated that SpatialMap could reproduce their
spatially expressed patterns (Figure 3B) and is consistent with the
distribution of cell types (Figure 3B). Compared with SpaGE and
Seurat, SpatialMap shows clear spatial expression patterns and
avoids overexpressed predictions, especially for the Gad1marker,
while SpaGE and Seurat predicted a highly expressed pattern in
the truly low-expressed regions. However, for the marker gene
Cd24a, SpatialMap is equally unsatisfactory. It may be because of
the low correlation (0.179) between the Cd24a-expression level
and any other reference gene. Therefore, genes with distinct
differences at scRNA-seq levels are not suitable as references
for spatial pattern predictions.

3 METHODS AND MATERIALS

3.1 SpatialMap: Model and Algorithm
We aim to model gene-expression data collected by various
image-based spatial technologies, such as seqFISH, osmFISH,
and MERFISH, using integration with single-cell RNA
sequencing data referred to the same biological tissue. These
spatial techniques simultaneously record gene-expression levels
of q different genes on n different spatial sites on a tissue of
interest, which we also refer to as spatial pixels. The gene-
expression levels are usually obtained as counts for the fact
that they are numbers of barcode mRNA for any given
transcript in a single cell. The number of genes, q, often varies
as many as ~1,000, and the number of spatial sites randomly
varies from a couple of hundreds to thousands. For the
corresponding scRNA-seq data, the number of genes can
achieve the whole transcriptome for every single cell.

The purpose to integrate image-based spatially resolved data
with scRNA-seq collected on the same tissue is to predict spatially
expressed patterns for those unmeasured genes. We map single-
cell level expression patterns for cell types using a generalized
linear spatial model (GLSM). GLSM is a generalized linear mixed
model that directly models non-Gaussian spatial data and uses
random effects to capture the underlying stationary spatial
process (Christensen and Waagepetersen, 2002).

Specifically, SpatialMap uses two gene-expression matrices
Yn×q and Sm×p as inputs, corresponding to image-based spatial
transcriptome data and scRNA-seq, respectively. We model one
gene at a time. We denote yi, the ith row of Yn×q, as the gene-
expression measurement in the form of counts for the ith spatial
pixel. We denote Ni as the normalization factor for the ith pixel,
computed as the summation of the total number of counts across
all genes for the ith pixel. We consider modeling the observed yi
with an overdispersed Poisson distribution:

yi ~ Poi Niλi( ), i � 1, 2, . . . , n, (5)
where Poi (·) is the Poisson distribution and λi is an unknown
Poisson rate parameter, which can be modeled as the linear
combination of the following terms:
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log λi( ) � α + xiβ + gi + ei, (6)
g � g1, g2, . . . , gn( )

T ~ MVN 0, σ2h2K( ), (7)
e � e1, e2, . . . , en( )T ~ MVN 0, σ2 1 − h2( )I( ), (8)

where α is an intercept; xi refers to the expression-level of the cell
typemapped to the ith pixel; β is the corresponding coefficient; ei is
the residual error that is independently and identically distributed
followingN (0, σ2 (1 − h2)), with σ2 and h

2 being the scaling factors;
and gi is a random effect modeling the spatial correlation pattern
among spatial pixels, where MVN (·) denotes the multivariate
normal distribution and the variance–covariance matrix and K is a
kernel function of the n spatial pixels using Gaussian kernel or
CAR prior.We set h2 ∈ [0, 1], explaining the expression variance in
log (λi) owing to the random noise g. e follows a multivariate
normal distribution, and I is a n by n identity matrix.

For image-based spatial data, each count represents a gene-
expression measurement in a single cell at that pixel. Therefore,
finding an embeddedmapping between single cells and spatial pixels
can directly make the integration work. However, due to
inconsistency in the number of cells and number of pixels,
mapping between cell types and spatial pixels is constructed as a
replacement due to the following considerations: first, tissue
dissociation before scRNA-seq is unlikely to preserve all the cells,
resulting in information imbalance between single-cell and spatial
techniques. In addition, spatial data and scRNA-seq data are often
collected from two different experiments, hardly retaining one-to-
one correspondence among pixels and cells. Moreover, the spatial

characteristics of transcriptomes and their spontaneous impacts are
the research purpose instead of the precise physical location of each
cell in a tissue. Therefore, we set the gene-expression level for each
cell type as the average of cells within that type, simply referred to as
the center. The center ismapped to its corresponding pixels based on
Pearson correlation in the expression space. Cell type identification
can be based on previous annotations or other clustering methods.

We evaluated the prediction performance using cross-
validation. N genes shared by spatial and scRNA-seq datasets
are used as ground truth; n genes are left out, and the remaining
N − n genes are used for integration and spatial mapping of n
“unmeasured” expression profiles in spatial data. The prediction
is then evaluated by comparing the original measurement and the
predicted expression profiles of the removed genes. We have two
kinds of gene left-out experiments. On the one hand, we intend to
randomly select some genes and evaluate the prediction
performance of all the methods to draw their ability in
general. On the other hand, considering that we are interested
in genes that display spatial patterns rather than their exact gene
expression level, we identify some genes with spatial expression
patterns (referred to as SE genes) and perform prediction
evaluations, to characterize the performance of all the methods
on them.

3.2 Algorithms
In GLSM, whether the single-cell gene-expression level that is
helpful to characterize its spatial pattern conducive to the selected
genes which serve well as a reference to predict spatial patterns for

FIGURE 3 | SpatialMap accurately predicted the expression of marker genes Gad1, Mbp, Myhh11, and Cd24a, consistent with MERFISH-measured data. (A)
Spatial distribution of four main cell classes. The cell classes are represented by colored dots, while all other background cells are shown as gray dots. (B) SpatialMap-
predicted genes (the second column) fairly recover their measured patterns by the MERFISH technique (the first column) and correspond to the distribution of cell types.
Color represents the relative gene-expression level (purple, high; green, low).
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more unmeasured ones is tested. Also, it can be translated into
testing the null hypothesis “H0: β = 0.” Parameter estimation and
hypothesis testing in GLSM is notoriously difficult, as the GLSM
likelihood consists of an n-dimensional integral that cannot be
solved analytically. Therefore, we develop an approximate-
inference algorithm based on the penalized quasi-likelihood
(PQL) approach (Lin and Norman, 1996; Sun et al., 2019).
The PQL approach employs an iterative numerical
optimization procedure. In each iteration, we introduce a set
of continuous pseudodata ŷ to replace the originally observed
count data y. The pseudodata ŷ is obtained based on a second-
order Taylor expansion using the conditional distribution P (yi|β,
e) with the first- and second-order moments E (yi|β, e) and V
(yi|β, e), both evaluated at the current estimates of the fixed
coefficients β as well as the nugget effects e. With the pseudodata,
the complex GLSM likelihood function for the original data y is
replaced by a much simpler LMM likelihood function for the
pseudodata ŷ, thereby alleviating much of the computational
burden associated with GLSM. With the pseudodata ŷ, we can
perform inference and update parameters using the standard
average information (AI) algorithm for LMMs (Yang et al., 2011;
Han et al., 2016). By iterating between the approximation step of
obtaining the pseudodata ŷ and the inference step of updating the
parameter estimates via the AI algorithm, the PQL approach
allows us to perform inference in a computationally efficient
fashion. To further improve the computational speed, we also
take advantage of the parallel computing environment readily
available in modern desktop computers nowadays and
implement our method with multiple-thread computing
capability using Rcpp.

The statistical power of such a hypothesis test will inevitably
depend on howwell the spatial kernel functionKmatches the true
underlying spatial patterns. Therefore, the Gaussian kernel with
different scaling parameters and kernel from the conditional
auto-regression (CAR) model (Duncan et al., 2014) with
different spatial parameters are performed in experiments to
show quite a robustness of SpatialMap. With parameter
estimates from the PQL-based approach, we compute the p −
value and select genes with p − value < 0.05 as a reference set. For
those spatially unmeasured genes, we compute their Pearson
correlation with the reference set in the single-cell expression
space and extract the most “correlated” gene with its estimates
Θ̂ � {α̂, β̂, σ̂2, ĥ2}; log(λ̂i) � α̂ +X(un)

i β̂ + ĝi + ϵ̂i is computed with
X(un) being valued of that spatially unmeasured gene, and its
predicted spatial pattern can be finally sampled.

3.3 Datasets Used in This Study
We used four image-based spatial datasets (SeqFISH (Linus Eng
et al., 2019), STARmap (Wang et al., 2018), OsmFISH (Codeluppi
et al., 2018), andMERFISH (Xia et al., 2019)) and two scRNA-seq
datasets (AllenVISp (Tasic et al., 2018) and Moffit (Moffitt Jeffrey
et al., 2018)). For image-based data, the SeqFISH dataset contains
10,000-gene probes to image 913 cells in the cortex,
subventricular zone (SVZ), and choroid plexus of the mouse
brain using the SeqFISH+ technique. It can be downloaded at
https://github.com/CaiGroup/seqFISH-PLUS. The STARmap
dataset contains 1,020 genes on 1,549 cells using the

STARmap technique of the mouse primary visual cortex. The
corresponding data and preprocessing code can be downloaded at
https://github.com/weallen/STARmap. The OsmFISH dataset
contains 33 genes of 1,290 cells collected from the mouse
somatosensory cortex using cyclic smFISH. It can be
downloaded at http://linnarssonlab.org/osmFISH/. The
MERFISH dataset is collected on the mouse preoptic region of
the hypothalamus from Dryad. We used the slice at Bregma +0.
11 mm from animal 18 for analysis, as it contains 155 genes
measured on 4,975 cells. It can be downloaded at https://
datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248. The
downloaded data have already been normalized. To obtain the
raw count data, we rescaled the expression values by first
multiplying by 1,000, adjusting for cell volume, and then
converting the rescaled value into integers by taking the
ceiling over the rescaled data. For scRNA-seq data, the
AllenVISp (GSE115746) dataset contains scRNA-seq of 12,714
cells from the mouse primary visual cortex (VISp) with cell-type
annotations. The Moffit (GSE113576) dataset contains scRNA-
seq of ~ 31,000 cells dissociated and captured from the preoptic
region of the hypothalamus from multiple male and female mice.

During preprocessing of AllenVISp data, cells with the read
depth (computed by the summation of the read counts across
genes) less than 10 were removed, and cells labeled as “No class”
or “Low Quality” are also left out according to the known
metadata. During preprocessing of Moffit data, cells with the
read depth less than 100 or labeled as “Ambiguous” or “Unstable”
were removed. Cell filtration keeps the same for all the three
methods. SpaGE and Seurat require data normalization (log-
transformation using scaling factor 1e4), while SpatialMap takes
raw count data as input. Other details on preprocessing of four
spatial datasets are described in the Results part.

4 DISCUSSION

We develop a computational method, SpatialMap, based on the
generalized linear mixed model for mapping scRNA-seq into the
spatial landscape. The predictive performance of SpatialMap is
highly dependent on the construction and inference of statistical
models for spatial gene expression patterns. In a statistical sense,
the spatial distribution characteristics of each gene are outlined
more directly and clearly, providing a reliable distribution rule for
the prediction of the spatial pattern of new genes. In the process of
data preprocessing, SpatialMap only needs to filter the pixels or
genes with low expression and does not need to normalize or scale
the data, to greatly avoid the interference and ambiguity of the
latent information during the classical data preprocessing.

By simulations, we demonstrate that SpatialMap can
effectively restore the spatial patterns of genes with significant
spatial expression patterns. Compared with the present methods,
SpatialMap can better display the relative gradient of gene
distribution. For extremely sparse genes, SpatialMap can also
capture their distribution to some extent. However, genes with
highly sparse measurements in the downstream analysis generally
do not provide significant information. Thus, it is recommended
to be filtered in the preprocessing step. Comparing the prediction
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performance in SeqFISH data under the cross-validation set up of
the randomly-selected genes and SPARK-selected-SE genes,
SpatialMap managed to achieve higher correlations in genes
with spatial patterns. We suspect that there are two reasons:
on the one hand, SPARK can identify only 35 genes as SE genes,
so the high correlations of some individual genes lead to a higher
average level; on the other hand, we fit the models using genes
with both spatial measurements and scRNA-seq expression
profiles, among which the most correlated one in the scRNA-
seq expression space is selected as the reference to predict
spatially unmeasured genes. The average correlation level
between the 100 randomly selected genes and their reference
genes in scRNA-seq is 0.206 (with a minimum at 0.068 and a
maximum at 0.674), while the average correlation level between
the 35 SE genes selected by SPARK and their reference genes in
scRNA-seq is 0.350 (with a minimum at 0.022 and a maximum at
0.616). Therefore, measured in the scRNA-seq expression space,
the more dissimilar the reference gene is to the gene to be
predicted, the worse the predictive performance will be.

SpatialMap can directly capture data characteristics. Based on
the relationship between the expression of genes at the single-cell
resolution and the configuration of spatial patterns, SpatialMap
can fit the spatial distributions of genes well by establishing
adaptive distribution and is supported by a powerful

parameter estimation algorithm, which greatly improves the
application and efficiency of the method.
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