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Abstract

methylation and gene expression levels.

Background: DNA methylation is an essential epigenetic mechanism involved in gene regulation and disease, but
little is known about the mechanisms underlying inter-individual variation in methylation profiles. Here we
measured methylation levels at 22,290 CpG dinucleotides in lymphoblastoid cell lines from 77 HapMap Yoruba
individuals, for which genome-wide gene expression and genotype data were also available.

Results: Association analyses of methylation levels with more than three million common single nucleotide
polymorphisms (SNPs) identified 180 CpG-sites in 173 genes that were associated with nearby SNPs (putatively in
cis, usually within 5 kb) at a false discovery rate of 10%. The most intriguing trans signal was obtained for SNP
rs10876043 in the disco-interacting protein 2 homolog B gene (DIP2B, previously postulated to play a role in DNA
methylation), that had a genome-wide significant association with the first principal component of patterns of
methylation; however, we found only modest signal of trans-acting associations overall. As expected, we found
significant negative correlations between promoter methylation and gene expression levels measured by RNA-
sequencing across genes. Finally, there was a significant overlap of SNPs that were associated with both

Conclusions: Our results demonstrate a strong genetic component to inter-individual variation in DNA
methylation profiles. Furthermore, there was an enrichment of SNPs that affect both methylation and gene
expression, providing evidence for shared mechanisms in a fraction of genes.

Background

DNA methylation plays an important regulatory role in
eukaryotic genomes. Alterations in methylation can
affect transcription and phenotypic variation [1], but the
source of variation in DNA methylation itself remains
poorly understood. Substantial evidence of inter-
individual variation in DNA methylation exists with age
[2,3], tissue [4,5], and species [6]. In mammals, DNA
methylation is mediated by DNA methyltransferases
(DNMTs) that are responsible for de novo methylation
and maintenance of methylation patterns during replica-
tion. Genes involved in the synthesis of methylation and
in DNA demethylation can also affect methylation varia-
tion. For example, mutations in DNMT3L [7] and
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MTHER [8] associate with global DNA hypo-methyla-
tion in human blood. These changes occur at a genome-
wide level and are distinct from genetic variants that
impact DNA methylation variability in targeted genomic
regions, for example, genetic polymorphisms associated
with differential methylation in the H19/IGF2 locus [9].
Recent evidence suggests a dependence of DNA
methylation on local sequence content [10-12]. A strong
genetic effect is supported by studies of methylation pat-
terns in families [13] and in twins [14], but stochastic
and environmental factors are also likely to play an
important role [2,14]. Recent work indicates that genetic
variation may have a substantial impact on local methy-
lation patterns [5,15-18], but neither the extent to which
methylation is affected by genetic variation, nor the
mechanisms are yet clear. Furthermore, the degree to
which variation in DNA methylation underlies variation
in gene expression across individuals remains unknown.
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DNA methylation has long been considered a key reg-
ulator of gene expression. The genetic basis of gene
expression has been investigated across tissues [19] and
populations [20]. Both lines of evidence suggest genetic
variants associated with gene expression variation are
located predominantly near transcription start sites.
However, not much is known about the precise mechan-
isms by which genetic variants modify gene-expression.
Combining genetic, epigenetic, and gene expression data
can inform the underlying relationship between these
processes, but such studies are rare on a genome-wide
scale. Two recent studies have examined the link
between DNA methylation and expression in human
brain samples [5,18]. Both studies identified substantial
numbers of quantitative trait loci underlying each type
of phenotype, but few examples of individual loci driving
variation in both methylation and expression.

To better understand the role of genetic variation in
controlling DNA methylation variation, and its resulting
effects on gene expression variation, we studied DNA
promoter methylation across the genome in 77 human
lymphoblastoid cell lines (LCLs) from the HapMap col-
lection. These cell lines represent a unique resource as
they have been densely genotyped by the HapMap Pro-
ject [21], and are now being genome-sequenced by the
1,000 Genomes Project. In addition, these cell lines have
been studied by numerous groups studying variation in
gene expression using microarrays [20,22] and RNA
sequencing [23,24], as well as smaller studies of varia-
tion in chromatin accessibility and Polll binding [25,26].
Finally, one of the HapMap cell lines is now being
intensely studied by the ENCODE Project [27]. This
convergence of diverse types of genome-wide data from
the same cell lines should ultimately enable a clearer
understanding of the mechanisms by which genetic var-
iation impacts gene regulation.

Results

Characteristics of DNA promoter methylation patterns

To study inter-individual variation in methylation profiles
we measured methylation levels across the genome in 77
lymphoblastoid cell lines (LCLs) derived from unrelated
individuals from the HapMap Yoruba (YRI) collection.
For these samples we also had publicly available geno-
types [21], as well as estimates of gene expression levels
from RNA-sequencing in 69 of the 77 samples [24].
Methylation profiling was performed in duplicate using
the Illumina HumanMethylation27 DNA Analysis Bead-
Chip assay, which is based on genotyping of bisulfite-
converted genomic DNA at individual CpG-sites to
provide a quantitative measure of DNA methylation. The
[lumina array includes probes that target 27,578 CpG-
sites. However, we limited analyses to probes that
mapped uniquely to the genome and did not contain
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known sequence variation, leaving us with a data set of
22,290 CpG-sites in the promoter regions of 13,236
genes (see Methods). Following hybridization, methyla-
tion levels were estimated as the ratio of intensity signal
obtained from the methylated allele over the sum of
methylated and unmethylated allele intensity signals.
Methylation levels were quantile-normalized [28] across
two replicates. We tested for correlations with potential
confounding variables that could affect methylation levels
in LCLs [29], such as LCL cell growth rate, copy numbers
of Epstein-Barr virus, and other measures of biological
variation (see Additional file 1) that were available for 60
of the individuals in our study [30]; these did not signifi-
cantly explain variation in the methylation levels in our
sample (Figure S1 in Additional file 1). However, we
observed an influence of HapMap Phase (samples from
Phase 1/2 vs 3) on the distribution of the first principal
component loadings in the autosomal data, suggesting
that the first methylation principal component may in
part capture technical variation potentially related to
LCL culture. In the downstream association mapping
analyses, we applied a correction using principal compo-
nent analysis regressing the first three principal compo-
nents to account for unmeasured confounders and
increase power to detect quantitative trait loci.

Global patterns of methylation

Distinct patterns of methylation were observed for CpG-
sites located on the autosomes, X-chromosome, and in
the vicinity of imprinted genes (Figure 1a). The majority
(71.4%) of autosomal CpG-sites were primarily
unmethylated (observed fraction of methylation <0.3),
15.6% were hemi-methylated (fraction of methylation
was between 0.3 and 0.7), and 13% were methylated. As
expected, these patterns were consistent with previously
observed lower levels of methylation near promoters
relative to genome-wide levels [4,31]. We did not find
evidence for sex-specific autosomal methylation pat-
terns, consistent with a previous report [4]. In contrast,
CpG-sites on the X-chromosome exhibited highly signif-
icant sex-specific differences (Figure S2) with hemi-
methylated patterns in females that were consistent with
X-chromosome inactivation. A similar hemi-methylation
peak was observed for CpG-sites located near the tran-
scription start sites (TSSs) of known autosomal
imprinted genes in the entire sample.

We observed a previously reported [4] drop in methyla-
tion levels for CpG-sites located within 1 kb of TSSs
(Figure 1b). Promoter methylation levels have been
reported to vary with respect to CpG islands [32]. We
found that although distance to the CpG island (CGI)
border [33] (including CpG shores [34]) did not signifi-
cantly affect methylation levels, CpG-sites located in
CGIs were under-methylated and less variable (Wilcoxon
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Figure 1 Distribution of methylation patterns across the genome. (a) Methylation patterns for CpG-sites on autosomes, X-chromosome, and
in the vicinity of imprinted genes. Methylation values are plotted for 77 individuals at 21,289 autosomal CpG-sites (left), for 43 females at 997 CpG-
sites on the X-chromosome (middle), and for 77 individuals at 153 CpG-sites in 33 imprinted genes (right). (b) Methylation levels with respect to
the TSS (negative distances are upstream from the TSS), where the line represents running median levels in sliding windows of 300 bp. (c)
Correlations in methylation levels for all pair-wise CpG-sites (black), and for CpG-sites where both probes are in the same CGl (red), or where at least
one probe is outside of CGls (blue). Lines indicate smoothed spline fits of the mean rank pairwise correlation between CpG-sites in 100 bp
windows, weighted by the number of probe pairs. (d) Methylation levels inside and outside of annotation categories, including CpG Islands (CGls)
for probes within 100 bp of the TSS, and histone modifications and transcription factor (TF) binding sites for all probes (see Additional file 1).

between CpG-sites. We observed that methylation levels
at probes located in close proximity (up to 2 kb apart)
were highly correlated (Figure 1c), indicating that varia-
tion in methylation levels between individuals is corre-
lated within cell type. Figure 1c also shows that pairs of
CpG-sites that were both within a CGI showed greater

rank-sum test P < 2.2 x 10™*®) compared to sites outside
of CGIs (Figure 1, Figure S3 in Additional file 1).
Methylation is often found to be correlated across
genomic regions at the scale of 1-2 kb [4,35]. We investi-
gated whether the correlation between autosomal methy-
lation levels (co-methylation) depended on the distance
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evidence for co-methylation than pairs of CpG sites for
which at least one was outside the CGI, controlling for
distance, implying differential regulation of DNA methy-
lation for CpGs inside and outside of CGIs [32].

DNA methylation correlates with transcription and
histone modifications

Methylation has long been implicated in the regulation
of gene expression. To examine the role of methylation
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in gene expression variation, we compared methylation
levels to estimates of gene expression based on RNA-
sequencing (Figure 2a). Within individuals, we found a
significant negative correlation between methylation and
gene expression levels (Figure S4 in Additional file 1)
across 11,657 genes (mean rank correlation r = -0.454).
We divided the genes into quartiles from high to low
gene expression and observed that the drop in methyla-
tion levels near to the TSS (Figure 1b) was only seen in
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Figure 2 DNA methylation is negatively correlated with gene expression. (a) Methylation levels are low in the top quartile of highly
expressed genes (left), and high in the bottom quartile of lowly expressed genes (right), looking across 12,670 autosomal genes. (b) Methylation
levels with respect to the TSS in sets of genes categorized by gene expression levels, from highest (red) to lowest (blue), using the quartiles of
gene expression with respect to gene expression means, where fitted lines represent running median levels (see Figure 1b).
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highly expressed genes (Figure 2b). We also asked
whether variation in methylation levels across indivi-
duals correlates with variation in gene expression levels.
Comparisons at the gene level across 69 individuals
indicated a modest but significant excess of negatively
correlated genes (permutation P < 0.0001).

DNA methylation is thought to interact with histone
modifications during the regulation of gene-expression
[36,37]. We compared methylation levels in our sample
with histone modification ChIP-seq data from the
ENCODE project in one of the CEPH HapMap LCLs
(GM12878). We found strong negative correlations
between DNA methylation levels and the presence of
histone marks that target active genes (Figure 1d;
Figures S3 and S5 in Additional file 1). For example,
DNA methylation was low in H3K27ac peaks, which are
indicative of enhancers [38], have previously been posi-
tively correlated with transcription levels [39] and nega-
tively correlated with DNA methylation levels [31].
Similarly, the transcription marks H3K4me3 and
H3K9ac were both negatively correlated with DNA
methylation levels. We also observed lower methylation
levels in transcription factor binding sites predicted by
the CENTIPEDE algorithm, using cell-type specific data
including DNasel sequencing reads [40], consistent with
the expectation that the absence of methylation is
important for transcription factor binding.

Genome-wide association of DNA methylation with SNP
genotypes

We next assessed whether genetic variation contributes
to inter-individual variation in DNA methylation levels.
We first tested whether any SNPs were associated with
overall patterns of DNA methylation, as measured by
principal component analysis (see Methods). The most
interesting signal was obtained for SNP rs10876043,
which had a genome-wide significant association with
variation in the first principal component of methylation
(P = 4.5 x 10™), and which also showed a modest asso-
ciation with average genome-wide methylation levels
(P = 4.0 x 10°°) (Table S1 in Additional file 1). This SNP
lies within the intron of the gene DIP2B, which contains
a DMAPI1-binding domain, and has been previously pro-
posed to play a role in DNA methylation [41].
Associations in trans

After assessing the possibility that SNPs can have genome-
wide effects on overall methylation patterns, we next trans-
formed the methylation data by regressing out the first
three principal components (see Methods), as we have pre-
viously found that this procedure can greatly reduce noise
in the data and improve quantitative trait locus (QTL)
mapping [24] (see also [42,43]). At a genome-wide false
discovery rate (FDR) of 10% (P = 2.1 x 10719 methylation
levels at 37 CpG-sites showed evidence for association with
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SNP genotypes (Table S2 in Additional file 1). The majority
of these CpG-sites (27 of 37) were putative cis association
signals, that is, the most significant SNP was within 50 kb
of the measured CpG site (Figure S6 in Additional file 1).
We observed a modest enrichment of distal associations
(putative trans associations) that was primarily due to sig-
nals in 10 CpG-sites (Figure S7 in Additional file 1). We
then examined distal association at SNPs that had pre-
viously been implicated in methylation (Table S3 in
Additional file 1) and found a significant proximal associa-
tion between SNP rs8075575, which is 150 kb from gene
ZBTB4 that binds methylated DNA, and methylation at
probe ¢g24181591 in gene EIF5A that encodes a translation
initiation factor. Three previously reported [5] significant
distal associations were also observed for SNP rs7225527
(38 kb from gene RHBDL3) and methylation at probe
cg17704839 in gene UBLS that encodes ubiquitin-like pro-
tein, and for SNPs rs2638971 (106 kb from gene DDX11)
and rs17804971 (49 kb from gene DDX12) and methylation
at probe cg18906795 in gene RANBP6, which may function
in nuclear protein import as a nuclear transport receptor.
Associations were also seen at SNPs located 165 kb from
the gene encoding methyl-binding protein MBD2, 22 kb
from the methyltransferase gene DNMT1, 192 kb from the
methyltransferase gene DNMT3B, and at three SNPs with
previous evidence for association but to different regions
[16] (Figure S8 in Additional file 1). Overall however, we
obtained relatively weak evidence for associations in trans
and weak to moderate enrichment of trans association sig-
nals at more relaxed significance thresholds in candidate
regions of interest.

Associations in cis

Since the majority of the genome-wide association sig-
nals were proximal to the corresponding CpG-sites, we
next focused on association testing for SNPs within
50 kb of each CpG-site (Figure 3). At a genome-wide
EDR of 10% (P = 2.0 x 10°°) there were 180 CpG-sites
with cis methylation quantitative trait loci (meQTLs).
The strongest association signal (P = 8.0 x 10'®) was
obtained at SNP rs2187102 with probe ¢g27519424 in
gene HLCS, which is thought to be involved in gene-
regulation by mediating histone biotinylation [44]. The
proportion of variance explained by meQTLs for nor-
malized methylation data ranged between 22% and 63%.
If mechanisms affecting DNA methylation generally act
over distances of up to approximately 2 kb (Figure 1c),
then SNPs impacting methylation should be detected as
meQTLs at multiple nearby CpG-sites. We observed
that SNPs associated with methylation were also
enriched for association with additional CpG-sites
within 2 kb of the best-associated CpG-site with the
most-significant P-value (Figure 3b), suggesting that a
single genetic variant often affects methylation at
numerous nearby CpG-sites.
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Figure 3 Cis methylation QTLs. (a) Quantile-quantile (QQ) plot
describing the enrichment of association signal in cis compared to
the permuted data (90% confidence band shaded). (b) The cis-
meQTL SNPs were enriched for association signal at additional CpG-
sites near to the CpG-site for which they are meQTLs. The 180 best-
associated SNPs were tested for association to probes that fell
within 2 kb (red), within 2 kb to 10 kb (purple), and within 10 kb to
50 kb (blue) of the original best-associated CpG-site. The majority
(96%) of probes within 2 kb (red) were in the same CGI as the best-
associated probe. (c) Spatial distribution of cis-meQTLs with respect
to the CpG-site as estimated by the hierarchical model.

Probability that SNP is a meQTL

Genetic variation has previously been associated with
methylation at specific imprinted regions [1]. The 180
CpG-sites with meQTLs in our data were nearest to the
TSSs of 173 genes, of which two-MEST and CPA4, were
known to be imprinted genes. Previous observations
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suggested that eQTL and imprinting effects can be sex-
specific [45], raising the possibility that some of the
meQTLs may act in a sex-dependent manner. However,
we did not find compelling genome-wide significant sex-
specific cis meQTL effects (see Additional file 1). Of the
180 associations of CpG-sites with proximal meQTLs, 27
were previously reported in human brain samples [5].

Little is known about the biological mechanisms that
may underlie meQTL effects. To this end we applied a
Bayesian hierarchical model [22] to test for enrichment
of meQTLs in transcription factor binding sites, in his-
tone modification categories, and in the vicinity of the
associated probes. We found that SNPs located nearest
to the probe, and specifically in the 5 kb immediately
surrounding the probe, were significantly enriched for
meQTLs (Figure 3c). Transcription factor binding sites,
including CTCEF-binding sites, showed a modest but
non-significant enrichment for meQTLs (Figure S9 in
Additional file 1).

Methylation QTLs are enriched for expression QTLs
Finally, we examined the overlap in regulatory variation
that affects both methylation and gene expression levels
using RNA-sequencing data [24]. We hypothesized that
since DNA methylation can regulate gene expression,
then variants that affect methylation should often have
consequent effects on gene expression. The first way
that we looked at this was to take the set of 180 SNPs
that are meQTLs at FDR <10% (taking only the most
significant SNP for each meQTL). We then tested each
of these SNPs for association with expression levels of
nearby genes (Figure 4a, red points). There is a clear
enrichment of association with expression levels com-
pared to the null hypothesis (black line) and compared
to sets of control SNPs that are matched in terms of
allele frequency and distance-to-probe distributions
(black dots).

One example of a SNP, rs8133082, that is both a
meQTL and eQTL for the gene C210rf56 is illustrated
in Figure 5. When we regress out methylation, this com-
pletely removes the association of this SNP with gene
expression (Figure 5a, b, ¢, d). We validated the methy-
lation assay findings at C21orf56 by bisulfite sequencing
the methylation probe region in eight samples in our
study, four from each homozygote genotype class for
the SNP (Figure 5f). The two methylation probes at
C21orf56 both had cis meQTLs and overlapped the
likely promoter region as indicated by histone modifica-
tion data (Figure 5e), suggesting that genetic variation
may affect the chromatin structure in this region.
C2I1orf56 appears to modulate the response of human
LCLs to alkylating agents, and may act as a genomic
predictor for inter-individual differences in response to
DNA damaging agents [46].
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eQTLs that overlap across the two phenotypes, in red are 45 eQTLs
present before methylation regressions, and in blue are 24 eQTLs
present after regressing out methylation. The flat lines (green)
correspond to the FDR 10% eQTL threshold.

To examine further the overlap between eQTLs and
meQTLs, we re-analyzed the eQTL data by incorporat-
ing methylation as a gene-specific covariate. If variation
in methylation underlies variation in gene-expression,
we expect to observe a drop in the number of eQTLs in
the methylation-residual gene expression data. At an
FDR of 10% (P = 2.5 x 10°) there were 484 original
eQTLs and 463 methylation-residual eQTLs, where 439
eQTLs overlapped, 45 eQTLs were present only in the
original data, and 24 new eQTLs were present only in
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the methylation-residuals (Figure 4b). Interestingly, the
SNPs that were eQTLs for the 45 genes with reduced
signals in the methylation-residuals were enriched for
significant methylation associations (Figure S10 in
Additional file 1), suggesting that these are true underly-
ing meQTLs, where genetic variation affects methyla-
tion, which in turn regulates gene expression [5,18]. In
summary our results indicate a significant enrichment of
SNPs that affect both methylation and gene expression,
suggesting a shared mechanism (for example, that
increased DNA methylation might drive lower gene
expression). However the number of genes that show
such a signal is a modest fraction of the total number of
meQTLs.

Discussion

We report association between DNA methylation with
genetic and gene expression variation at a genome-wide
level. We have identified methylation QTLs genome-
wide, the majority of which act over very short
distances, namely less than 5 kb. Furthermore, methyla-
tion patterns generally covary within individuals over
distances of approximately 2 kb and in conjunction with
this, meQTLs frequently affect multiple neighboring
CpG sites. Our findings are consistent with previous
methylation associations [5,16,18], familial aggregation
[13,14], correlation with local sequence [10], allele-
specific methylation [15,17], and effects of histone modi-
fications [47]. Little is known about the biological
mechanisms that underlie meQTL effects, however, this
is one important route to identify how genetic variation
affects gene regulation.

We find an overall enrichment of significant associa-
tions of genetic variants with methylation CpG-sites,
which is consistent with the results from two recent
reports examining genome-wide methylation QTLs in
human brain samples [5,18]. Overall, the number of
genome-wide significant meQTLs varies across the three
studies, which is likely due to differences in sample
sizes, differences in multiple testing corrections and
definition of cis intervals, and the presence of large
tissue-specific differences in DNA methylation with
tissue-specific meQTLs. In general, power to detect
meQTLs will depend on many factors including sample
size, genome-wide coverage of genetic variation, gen-
ome-wide coverage of methylation variation, and the
effect size of the genetic variants associated with methy-
lation variation in the tissue of interest.

Additionally, our analyses are based on Epstein-Barr
virus transformed lymphoblastoid cell lines. The choice
of cell type will affect the observed genome-wide DNA
methylation patterns, and in particular, high-passage
LCLs may exhibit methylation alterations over time [29].
Sun et al. [48], for example, investigated genome-wide
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imputed (triangles) data. (d) Gene expression levels at C270rf56 after regressing out methylation. (e) Gene expression at C21orf56 (+/-2 kb) genomic
region on chromosome 21. Distance is measured on the reverse strand relative to C27orf56 TSS at 46,428,697 bp. Barplots show average gene
expression reads per million in the subsets of individuals from each of the three rs8133082-genotype classes. Middle panel shows histone-
modification peaks in the region from Encode LCL GM12878. Bottom panel shows the gene-structure of C270orf56, where exons are in bold and the
gene is expressed from the reverse strand. Green points indicate the location of four HapMap SNPs (rs8133205, rs6518275, rs8133082, and
rs8134519) associated at FDR of 10% with both methylation and gene expression, and Figure S11 in Additional file 1 shows association results for
this region with SNPs from the 1,000 Genomes Project. (f) Bisulphite-sequencing results for eight rs8133082-homozygote individuals (4 GG black,

4 TT red) validates the genome-wide methylation assay at cg07747299 and shows the extent of methylation in the surrounding 411 bp region.

differences in DNA methylation between LCLs and per-
ipheral blood cells (PBCs), and identified 3,723 autoso-
mal DNA methylation sites that had significantly
different methylation patterns across cell types. In that
respect, it is expected that a subset of our results reflect
LCL-specific events. We have tested potential

confounding variables that could affect methylation
levels specifically in LCLs [30], but do not observe sig-
nificant effects of these on overall DNA methylation
patterns in our data. However, variation in methylation
are slightly different in HapMap Phase 1/2 samples
compared to HapMap Phase 3 samples, suggesting that
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technical variation related to LCL culture may influence
DNA methylation. We took this into account when per-
forming all downstream methylation QTL analyses, and
our analyses of the uncorrected methylation patterns are
consistent with the results of previous studies in primary
cells [4,31,35].

We obtained interesting results from the trans analysis
highlighting several loci with potential long-range effects on
DNA methylation. Furthermore, an intriguing association
of a SNP within the intron of DIP2B, which contains a
DMAPI1-binding domain, with the first principal compo-
nent of autosomal methylation patterns suggests novel gen-
ome-wide effects on methylation variability. However, we
do not observe a strong effect of polymorphisms in many of
the candidate methylation regulatory genes on overall pat-
terns of methylation or on specific probes. The sample size
used in the study limits our power to detect trans signals,
rendering these analyses more difficult to interpret. In gen-
eral, the moderate sample sizes used in all three genome-
wide methylation studies to date do not allow for the
detection of subtle effects of genetic variants on methylation
variation and correspondingly the majority of methylation
sites assayed across all studies remains unexplained by the
GWAS analyses. However, the findings indicate that genetic
regulation of methylation is as complex as expression or
phenotypic variation.

Relating genetic variation to both DNA methylation
and gene expression variation reveals complex patterns.
We observe significant overlap between meQTLs and
eQTLs for cis regulatory variants. These findings were
obtained when we both focus exclusively on meQTL
SNPs (Figure 4a) and when we compare the genome-
wide meQTL results for all SNPs classified as eQTLs in
the hierarchical model framework (Figure S9 in
Additional file 1). The observations indicate evidence for
shared regulatory mechanisms in a fraction of genes.
However, in the re-analyses of the eQTL data taking
into account DNA methylation, in only 10% of eQTLs
was the genetic effect of the SNP on expression affected
by controlling for methylation, suggesting that variation
in methylation accounts for only a small fraction of
variation in gene expression levels. There may be several
explanation for this. First, the coverage of the methyla-
tion array provides a relatively low resolution snapshot
of the genome-wide DNA methylation patterns. Second,
steady state gene expression levels (as measured by
RNA-sequencing) are controlled by many other factors
in addition to DNA methylation, such as transcription
factor binding, chromatin state including histone marks
and nucleosome positioning, and regulation by small
RNAs. Finally, our study sample size provides modest
power, both for eQTL and meQTL mapping. However,
compared to previous studies addressing this issue
[5,18], we find more convincing evidence for meQTL

Page 9 of 13

and eQTL overlap. For example, Zhang et al. [18] found
ten cases where genetic variants associated with both
methylation and expression, but they only examined
gene expression data for fewer than 100 genes in these
comparisons in a subset of the sample, while Gibbs
et al. [5] found that approximately 5% of SNPs in their
study were significant as both meQTLs and eQTLs.
Also, Gibbs et al. [5] find proportionally similar number
of QTLs for methylation and gene expression, while we
find more eQTLs. A potential explanation for the
greater overlap obtained in our data is that our study
examines one cell type in comparison to heterogeneous
cell-types in human brain tissue samples used in both
other studies [5,18].

Characterizing the genetic control of methylation and
its association to the regulation of gene expression is an
important area for research, critical to our understand-
ing of how complex living systems are regulated. Our
study has the potential to help disease mapping studies,
by informing the phenotypic consequences of this varia-
tion. Altogether, of the 173 genes with proximal
meQTLs in our study, eighteen genes were previously
reported to be differentially methylated in cancer, in
other diseases, or across multiple tissues (see Table S4
in Additional file 1). Furthermore, thirty of the meQTL
associations reported in our study were also observed in
human brain samples [5]. These findings provide a fra-
mework to help the interpretation of GWAS findings
and improve our understanding of the underlying
biology in multiple complex phenotypes.

Conclusions

Our results, together with recent findings of heritable
allele-specific chromatin modification [25,47] and tran-
scription factor binding [26,49] demonstrate a strong
genetic component to inter-individual variation in epige-
netic and chromatin signature, with likely downstream
transcriptional and phenotypic consequences. Impor-
tantly, we found an enrichment for SNPs that affect both
methylation and gene expression, implying a single causal
mechanism by which one SNP may affect both processes,
although such shared QTLs represent a minority of both
meQTLs and eQTLs. Our data also have implications for
the functional interpretation of mechanisms underlying
association of genetic variants with disease.

Materials and methods

Methylation data

DNA was extracted from lymphoblastoid cell lines from
77 individuals from the Yoruba (YRI) population from
the International HapMap project (60 HapMap Phase 1/
2 and 17 HapMap Phase 3 individuals). Lymphoblastoid
cell lines were previously established by Epstein-Barr
Virus transformation of peripheral blood mononuclear
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cells using phytohemagluttinin. We obtained the trans-
formed cell lines from the Coriell Cell Repositories.
Methylation data were obtained using the Illumina
HumanMethylation27 DNA Analysis BeadChip assay.
Methylation estimates were assayed using two technical
replicates per individual and methylation levels were quan-
tile normalized across replicates [28]. At each CpG-site the
methylation level is presented as 3, which is the fraction of
signal obtained from the methylated beads over the sum
of methylated and unmethylated bead signals. We consid-
ered different approaches to normalizing values across
replicates, as well as using the log of the ratio of methy-
lated to unmethylated signal instead of 3, and found the
results robust to normalization procedure, measure of
methylation, and across technical replicates (see Addi-
tional file 1). The methylation data are publicly available
[50] and have been submitted to the NCBI Gene Expres-
sion Omnibus [51] under accession no. [GSE26133].

We mapped the 27,578 Illumina probes to the human
genome sequence (hg18) using BLAT [52] and MAQ [53].
We selected 26,690 probes that unambiguously mapped to
single locations in the human genome at a sequence iden-
tity of 100%, discarding probes that mapped to multiple
locations with up to two mismatches. We excluded a
further 4,400 probes that contained sequence variants,
including 3,960 probes with SNPs (from the 1,000 gen-
omes project [54], July 2009 release, YRI population) and
440 probes which overlapped copy number variants [55].
This resulted in a final set of 22,290 probes (21,289 auto-
somal probes) that were used in all further analyses. The
22,290 probes were nearest to the TSSs of 13,236 Ensembl
genes, of which 12,901 genes had at least one methylation
CpG-site within 2 kb of the TSS.

Bisulfite sequencing was performed in the C21orf56
region for eight individuals. DNA was bisulfite-con-
verted using the EZ DNA Methylation-Gold Kit (Zymo
Research). PCR amplification was performed using pri-
mers designed around CpG-site ¢g07747299 from the
HumanMethylation27 array and the nearest CpG island
in the region (using Methyl Primer Express from
Applied Biosystems) for a total of 411 bp amplified in
the 5" UTR of the C21orf56 gene. PCR products were
sequenced and cytosine peak heights compared to over-
all peak height were called using 4Peaks Software.

Gene expression data

RNA-sequencing data were obtained for LCLs from 69
individuals in our study from [24]. The methylation and
RNA-sequencing data were obtained from the same cul-
tures of the LCLs. RNA-sequencing gene expression
values are presented as the number of GC-corrected reads
mapping to a gene in an individual, divided by the length
of the gene. In the methylation to gene expression com-
parisons we split genes into quantiles based on the mean
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gene expression per gene. 