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Abstract: Purpose: Gastrointestinal heat retention syndrome (GHRS) often occurs in adolescents,
resulting into nervous system injury. Realgar, an arsenic mineral with neuroprotective effect, has been
widely used to treat GHRS. However, its mechanism of action remains unknown. Methods: A GHRS
rat model was established using a high protein and high calorie diet. We performed macroscopic
characterization by assessing bowel sounds, hot/cold preference, anal temperature, and fecal features.
Atomic fluorescence spectroscopy was employed to evaluate brain arsenic level while hippocampal
ultrastructural changes were analyzed using transmission electron microscopy. In addition, inflam-
matory cytokines and BBB breakdown were analyzed by western blotting, immunofluorescence
assays, and immunohistochemistry staining. We also evaluated hippocampal metabolites by LC-MS
while fecal microorganisms were assessed by 16S rDNA sequencing. Results: Our data showed
that the high protein and high calorie diet induced GHRS. The rat model depicted decreased bowel
sounds, increased fecal characteristics score, preference for low temperature zone, and increased anal
temperature. In addition, there was increase in inflammatory factors IL-6, Iba-1, and NF-κB p65 as
well as reduced BBB structural protein Claudin-5 and Occludin. The data also showed appearance
of hippocampus metabolites disorder and fecal microbial imbalance. Realgar treatment conferred
a neuroprotective effect by inhibiting GHRS-specific characteristics, neuroinflammatory response,
BBB impairment, metabolites disorder, and microbial imbalance in the GHRS rat model. Conclusion:
Taken together, our analysis demonstrated that realgar confers a neuroprotective effect in GHRS rats
through modulation of the microbiota-gut-brain axis.

Keywords: realgar; GHRS; neuroinflammation; microbiota-gut-brain axis

1. Introduction

Gastrointestinal heat retention syndrome (GHRS) is a metabolic syndrome which is as-
sociated with increased gastrointestinal heat caused by a high fat and calorie diet [1]. GHRS
often results in damage of the nervous system and affects development of adolescents, a
developmental stage with high burden of GHRS. Previous studies have associated GHRS
with inflammation caused by imbalance of immune factors as well as dry stool due to
intestinal flora disorder [2–4]. The GHRS symptoms include inflammation, a preference for
cold, aphthous ulcers, yellow urine, dry stool, constipation, and redness of the tongue [5].
Intestinal microflora can affect the nervous system and intestinal functions, influence the
activities of immune system and the secretion of immune factors. Previous data in a consti-
pation model showed that imbalance of intestinal microbiota was a key regulatory factor in
neuroinflammation, which participates in central nerve cell damage through microbiota-
gut-brain (MGB) axis, which leads to cognitive dysfunction [6–8]. Further studies have
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shown that the microbiota regulates brain development, stress response, cognitive function,
and other central nervous system (CNS) activities via the MGB axis [9,10]. Therefore, MGB
axis plays an important role in maintaining gastrointestinal functions and brain health.

Realgar, which contains arsenic, has been used as a traditional Chinese medicine, and
is incorporated in Niuhuang Jiedu tablets, Angong Niuhuang pills, and Liu Shen Wan [11].
Niuhuang Jiedu tablets are used for GHRS, and realgar may be playing a vital role in its
activities. The arsenic component in realgar can pass through the blood-brain barrier (BBB)
and accumulate in the brain [12]. Current studies have mainly focused on the toxic effects
of realgar in normal organisms [13–15]. However, realgar has been used for treatment of
diseases, and confers a therapeutic effect [16–18]. Thus, the protective effects of realgar on
CNS in pathological states have received a lot of attention.

In this study, we employed metabolomics and microbiomics analyses to study the
neuroprotective mechanisms of realgar in a GHRS rat model and identify its molecular
targets. These results provide the theoretical basis and experimental data for re-evaluation
of the pharmacology of realgar.

2. Materials and Methods
2.1. Chemicals and Regents

Realgar was purchased from Shenyang Medicine Company (Shenyang, China) while
arsenic standard was obtained from Beijing chemical plant (Beijing, China). Loperamide
was acquired from Shanghai zhaohui pharmaceutical (Shanghai, China) while antibodies for
matrix metalloproteinase 9 (short for MMP-9, rabbit, ab76003), Occludin (rabbit, ab216327),
and ionized calcium binding adaptor molecule-1 (short for Iba-1, rabbit, ab178847) were
purchased from Abcam plc (Cambridge, UK). Claudin-5 (rabbit, SAB4502981) was obtained
from Sigma-Aldrich Trading Co., Ltd. (Shanghai, China), while interleukin-6 (short for IL-6,
rabbit, 21865-1-AP), GAPDH (rabbit, 10494-1-AP), and β-actin (rabbit, 20536-1-AP) were
purchased from Proteintech Group, Inc (Wuhan, China). Nuclear factor kappa-B (short for
NF-κB, rabbit, 8242) was obtained from Cell Signaling Technology (Danvers, MA, USA).

2.2. Generation of the GHRS Rat Model

Specific pathogen-free (SPF) SD female rats (3 weeks of age, 55 ± 5 g of weight) were
housed in SPF experimental animal center, China Medical University (experimental animal
license number SCXK (Liao) 2015–0001). The environment was maintained at 20–25 ◦C
with a relative humidity of 40–70% and an alternate 12 h light/dark cycle. After a one-
week period of acclimation, fifty-one rats were randomly divided into three groups, which
included the CON group (common diet), GHRS group (high protein and high calorie diet),
and GHRS + REA group (high protein and high calorie diet + 1.8 g/kg realgar). The high
protein and high calorie feed contained dried fish: full-fat milk powder: wheat flour: pure
soy flour at a ratio of 1:1:1:2. The rats were administered with loperamide from the 46th to
70th day, and realgar was gavaged from the 56th to 70th day. Thereafter, the animals were
sacrificed for follow-up tests (Figure 1H).

2.3. Macroscopic Characterization of Rats
2.3.1. Bowel Sounds Evaluation

The bowel sounds of the rats were recorded for 5 min by a stethoscope in a quiet room.
The test was performed by two investigators in a blinded experimental setup.

2.3.2. Hot/Cold Preference Analysis

A hot/cold pain threshold detector was used to test the hot/cold preference of the
rats. In the training phase, both sides of the machine were set at 25 ◦C, and then a rat was
placed into the instrument and allowed to explore the environment for 180 s once daily
for three days. In the testing phase, the low-temperature area was set at 15 ◦C, while the
high-temperature area was set at 40 ◦C. The time spent in the low-temperature area was
recorded for 5 min.
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Figure 1. The macroscopic characteristics demonstrating that realgar alleviates the GHRS symptoms 
in the rats. (A) Food intake; (B) water consumption; (C) number of bowel sounds; (D) duration in 
low temperature region; (E) anal temperature; (F) tecal characteristics score; (G) arsenic level in the 
brain; (H) the experimental procedure of GHRS rat model. The pink spots represent the CON group; 
green spots represent the GHRS group, and the yellow spots show the GHRS + REA group. The 
number of animals per group was 10. Each column represents the mean ± SD. * p < 0.05 compared 
with CON group, # p < 0.05 compared with GHRS group. 

2.3. Macroscopic Characterization of Rats 
2.3.1. Bowel Sounds Evaluation 

The bowel sounds of the rats were recorded for 5 min by a stethoscope in a quiet 
room. The test was performed by two investigators in a blinded experimental setup. 

2.3.2. Hot/Cold Preference Analysis 

A hot/cold pain threshold detector was used to test the hot/cold preference of the 
rats. In the training phase, both sides of the machine were set at 25 °C, and then a rat was 
placed into the instrument and allowed to explore the environment for 180 s once daily 
for three days. In the testing phase, the low-temperature area was set at 15 °C, while the 

Figure 1. The macroscopic characteristics demonstrating that realgar alleviates the GHRS symptoms
in the rats. (A) Food intake; (B) water consumption; (C) number of bowel sounds; (D) duration in
low temperature region; (E) anal temperature; (F) fecal characteristics score; (G) arsenic level in the
brain; (H) the experimental procedure of GHRS rat model. The pink spots represent the CON group;
green spots represent the GHRS group, and the yellow spots show the GHRS + REA group. The
number of animals per group was 10. Each column represents the mean ± SD. * p < 0.05 compared
with CON group, # p < 0.05 compared with GHRS group.

2.3.3. Anal Temperature Measurement

A BAT–12 microprobe thermometer was used to test the anal temperature of the rats.

2.3.4. Fecal Characteristics

Fecal characteristics were assessed by the Bristol stool scale in terms of feces hardness
from one to seven point. One point corresponded to first level of feces hardness, while
seven point was recorded to indicate the last level of feces hardness. The test was performed
blindly by two investigators.

2.4. Assessment of Arsenic Level in the Brain

Brain tissues were digested with HNO3 (37%) at room temperature for 48 h, and then
underwent centrifugation before dilution. Thiourea-ascorbic acid (12.5%) was added and



Nutrients 2022, 14, 3958 4 of 19

left standing at room temperature for 30 min. The level of arsenic in the samples was
analyzed using atomic fluorescence spectroscopy.

2.5. Analysis of Ultrastructural Changes in the Hippocampus

After being anaesthetized, the rats were perfused with PBS, and then the hippocampus
tissues were immersed in 2.5% glutaraldehyde. The tissues were fixed with 1% osmium
tetroxide, hydrated by a series of graded ethanol, embedded in resin, and then cut into
slices. Thereafter, the slices were stained with 4% uranyl acetate and 5% lead citrate.
Ultrastructural changes of neurons, mitochondria, synapses, and myelin were analyzed by
transmission electron microscopy.

2.6. Western Blotting

Cerebral cortex tissues were homogenized in RIPA lysis buffer and then centrifuged
for 25 min at 12,000 rpm at 4 ◦C. The supernatants were collected to determine the protein
concentration. After boiling, equal amounts of denatured total protein were resolved in
SDS-PAGE and transferred to a polyvinylidene difluoride membrane. The membranes
were blocked with 5% non-fat milk for 2 h at room temperature and then incubated with
primary antibodies against IL-6 (1: 500), Iba-1 (1: 1000), NF-κB p65 (1: 1000), Occludin
(1: 1000), Claudin-5 (1: 500), MMP-9 (1: 1000), along with GAPDH (1: 5000) and β-actin
(1: 1000) at 4 ◦C overnight. The membranes were washed four times in TBST and then
incubated with horseradish peroxidase-conjugated secondary antibodies (1: 1000) for 1 h
at room temperature. Thereafter, the blots were washed four times in TBST and then
developed using electrochemiluminescence reagents. The densities of the protein bands
were quantified using Image J software (version 1.8.0, https://imagej.en.softonic.com/,
accessed on 3 August 2022).

2.7. Immunofluorescence Assay

Hippocampal tissues were cut into 5 µm thick paraffin sections. The hippocampus
sections were deparaffinized in xylene, hydrated with a series of graded alcohol, and then
heated in a microwave oven for antigen retrieval. The sections were then blocked with 5%
BSA, followed by overnight incubation with NF-κB p65 (1:200) and Iba-1 (1:100) primary
antibodies at 4 ◦C. After washing three times in PBS, the sections were incubated with
fluorescent secondary antibodies for 1 h, washed in PBS, and then counterstained with
DAPI. The sections were analyzed under a fluorescence microscope.

2.8. Immunohistochemical Staining

The hippocampus sections were incubated with primary antibodies against IL-6 (1:100),
Claudin-5 (1:200), Occludin (1:100), and MMP-9 (1:100) overnight at 4 ◦C. Thereafter, the
slices were incubated with specific IHC detection reagent for 2 h at 37 ◦C, then observed
under a light microscope.

2.9. Detection and Analysis of Hippocampal Metabolites by Liquid Chromatography-Tandem Mass
Spectrometry (LC-MS)

Methanol (300 µL) and 20 µL of an internal standard were added to 100 µL of the
hippocampal homogenate. The mixture was vortexed for 30 s and then sonicated in an
ice-water bath for 5 min. The mixture was incubated at room temperature for 120 min, and
centrifuged at 13,000× g for 15 min at 4 ◦C. Thereafter, the supernatant was transferred
into a 2 mL sample vial for LC-MS analysis.

2.10. Detection and Analysis of Fecal Microorganisms by 16S rDNA Sequencing Technology

Fresh fecal samples were frozen at −80 ◦C immediately when sacrificing the es-
tablished model. Microbial DNA was extracted using HiPure stool DNA kit and then
underwent PCR amplification followed by sequencing. The V3–V4 region of the 16S rDNA
gene was amplified by PCR using specific primers (341F: CCTACGGGNGGCWGCAG, and
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806R: GGACTACHVGGGTATCTAAT) which had a barcode with an eight-base sequence
unique to each sample. Effective tags were obtained after removal of chimeric sequences.
Sequences were clustered into operational taxonomic units (OTUs) at a 97% sequence
similarity level using UPARSE (version 9.2.64) pipeline. The tag sequence with the highest
abundance was selected as a representative sequence within each cluster. Venn analysis
was performed in R project VennDiagram package (version 1.6.16, Bell Labs Technology
Showcase, Murray Hill, NJ, USA) in different groups. Alpha index comparison was com-
puted by Tukey’s HSD test and Kruskal–Wallis H test in R project Vegan package (version
2.5.3, Bell Labs Technology Showcase, Murray Hill, NJ, USA). Shannon, Chao1, and ACE
indexes were calculated in QIIME (version 1.9.1, University of Colorado, Denver, CO, USA).
Weighted UniFrac distances were generated with principal coordinates analysis (PCoA)
and were plotted in R project Vegan package (version 2.5.3, Bell Labs Technology Showcase,
Murray Hill, NJ, USA). The abundance statistics of each taxonomy were visualized in all
levels using Krona (version 2.6, http://krona.sourceforge.net, accessed on 3 August 2022).
The relative abundance at different taxonomic levels was calculated separately to find the
indicator species. Biomarker features between groups were searched by LEfSe software
(version 1.0, http://huttenhower.sph.harvard.edu/lefse/, accessed on 3 August 2022) and
pROC package (version 1.10.0 http://expasy.org/tools/pROC/, accessed on 3 August
2022). Species abundance was plotted using R project Vegan package (version 2.5.3, Bell
Labs Technology Showcase, Murray Hill, NJ, USA) in all levels.

2.11. Statistical Analysis

All the data were represented as mean ± standard deviation and one-way analysis of
variance (ANOVA) was applied after homogeneity test of variance. The difference between
groups was analyzed using the Tukey’s test. The data was analyzed in GraphPad Prism 5,
and p < 0.05 was considered statistically significant. Pearson correlation coefficient between
inflammatory indicators, metabolic markers, and microbial markers was calculated in R project
psych package (version 1.8.4, Bell Labs Technology Showcase, Murray Hill, NJ, USA).

3. Results
3.1. Effect of Realgar on Macroscopic Characteristics of GHRS Rats

Here, we employed atomic fluorescence spectroscopy to assess the levels of arsenic
content in the brain. The data showed that the brain arsenic in GHRS + REA rats was
markedly higher compared to brain arsenic in other groups (p < 0.05) (Figure 1G), show-
ing that there was accumulation of arsenic in the brain through BBB. We also analyzed
macroscopic characteristics in the rats (Figure 1A–F). Compared with the control group,
there was decrease in the water consumption and food intake in the GHRS group and in
the GHRS + REA group (p > 0.05). Whereas there was suppression in the number of bowel
sounds, the fecal characteristics score, the residence time in the low temperature zone, and
the anal temperature were increased in the GHRS rats compared with the control group
(p < 0.05). As expected, treatment with realgar successfully rescued the changes (p < 0.05).
These findings showed that realgar alleviates the GHRS symptoms caused by high protein
and high calorie diet.

3.2. Effect of Realgar on the Ultrastructure of Hippocampus

The ultrastructure of hippocampal neurons was examined by electron microscopy
(Figure 2). The data showed abnormal morphology of neurons and interrupted nuclear
membrane, mitochondrial swelling and vacuolation, relatively mild demyelination, and
postsynaptic membrane thickening in the GHRS group. These features were alleviated
in the GHRS + REA group. These results showed that realgar has a protective role in the
hippocampal ultrastructure in the GHRS rats.

http://krona.sourceforge.net
http://huttenhower.sph.harvard.edu/lefse/
http://expasy.org/tools/pROC/
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Figure 2. The ultrastructure of hippocampal neurons in rats. (A) Results showing the ultrastructure 
of neuron nucleus; the scale is 2 μm. (B) The ultrastructure of the mitochondria; the scale is 1 μm. 
(C) The ultrastructure of myelin sheath; the scale is 200 nm. (D) The ultrastructure of the synapse; 
the scale is 500 nm. The green arrows represent interrupted nuclear membrane, red arrows show 
mitochondria swelling and vacuolation, yellow arrows show mild demyelination, and black arrows 
represent postsynaptic membrane thickening. 

3.3. Effect of Realgar on Neuroinflammation in GHRS Rats 
The expression of inflammatory cytokines was determined by western blotting, im-

munofluorescence, and immunohistochemistry tests. Results shown in Figure 3 indicate 
that the protein levels of IL-6 (p > 0.05) and Iba-1 (p < 0.05) were upregulated in the hippo-
campus of rats in the GHRS group. This increase was suppressed following realgar treat-
ment, although not significantly (p > 0.05). Furthermore, analysis of the nuclear localiza-
tion of NF-κB p65 in the hippocampus was increased and recovered after realgar treat-
ment. In the cortex, the protein levels of IL-6, Iba-1, and NF-κB p65 were higher in the 

Figure 2. The ultrastructure of hippocampal neurons in rats. (A) Results showing the ultrastructure
of neuron nucleus; the scale is 2 µm. (B) The ultrastructure of the mitochondria; the scale is 1 µm.
(C) The ultrastructure of myelin sheath; the scale is 200 nm. (D) The ultrastructure of the synapse;
the scale is 500 nm. The green arrows represent interrupted nuclear membrane, red arrows show
mitochondria swelling and vacuolation, yellow arrows show mild demyelination, and black arrows
represent postsynaptic membrane thickening.

3.3. Effect of Realgar on Neuroinflammation in GHRS Rats

The expression of inflammatory cytokines was determined by western blotting, im-
munofluorescence, and immunohistochemistry tests. Results shown in Figure 3 indicate
that the protein levels of IL-6 (p > 0.05) and Iba-1 (p < 0.05) were upregulated in the hip-
pocampus of rats in the GHRS group. This increase was suppressed following realgar



Nutrients 2022, 14, 3958 7 of 19

treatment, although not significantly (p > 0.05). Furthermore, analysis of the nuclear lo-
calization of NF-κB p65 in the hippocampus was increased and recovered after realgar
treatment. In the cortex, the protein levels of IL-6, Iba-1, and NF-κB p65 were higher in the
GHRS group compared with the control group (p < 0.05). Treatment with realgar decreased
the levels of the aforementioned proteins in GHRS rats (p < 0.05). These results suggested
that realgar suppressed neuroinflammation in GHRS rats.
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in GHRS rats compared with the control group. However, these changes were obviously 
antagonized in GHRS + REA rats (p < 0.05). Although the protein level of Claudin-5 was 
lower in GHRS rats, it was not significantly different from the level in the control group 
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Figure 3. The expression of inflammatory factors in the brain of rats. (A) Representative immunohis-
tochemistry photographs showing IL-6 localization in the hippocampus of rats. (B) Representative
immunofluorescence photographs showing Iba-1 localization in the hippocampus. (C) The nuclear
translocation of NF-κB p65 in the hippocampus. (D,E) The protein levels of Iba-1 and IL-6 in the
hippocampus, n = 6. (F) The protein bands of IL-6, Iba-1, and NF-κB p65 in the cortex. (G–I) The
protein levels of IL-6, Iba-1, and NF-κB p65 in the cortex, n = 4. Each column presents the mean ± SD.
* p < 0.05 compared with CON group, # p < 0.05 compared with GHRS group.
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3.4. Effect of Realgar on the Integrity of BBB

Immunohistochemistry and western blotting (Figure 4) were conducted to determine
the levels of tight junction proteins in the brain of rats. In the hippocampus, MMP-9 protein
expression was significantly higher, whereas Occludin protein expression was lower in
GHRS rats compared with the control group. However, these changes were obviously
antagonized in GHRS + REA rats (p < 0.05). Although the protein level of Claudin-5 was
lower in GHRS rats, it was not significantly different from the level in the control group
(p > 0.05). The protein levels of MMP-9, Occludin, and Claudin-5 in the cortex were similar
to those in the hippocampus (p < 0.05). These results indicated that realgar treatment
protected the integrity of BBB in GHRS rats.
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Figure 4. The permeability of BBB in rats. (A–C) Representative immunohistochemistry photographs
showing Claudin-5, Occludin, and MMP-9 expression in the hippocampus of rats. (D–F) The protein
expression of MMP-9, Claudin-5, and Occludin in the hippocampus, n = 6. (G–I) The protein levels
of Claudin-5, Occludin, and MMP-9 in the cortex, n = 4. (J) The protein bands of Claudin-5, Occludin,
and MMP-9 in the cortex. Each column shows the mean ± SD. * p < 0.05 compared with CON group,
# p < 0.05 compared with GHRS group.
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3.5. Effect of Realgar on the Hippocampus Metabolites

The hippocampal metabolites were analyzed by LC-MS. Results of the orthogonal
partial least-square discriminant analysis (OPLS-DA) revealed that different groups were
separated with a satisfactory goodness of fit, indicating that the models were robust
(Figure 5A,B). A clear metabolite separation was observed between the CON group and
GHRS group as well as between the GHRS group and GHRS + REA group.
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Figure 5. The metabolic markers of each group. (A) The OPLS-DA analysis for CON group and
GHRS group, n = 10. (B) The OPLS-DA analysis for GHRS group and GHRS + REA group, n = 10.
(C) The heat map of differential metabolite between CON group and GHRS group, n = 10. (D) The
heat map of differential metabolite between GHRS group and GHRS + REA group, n = 10.

Subsequently, cluster analysis with VIP > 1 and p < 0.05 was performed for metabolites
with significant differences. A total of 31 variational metabolites were found between CON
group and GHRS group, 22 were found between GHRS group and GHRS + REA group
(Figure 5C,D). Next, heatmaps were constructed for the differential metabolites to visualize
and depict the correlations among metabolites and inflammation indicators (Figure 6A,B).
Results indicated that Iba-1 level was positively correlated with phosphatidylinositol
18:0–20:4 (r = 0.91), heterophylliin E (r = 0.71), tritriacontyl octacosanoate (r = 0.70), and
alpha-amanitin (r = 0.70). However, it was negatively correlated with choline (r = −0.76),
phosphoric acid (r = −0.62), and hypoxanthine (r = −0.61). IL-6 was positively correlated
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with 2,4′-dichlorobiphenyl (r = 0.68) and gentisyl-CoA (r = 0.62); but negatively correlated
with N-acetylcysteine (r = −0.82), phosphoric acid (r = −0.81), and choline (r = −0.67).
The anal temperature was positively correlated with 2,4′-dichlorobiphenyl (r = 0.71) and
tritriacontyl octacosanoate (r = 0.60); but negatively correlated with allopurinol (r = −0.76),
phosphatidylethanolamine 16:0–22:4 (r = −0.73), choline (r = −0.71), phosphoric acid
(−0.64), and N-acetylcysteine (r = −0.62).
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Figure 6. Verification of potential biomarkers. (A) The correlations of potential biomarkers between
CON group and GHRS group, n = 6. (B) The correlations of potential biomarkers between GHRS
group and GHRS + REA group, n = 6. (C) The ROC curve of early biomarkers for CON group and
GHRS group, n = 6. (D) The ROC curve of early biomarkers for GHRS group and GHRS + REA
group, n = 6.

The predictive receiver operating characteristic (ROC) curves were generated using
the variational metabolites. Analysis of the curves showed that low levels of allopurinol, N-
acetylcysteine, and choline may serve as metabolic markers to assess the pro-inflammatory
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effect of high fat diet in GHRS rats (diagnostic performance = 92%) (Figure 6C). In contrast,
high levels of choline and cystathionine may serve as metabolic markers to assess the
anti-inflammatory effect of realgar in GHRS + REA rats (diagnostic performance = 77%)
(Figure 6D).

The potential biomarkers between CON group and GHRS group were: NBD-stearoyl-
2-arachidonoyl-sn-glycerol, xanthine, allopurinol, hypoxanthine, Glu-Gln, adenine, phos-
phatidylethanolamine 16:0–22:4, L-aspartate, N-acetylcysteine, phosphatidylinositol 18:0–20:4,
5-hydroxydantrolene, carboxylic acid, acetyl-CoA, 3-hydroxypropanoyl-CoA(4-), 2-furoyl-
CoA, oxidanesulfonic acid, S-(5-Hydroxy-2-furoyl)-CoA, UDP-N-acetylmuramoyl-L-alanyl-
D-glutamate, tritriacontyl octacosanoate, 2-fluorobenzoyl-CoA, 3-methylglutaconyl-CoA,
gentisyl-CoA, 3,5-dihydroxyphenylacetyl-CoA, alpha-amanitin, glutathione, heterophylliin E,
choline, phosphoric acid, histidine, 2,4′-dichlorobiphenyl, and O-phosphorylhydroxylamine.

The potential biomarkers between GHRS group and GHRS + REA group were: ascor-
bate, histidine, trichloroacetic acid, L-aspartate, glutamine, phosphatidylinositol 18:1–20:4,
carboxylic acid, oxidanesulfonic acid, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate, tritria-
contyl octacosanoate, 2-fluorobenzoyl-CoA, glutathione, choline, phosphoric acid, cystathio-
nine, cyclopropanecarboxylate, 3,4-dehydrothiomorpholine-3-carboxylate, 2-chloroethanol,
(–)-ureidoglycolate, meso-tartaric acid, glycerone sulfate, and alpha-CEHC-glucuronide.

Subsequently, the signaling pathways associated with the biomarkers were deter-
mined using the KEGG pathway database. For CON and GHRS groups, the pathways
altered included amino acid metabolism, lipid metabolism, nucleotide metabolism, biosyn-
thesis of other secondary metabolites, metabolism of cofactors and vitamins, metabolism
of terpenoids and polyketides, energy metabolism, carbohydrate metabolism, translation,
membrane transportation, signaling molecules and interaction, signal transduction, diges-
tive system, nervous system, endocrine system, cancers, neurodegenerative diseases, and
endocrine and metabolic diseases, among others. The main metabolic pathways altered for
GHRS and GHRS + REA groups were: amino acid metabolism, carbohydrate metabolism,
energy metabolism, xenobiotics biodegradation and metabolism, nucleotide metabolism,
lipid metabolism, metabolism of cofactors and vitamins, biosynthesis of other secondary
metabolites, gene transcription, membrane transportation, signaling molecules and interac-
tion, signal transduction, digestive system, nervous system, endocrine system, cancers, and
neurodegenerative diseases, among others.

3.6. Effect of Realgar on the Fecal Microorganisms

The effective tags were clustered by 16S rDNA sequencing, and a total of 35,906 OTUs
were obtained. A Wayne diagram was constructed for the OTUs depending on their abun-
dance information. Analysis of the diagram revealed significant differences in the structure
and quantity of OTUs in different groups (Supplementary Materials Figures S1 and S2).

Notably, the most abundant phyla in the groups were Bacteroidetes, Firmicutes, Proteobac-
teria, and Verrucomicrobia. As shown in Figure 7A, the ratio of Bacteroidetes was increased
by 10.32%, the ratio of Firmicutes was decreased by 15.62%, the ratio of Proteobacteria was
increased by 4%, and the ratio of Verrucomicrobia was increased by 0.44% in the GHRS group
compared with the CON group. Moreover, the ratio of Bacteroidetes was increased by 0.88%,
the ratio of Firmicutes was decreased by 0.13%, the ratio of Proteobacteria was increased by
1.1%, and the ratio of Verrucomicrobia was decreased by 0.83% in the GHRS + REA group
compared with the GHRS group. The ratio of Firmicutes/Bacteroidetes was decreased. These
results indicated that the effects of high protein diet on the structure of fecal flora in GHRS
rats was significant at the phylum level. However, no significant alterations in Firmi-
cutes/Bacteroidetes were detected in the GHRS + REA group, indicating that the effect of
realgar on the structure of fecal flora in GHRS rats was weak. In addition, realgar treatment
only reduced the ratio of Verrucomicrobia in GHRS rats.
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The α-diversity of microbial communities was explored using the Shannon index,
Chao1 index, and ACE index. Results showed that these indices tended to decrease in
GHRS rats, and treatment with realgar did not restore the levels of indices (Figure 7B–D).
Furthermore, the PCoA revealed that the β-diversity of flora in each group was obviously
aggregated, samples in the GHRS group and the CON group were significantly separated,
and samples in the GHRS + REA group were distributed closely to the GHRS group, but
tended to the CON group (Figure 7E).

In further tests, differential analysis of fecal flora was performed using the LEfSe
method (linear discriminant analysis, LDA Score > 2). A total of 80 bacterial clades were
found to be significantly different between the CON group and the GHRS group, and
17 were different between the GHRS group and the GHRS + REA group (Figure 8A,B). Next,
the flora were compared and analyzed to identify the affected flora by both high calorie feed
and realgar. The abundance of Rhodospirillaceae (belonging to Alphaproteobacteria), Sellimonas
(belonging to Lachnospiraceae), Anaerostipes (belonging to Lachnospiraceae), Lachnoclostridium
(belonging to Lachnospiraceae), Gastranaerophilales, and Bacteroidaceae was increased in the
GHRS group, but this effect was reversed following realgar treatment. The abundance of
Rikenellaceae and Blautia (belonging to Lachnospiraceae) was reduced in the GHRS group, but
realgar treatment increased their abundance.

The area under the ROC curve (AUC) > 0.7 was used as the screening standard for
ROC curves. As shown in Figure 8C,D, the Alphaproteobacteria (AUC = 1.0), Anaerostipes
(AUC = 1.0), Bacteroides (AUC = 1.0), Gastranaerophilales (AUC = 1.0), Lachnospiraceae
(AUC = 1.0), Rikenellaceae (AUC = 1.0), Sellimonas (AUC = 1.0), and Blautia (AUC = 0.77)
were found to be early microbial biomarkers for the changes in fecal flora in GHRS rats. In
addition, Sellimonas (AUC = 1.0), Gastranaerophilales (AUC = 1.0), Lachnospiraceae (AUC = 0.92),
Blautia (AUC = 0.76), Rikenellaceae (AUC = 0.73), and Bacteroides (AUC = 0.725) were found
to be early microbial biomarkers for the effect of realgar on the fecal flora in GHRS rats.
Comparison of common biomarkers in different groups revealed that high calorie feed
increased abundance of Gastranaerophilales and Sellimonas (belonging to Lachnospiraceae), but
decreased abundance of Rikenellaceae and Blautia. These changes were reversed by realgar
treatment. Collectively, these results indicated that realgar improved intestinal microbial
homeostasis in GHRS rats fed a high calorie diet.
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3.7. Correlations among Inflammatory Factors, Metabolic Markers, and Microbial Markers

The associations among cytokines, bacteria, and metabolites in GHRS rats treated with
realgar were determined by the Spearman correlation analysis and analysis of heatmaps.
Notably, Iba-1 and IL-6 levels were negatively correlated with choline, allopurinol, and
N-acetylcysteine; whereas anal temperature was positively correlated with Gastranaerophi-
lales in CON and GHRS rats (Figure 9A). Further analysis revealed that Iba-1, IL-6, and anal
temperature were negatively correlated with choline and cystathionine; whereas IL-6 was
positively correlated with Rikebellaceae in GHRS rats treated with realgar (Figure 9B). These
results showed that inflammatory indexes were strongly correlated with metabolic markers
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and microbial markers, and realgar treatment conferred neuroprotection on GHRS rats via
the MGB axis.
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4. Discussion

GHRS is defined by increased gastrointestinal heat with clinical manifestations in-
cluding fever, sweating, halitosis, thirst and preference for cool drink, dry stool, yellow
urine, and tongue redness [3]. GHRS is induced by intake of a high-calorie and high-fat
diet, which mostly occur in children and adolescents, and in more females than males [1].
Previous clinical studies indicated that core symptoms of GHRS in children were mainly
digestive symptoms, inflammatory reactions, and nervous system symptoms, such as dry
stool, poor appetite, vomiting, recurrent respiratory tract infections, night restlessness, and
irritability [1,5]. Realgar, an arsenic tetrasulfide compound, is a highly recognized tradi-
tional Chinese medicinal product that has been widely used to treat various diseases such
as inflammatory diseases and nervous system injury [17,19]. In this study, we successfully
built a GHRS rat model to explore the neuroprotective mechanisms underlying the effects
of realgar in GHRS induced by a high-calorie diet.

MGB axis refers to crosstalk between the brain and gut which involves several over-
lapping pathways containing neuroendocrine, gut microorganisms, bacterial metabolites
and neuromodulatory molecules [20,21]. Previous studies have reported that gut micro-
biota play a vital role in the synthesis of neurotransmitters and neuromodulators, which
influence gut-brain communication and nervous system functions [22,23]. Alterations in
the composition of microorganisms due to dietary intake mediate the development of
several diseases [24–26]. First, the gut microbiota is a critical regulator in priming neuroin-
flammatory responses to brain injury [27]. It also produces metabolites which affect brain
function [28]. In addition, gut microbiota and its metabolites, such as short chain fatty acids
(SCFAs) which result from bacterial fermentation of dietary fiber, have an impact on BBB
permeability [29]. It has been shown that in a constipation model, intestinal flora imbalance
can cause pathological changes in the brain, while the gut microbiota participates in the
regulation of brain development, stress response, cognitive function, and other central ner-
vous system activities via the MGB axis [30,31]. In this study, we evaluated the protective
effect of realgar on the nervous system in GHRS rats in regard to the MGB axis.

We first investigated macroscopic characteristics, such as fecal shape, bowel sounds,
hot and cold tendency, and anal temperature in GHRS rats. Previous data has shown that
excessive fat intake is one of the main causes of constipation, and a high-fat diet led to
constipation with delayed colon transit time possibly via reduction of colonic mucus in
mice [32]. Bowel sounds act as an index of bowel activity, which is a common presenting
concern of functional dyspepsia [33]. In addition, the high fat/cafeteria diet could induce
brown adipose tissue thermogenesis in an obese rat model [34]. Our findings showed that
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realgar had therapeutic effects on GHRS rats, rescued the decreased bowel sounds, as well
as the addition of fecal characteristics score, residence time in low temperature zone, and
anal temperature in the GHRS rat model.

The ultrastructural changes of neurons are often used to estimate nerve injury. Previ-
ous studies have shown that the high-fat diet might induce neuronal damage mediated in
part by synaptic plasticity alteration and dendritic spine loss [35]. Also, the high-fat diet
was shown to induce hippocampal neural cell loss, such as degenerate neurons, damaged
mitochondria, and extended cisterns of the endoplasmic reticulum [36]. In our study, we
demonstrated that GHRS rats have perturbed nuclear membrane, mitochondrial swelling,
demyelination, and synaptic destruction. Realgar had a protective effect on hippocampal
neurons of the GHRS rats.

High fat diet can promote the release of inflammatory factors and trigger neuroinflam-
mation [37]. Indeed, the short-term consumption of high-fat diet was related to increased
inflammatory signals in the brain, which increased the concentration of TNF-α and IL-1β
proteins [38]. Microglia are macrophages with delicate branching processes in the CNS,
and their activation is a key indicator of neuroinflammation [39]. In our study, the levels of
Iba-1, IL-6, and NF-κB p65 both in the hippocampus and cortex were increased leading to
inflammatory responses in the GHRS group. Realgar played an anti-inflammatory role in
the GHRS + REA group.

BBB is a critical biological barrier that can protect brain development and maintain
its physiological function [40]. High-energy diet consumption suppressed the expression
of tight junction proteins, particularly Claudin-5 and Claudin-12 [41]. It was shown that
NF-κB signal pathway might activate MMP-9 to degrade tight junction structure of the
BBB [42]. In agreement, there was upregulation of the MMP-9 protein, while Claudin-5 and
Occludin levels were decreased both in the hippocampus and cortex of the GHRS rats,
phenotypes that were restored by realgar in the GHRS + REA group. Thus, GHRS induced
NF-κB p65 transcription to synthesize MMP-9, inhibited the protein levels of Occludin and
Claudin-5, and increased the BBB permeability, ultimately causing CNS damage. Realgar
had a therapeutic effect on the BBB breakdown in the GHRS rats because of the high protein
and high calorie diet.

To explore the mechanisms of action of realgar in the GHRS rats, we performed
metabolomics analysis of hippocampal metabolites in different groups and analyzed the
correlation of the biomarkers and inflammatory indexes. The metabolomics results showed
that allopurinol, N-acetylcysteine, and choline are early metabolic markers in GHRS rats,
while choline and cystathionine are early metabolic markers in GHRS rats under realgar
treatment, which all play a vital role in CNS homeostasis. Previous data demonstrated
that allopurinol, a xanthine oxidase enzyme inhibitor, could suppress proinflammatory
molecules and oxidative stress in vasculature. Pre-treatment with allopurinol significantly
reduced infarct volume, microglia infiltration, astrocyte proliferation and nitrative stress
in ischemic brain [43]. Furthermore, N-acetylcysteine had a neuroprotective effect against
neurotoxicity by modulating oxidative stress and inflammatory reaction [44]. For example,
N-acetylcysteine was shown to reduce the levels of RIPK3, MLKL, NLRP3, IL-18, ASC, iNOS,
GFAP, and MMP-9; and downregulate myeloperoxidase activity in cerebral cortex [45]. In
addition, choline, an alpha7 nAChR agonist, might be a useful drug in the recovery of brain
injury by reducing brain inflammation [46]. Cystathionine modulates amino acid metabolism.
For instance, cystathionine β-synthase catalyzes condensation of serine and homocysteine to
water and cystathionine, which are then hydrolyzed to cysteine, α-ketobutyrate, and ammonia
by cystathionine γ-lyase in the reverse transsulfuration pathway [47].

We then analyzed the effects of high fat diet and realgar on the fecal microbiota in
the rats by PCR in V3-V4 region of 16S rDNA. As reported in previous studies, long-
term dietary changes lead to major alterations in the composition of gut microbiota [48].
A high-fat diet is directly associated with intestinal microbiota dysbiosis, increased energy-
harvesting capacity, and metabolic inflammation [49–51]. The Chao1 index, ACE index,
and Shannon index showed that the α-diversity of microbial community was suppressed
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in the GHRS group, which indicated that high protein and high calorie diet alters the
structure of fecal flora, which was not fully recovered in the GHRS + REA group. The
PCoA results showed obvious separation of the flora in different group; the GHRS group
and the CON group were significantly separated. Our data also showed four major
bacterial phyla with high abundance, namely Bacteroidetes, Firmicutes, Proteobacteria, and
Verrucomicrobia in the GHRS rats. In addition, the proportion of Firmicutes/Bacteroides was
significantly decreased. After realgar treatment, the proportion of Firmicutes/Bacteroides
was increased, while Proteobacteria was reduced and had a pro-inflammatory effect [52]. The
increased abundance of Alphaproteobacteria can cause intestinal inflammation and reflects
the ecological imbalance or unstable structure of the intestinal microbial community [53].
It was demonstrated that realgar can treat inflammation by reducing the proportion of
Proteobacteria [54]. In addition, Firmicutes played an important role in absorbing energy
from the diet and storing fat in intestinal cells, while the imbalance of Firmicutes/Bacteroides
can lead to metabolic disorders [55]. Furthermore, the increase in Proteobacteria, a common
feature of dysbiosis of flora, was related to gastrointestinal inflammatory diseases [53].
Therefore, these findings showed that realgar may play a therapeutic role in the GHRS rats
by adjusting the abundance and structure of the flora.

Furthermore, microbiomics results showed that Alphaproteobacteria, Anaerostipes, Bac-
teroides, Gastranaerophilales, Lachnospiraceae, Rikenellaceae, Sellimonas, and Blautia are early
microbial biomarkers defining the changes of fecal flora in the GHRS rats. On the other
hand, Sellimonas, Gastranaerophilales, Lachnospiraceae, Blautia, Rikenellaceae, and Bacteroides
can be considered as early microbial biomarkers in GHRS rats under realgar treatment. Gas-
tranaerophilales belong to the phylum Cyanobacteria. It has been shown that the abundance
of Cyanobacteria in the intestines of colitis mouse model was significantly increased with
corresponding inflammatory response, which was suppressed after anti-inflammatory treat-
ment [56]. In the animal model of high-fat diet and obesity, Lachnospiraceae, mainly Blautia,
was significantly decreased, which increased intestinal permeability by reducing the expres-
sion of genes encoding tight junction proteins ZO-1 and Occludin [48,49]. More evidence
showed that Blautia can effectively alleviate the symptoms of intestinal inflammation and
decreased barrier permeability associated with high-fat diet and obesity. Lachnospiraceae is
the main producer of butyrate, which can enhance the integrity of the epithelial barrier and
inhibit inflammation. These findings were consistent with the changes demonstrated in our
study, which suggested that realgar can inhibit the reproduction of Cyanobacteria, promote the
growth of Lachnospiraceae, especially Blautia, to maintain the intestinal microbial homeostasis
and reduce intestinal inflammatory reactions in GHRS rats.

MGB axis mediates the development of GHRS through a complicated network. GHRS
may be associated with MGB axis imbalance and microorganism effect on brain home-
ostasis by regulating nerves, immunity, and endocrine [1]. In addition, the microbiota has
been shown to influence BBB permeability in mice [40]. Host microbiota also contribute to
microglial activation states, especially via SCFAs or aryl hydrocarbon receptor ligands [57].
In addition, microbiota modulate neurobehavior through changing brain insulin sensitivity
and metabolism [58]. In this study, we showed that Iba-1 and IL-6 were negatively cor-
related with choline, Allopurinol, and N-acetylcysteine, while IL-6 and anal temperature
were positively correlated with Gastranaerophilales in the GHRS rats. In addition, Iba-1, IL-6,
and anal temperature were negatively correlated with choline and cystathionine; while
IL-6 had a positive association with Rikebellaceae in the GHRS rats under realgar treatment.
Thus, inflammatory indexes have a strong correlation with both metabolic and microbial
markers, which demonstrates that realgar plays a neuroprotective role in GHRS rats via the
MGB axis.

5. Conclusions

Taken together, our data demonstrate that a high protein and high calorie diet in-
duces GHRS characteristics, neuroinflammatory reaction, BBB impairment, hippocampus
metabolites disorder, and fecal microbial imbalance. Realgar restores the steady state of
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hippocampal metabolite spectrum and fecal microbial spectrum, inhibits inflammatory
response, prevents the BBB breakdown, and exerts neuroprotection in GHRS rats through
the MGB axis. These data provide a theoretical basis underlying the neuroprotective roles
of realgar in the GHRS rats.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14193958/s1, Figure S1: The Venn diagram between CON
group and GHRS group. Figure S2: The Venn diagram between GHRS group and GHRS+REA group.
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