
RESEARCH ARTICLE

On network backbone extraction for

modeling online collective behavior

Carlos Henrique Gomes FerreiraID
1,2,3*, Fabricio MuraiID

1, Ana P. C. SilvaID
1,

Martino Trevisan3, Luca VassioID
5, Idilio Drago4, Marco MelliaID

5, Jussara M. AlmeidaID
1

1 Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais,

Brazil, 2 Department of Computing and Systems, Universidade Federal de Ouro Preto, João Monlevade,

Minas Gerais, Brazil, 3 Department of Electronics and Telecommunications, Politecnico di Torino, Torino,

Italy, 4 Department of Computer Science, Università di Torino, Torino, Italy, 5 Department of Control and

Computer Engineering, Politecnico di Torino, Torino, Italy

* chgferreira@dcc.ufmg.br

Abstract

Collective user behavior in social media applications often drives several important online

and offline phenomena linked to the spread of opinions and information. Several studies

have focused on the analysis of such phenomena using networks to model user interac-

tions, represented by edges. However, only a fraction of edges contribute to the actual

investigation. Even worse, the often large number of non-relevant edges may obfuscate the

salient interactions, blurring the underlying structures and user communities that capture

the collective behavior patterns driving the target phenomenon. To solve this issue,

researchers have proposed several network backbone extraction techniques to obtain a

reduced and representative version of the network that better explains the phenomenon of

interest. Each technique has its specific assumptions and procedure to extract the back-

bone. However, the literature lacks a clear methodology to highlight such assumptions, dis-

cuss how they affect the choice of a method and offer validation strategies in scenarios

where no ground truth exists. In this work, we fill this gap by proposing a principled method-

ology for comparing and selecting the most appropriate backbone extraction method given

a phenomenon of interest. We characterize ten state-of-the-art techniques in terms of their

assumptions, requirements, and other aspects that one must consider to apply them in prac-

tice. We present four steps to apply, evaluate and select the best method(s) to a given target

phenomenon. We validate our approach using two case studies with different requirements:

online discussions on Instagram and coordinated behavior in WhatsApp groups. We show

that each method can produce very different backbones, underlying that the choice of an

adequate method is of utmost importance to reveal valuable knowledge about the particular

phenomenon under investigation.

1 Introduction

The notion of collective behavior has been widely studied in domains such as Sociology and

Psychology [1, 2]. A possible definition of collective behavior relates it to “the kinds of
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activities engaged in sizable but loosely organized groups of people” [3]. Collective behavior

emerges in several contexts in both online and physical worlds, and it may drive social, cul-

tural, economic, and political phenomena. For example, groups of users may contribute to dis-

seminating opinions and pieces of information as they produce content in social media

applications. These loosely organized people interact with each other driven by common inter-

ests and goals or hidden factors (e.g., coordinated actions). Multiple collective behavioral pat-

terns may emerge from such interactions without a predefined social structure that explains

them. In turn, those patterns drive and favor an underlying (collective) phenomenon. For

example, user discussions around particular topics in a social media application may help dis-

seminate ideas and foster social movements even in the physical world [4–12].

Network or graph modeling is a valuable instrument for studying collective behavior. It

provides a set of theoretical tools (algorithms and metrics) that let one identify and character-

ize an underlying phenomenon of interest [13]. For example, community detection algorithms

[14, 15] unveil groups of tightly connected users in a network, letting collective behavior

emerge by exploring the topological properties of the network itself [5, 16, 17]. These well-

established network metrics and algorithms rely on a graph model where users are vertices

connected by edges representing their interactions. Such interactions may involve several indi-

viduals simultaneously, e.g., multiple users sharing the same information [8, 10, 18–21] or

engaging in discussions around the same posts [22, 23], creating many-to-many relationships.

To study such systems, edges are often weighted by the number of interactions users have in

common [12, 20, 24–26].

In practice, the complexity and diversity of interactions among users pose many challenges

to the study of the phenomenon being modeled. Notably, some interactions (i.e., network

edges) are of little interest as they emerge sporadically or by chance and do not relate to the

phenomenon under investigation [27, 28]. Often in large volume, these edges tend to obfuscate

the real underlying structures and user communities representing the collective behavior pat-

terns driving the phenomenon being studied [24, 29]. In other words, the presence of large vol-

umes of irrelevant edges hurts the understanding and interpretability of the given

phenomenon. This issue calls for algorithms to remove such edges, a procedure commonly

called network backbone extraction. The goal of these algorithms is the selection of the edges

relevant to a given phenomenon (henceforth salient edges) to obtain a reduced and representa-

tive version of the network, i.e., the network backbone. Given the definition of edge salience is

highly subjective, several authors propose different network backbone extraction methods [23,

24, 30–36]. Choosing which of these methods should be applied to a given case study is often a

hard task.

A second challenge in the study of collective behavior is the lack of ground truth data, as it

is often the case for studies on online social media. Although information about the phenome-

non of interest may be present in some scenarios [37, 38], the lack of ground truth prevents

the evaluation of the quality of the extracted backbone, making the comparison and choice of

methods hard [39–42]. Authors thus resort to the evaluation of topological metrics, such as

community modularity, density, clustering coefficient of the extracted backbone, which more

clearly defines sub-structures than the original network [20, 37, 43–45].

However, this approach gives no guarantee that the extracted backbone better represents

the phenomenon under study. Some recent studies have started exploring regression models

to relate topological properties of the network backbone with phenomenon-specific attributes

[33, 46, 47]. The intuition is to consider some contextual criteria that relate backbone proper-

ties (e.g., the identified communities) to characteristics of the phenomenon under study (e.g.,

the volume of information shared by a community) [5, 16, 48, 49]. However, these studies do

not provide a clear rationale as to why a given extraction method fits the given phenomenon
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and therefore whether it is adequate to the study. Such reasoning is of utmost importance

since different methods have different assumptions and properties, which may constrain their

use or introduce unwanted biases to the study.

We here take a step towards filling this gap by presenting a rigorous methodology to select

and compare network backbone extraction methods given a phenomenon under study. We

introduce a principled methodology to compare and select backbone extraction algorithms in

the context of online media network analysis. It encompasses two fundamental selection steps:

1) A priori selection of the subset of backbone extraction methods starting from the phenome-

non assumptions and the method assumptions; 2) A posteriori evaluation of the resulting

backbone’s structural and contextual quality.

For the first step, we select ten backbone extraction methods, describe their assumptions

and requirements, and show that these methods can be grouped into classes to simplify the

choice of methods to consider for the particular case study. For the second step, we claim that

the traditional topological properties of the extracted backbone graph must be complemented

by the evaluation of contextual metrics that assess if the resulting backbone captures the actual

correlation related to the phenomenon under study. To exemplify the overall approach, we

apply our approach to two specific use cases, each with different characteristics. These cases

allow us to show how both steps are fundamental in practice.

Our aim is to offer the researchers a thorough and principled approach when facing the

selection of backbone extraction methods. While we present our methodology in the context

of online media network analysis, we believe the approach is generic and can be applied in

other cases. To foster its application, we make all scripts used to generate our results publicly

available, together with two anonymized datasets related to the evaluated case studies in

https://github.com/chgferreira/backbone_extraction.

This article is organized as follows. We review the related literature in Section 2 and then

formally state the problem we address in Section 3. Next, we describe our proposed methodol-

ogy in Section 4 and show how it can be applied to two different case studies in Sections 5 and

6. We conclude our paper and discuss potential follow-up studies in Section 7.

2 Background

2.1 Fundamentals

The modeling of interactions among different users using network/graph representations is

widespread in the literature. Yet, as previously shown [24, 28, 50–53], the variety of patterns

emerging from such interactions and influencing the phenomenon under study can be quite

large, including sequentiality, periodicity, and sporadicity. Moreover, to study a given phe-

nomenon, it is often the case that one needs to look at large sets of interactions over a relatively

long period of time. However, not all interactions are equally important for the study. In fact,

it is often the case that many such interactions occur only sporadically or purely by chance and

therefore have only a weak relation, or no relation at all, to the phenomenon under study.

As previously argued [24, 50, 51, 54, 55] it is unclear the extent to which the aforementioned

diversity of interaction patterns affects the study of the phenomenon under consideration. For

example, the presence of a large number of random, sporadic and thus weak edges in a net-

work representation may indeed obfuscate those edges more closely related to the phenome-

non [10, 12, 20, 56–58], here referred to as salient edges. As such, these weak edges represent

noise to the study. This situation gives rise to the following question: What makes a particular
edge relevant to the study of a given phenomenon?

As argued by Grady et al. [32], the definition of edge salience is based on an ensemble of

node-specific perspectives in the network and quantifies the extent to which there is consensus
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among nodes regarding the importance (or representativeness) of a link. Thus, there are a vari-

ety of factors related to the phenomenon under study that define whether an edge is salient or

not, making the identification of a salient edge quite challenging. Given a proper definition of

edge salience, another challenge is how to implement and evaluate the identification and

extraction of these edges from the original network. The set of salient edges is called the net-

work backbone. Next, we discuss prior studies that deal with the use and design of backbone

extraction algorithms.

2.2 Prior studies on network backbone extraction

Starting with applications, multiple works in various fields have shown the importance of

backbone extraction methods to deal with random, sporadic, and weak edges that may obfus-

cate the phenomenon under study. For example, several studies applied early proposed meth-

ods to study phenomena in biological networks [59, 60], economic networks [61–63], co-

authoring networks [64, 65], human mobility networks [66–68] as well as congressional voting

networks [25, 69, 70].

More recently, some studies have highlighted the importance of this task in social media

applications. For example, Pacheco et al. have proposed a network-based methodology for

identifying coordinated actions in social media [20]. This methodology is based on (i)

exploring different types of user interactions (e.g., users who used the same hashtag sequence

or who retweeted the same tweet sequence) and (ii) applying a threshold-based approach to

remove edges whose weights fall below a certain threshold. This simple threshold-based

backbone extraction approach has been widely used in the literature [69–74], including stud-

ies on online hate communities [12] and communities with online news exposure [10]. How-

ever, some studies point to possible misinterpretation of results when using such approach,

as they may introduce bias into the analysis [72]. To name a concrete case, the appropriate

threshold setting is context-dependent and can therefore be quite complex to be determined.

Sometimes it is not even clear whether the same threshold should be applied to all edges

[75].

Another example of study is the analysis of information dissemination in publicly accessible

groups on WhatsApp, a currently very popular communication platform. The authors of [21,

76] investigated a latent network structure built by connecting users who shared the same con-

tent. By applying a probabilistic backbone extraction method called Disparity Filter [77], they

revealed the formation of communities of users that cross the boundaries of existing groups,

favoring dissemination of information at large [76], including misinformation [21]. Similarly,

different backbone extraction methods have been applied to uncover patterns describing the

dynamics of online discussions on Instagram, Twitter, Facebook and Reddit [19, 22, 23, 56–58,

78, 79].

Moving to the body of works that focuses on the proposal of new backbone extraction

methods, some authors compared methods to alternatives in light of specific phenomena of

interest in various domains, such as transportation, finance, and ecology [31, 32, 35, 77]. Some

works propose specific rules to the selection of salient edges, e.g., as in [80, 81] where salient

edges are identified based on the idea of overlapping communities. A large number of previous

studies has proposed and analyzed methods for extracting backbones in bipartite networks

[37, 38, 82]. Considering a bipartite structure consisting of artifacts and agents, a family of

methods, such as the Fixed Sequence Degree Method (FSDM), the Fixed Fill Method (FFM),

the Fixed Row Method (FRM), the Fixed Column Method (FCM), and the Stochastic Degree

Sequence Model (SDSM), identify salient edges by constraining the degree sequence of either

artifacts (FCM), agents (FRM), both (FSDM and SDSM), or neither (FFM).
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Most of these studies rely on structural/topological properties to evaluate different back-

bones extracted from the same network, including node and edge coverage, clustering coeffi-

cient, centrality measures, and community quality measures. As such, they offer only a partial

view of the quality of the backbones. Contextual (i.e., phenomenon-specific) criteria, capturing

the extent to which the extracted backbone represents the phenomenon under study, are not

considered. More recently, some studies have proposed and compared backbone extraction

methods based on regression-models as a means to capture contextual attributes specific to the

phenomenon, relating them to topological properties of the backbone [33, 36, 47].

In this paper, we do not intend to introduce another backbone extraction method, but

rather to propose a principled methodology to evaluate existing solutions for a target study. In

a similar direction, Dai et al. [43] have evaluated six methods for extracting the salient edges

from an air transportation network. As most prior studies, the authors considered only topo-

logical properties in such evaluation, which seems adequate given the interest in network con-

nectivity (i.e., paths). Similarly, Mukerjee et al. [45] investigated the impact of method

parameters on network connectivity. They proposed to choose the best method and its param-

eters based on topological properties, by maximizing the number of edges while maintaining

the connectivity of the network. Other studies also evaluated existing methods for specific

cases of bipartite networks, but once again considering only topological properties [24, 37, 82].

In contrast, our focus is on collective human behavior in networks emerging in social

media applications, which are expected to have more nuanced aspects. Specifically, unlike

other networks (such as transportation networks) that are driven by existing and slowly chang-

ing rules, our focus is on user behavior, notably on social networks, which is driven by a multi-

tude of both endogenous (e.g., mechanisms employed by the platform) and exogenous factors

(interactions on other platforms and in the real world). These aspects deserve to be investi-

gated from both topological and contextual perspectives. We propose a principled methodol-

ogy to select and evaluate the best method among alternatives for a given target phenomenon,

taking into account whether the assumptions and requirements of each method fit adequately

the properties of the phenomenon. In the following, we present a brief description of ten back-

bone extraction methods selected for our study.

2.3 Selected backbone extraction methods

In selecting the backbone methods, we consider those that have been proposed for weighted

networks and applied to the analysis of collective behavior, often in projected networks [21–

23, 31, 33, 35, 56, 64, 76, 77, 79, 83, 84]. We consider methods that have been explored by prior

studies, restricting our focus to those applied in social media applications. We include also two

alternatives [32, 36] proposed in other contexts to extend the set of to methods.

The selected methods are: naive threshold-based backbone extraction, High Salient Skele-

ton [32], Random rElationship ClAssifier STrategy (RECAST) [34], Disparity Filter [77], Polya

Urn Filter [36], Marginal Likelihood Filter [35], Noise Corrected (NC) [33], Global Statistical

Significance (GloSS) Filter [31], Tripartite Backbone Extraction (TriBE) [22], and Stochastic

Degree Sequence Model (SDSM) [37].

Here we briefly describe and emphasize the differences among the methods. We provide a

short summary of each algorithm in the Appendix A and direct the reader to the original

papers where the methods have been proposed for a detailed description.

The aforementioned methods have been analyzed in the context of various phenomena.

Yet, no prior study compared all ten methods under the same analysis framework. For illustra-

tion purposes, Fig 1 shows which methods have been compared to each other in previous stud-

ies mentioned in Section 2.2. Some of them (e.g., RECAST and TriBE) have not been
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compared to any alternatives. Clearly not all methods are adequate to all studies, which justifies

the lack of some comparisons.

3 Problem statement

We tackle the challenge of selecting and evaluating network backbone extraction methods

available in the literature given a target phenomenon. Inherent to such problem is the use of a

potentially noisy network to model interactions driving the given phenomenon. By noisy we

mean a network that may contain a large number of spurious edges that are not relevant for

understanding the phenomenon at hand and, even more, may obfuscate the relevant ones (i.e.,

the salient edges), jeopardizing the understanding of the phenomenon and the validity of con-

clusions drawn from the study.

3.1 Problem statement

Given (i) a particular phenomenon of interest driven by collective behavior, and (ii) a dataset

capturing real interactions that represent manifestations of such phenomenon, how can we
evaluate alternative network backbone extraction methods and select the one that, when applied
to a network model of the input interactions, is able to accurately reveal key properties associated
with the phenomenon of interest?

One major assumption that guides our effort is that not every network backbone is ade-

quate to study the given phenomenon. Rather, key characteristics of such phenomenon must

be matched to the assumptions and requirements of each method. Thus, a characterization of

these properties is of utmost importance to drive the analysis. A mismatch between those char-

acteristics, assumptions and requirements may lead to biases and misinterpretations.

Specifically, we are interested in identifying the methods that provide the best agreement

between topological properties associated with the connectivity of vertices in the network and

the contextual properties associated with factors driving the phenomenon that emerges from

those patterns. Since our interest is in collective behavior patterns, the topological properties

of interest are mostly associated with communities representing tightly connected groups of

Fig 1. Selected backbone extraction methods: Edges connect methods already compared to each other in prior

work. Details of each methods are provided in Table 1.

https://doi.org/10.1371/journal.pone.0274218.g001
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users who exhibit common behavior. One key challenge we must face is that each backbone

extraction method removes edges (and nodes) from the network based on its own definition

of edge saliency. Note that nodes that end up isolated after edge removal are also removed

from the backbones. Thus, backbones extracted by different methods would reveal different

topological structures, with properties that, though possibly strong and clear, may not be rele-

vant (or related) to the phenomenon being studied.

Let us start presenting a simple case to exemplify the complexity of the problem. Consider

the network in Fig 2a) built by connecting different users (nodes) who shared the same content

on WhatsApp. Edges are weighted by the number of times the users shared the same content.

This network, consisting of 190 nodes and 6 760 edges, is a subgraph of the network we analyze

in Section 6. Suppose we build this network to investigate evidence of users’ coordination to

speed up content spreading on the platform. Fig 2b–2d show three different backbones

extracted from the same original network by three different methods, namely the threshold-

based method, Gloss Filter and Disparity Filter. As evident, each backbone contains a different

subset of the original edges and nodes. The question that arises is: Which backbone is the best
one to study our phenomenon of interest, i.e., coordinated behavior?

All methods remove a large fraction of the original edges and reveal clear topological struc-

tures in terms of communities, which reflected by the modularity [85] which improves w.r.t.

the original network (see values in captions of the figures). The Gloss Filter backbone (Fig 2b)

Fig 2. Example network and the backbones extracted from it by three different methods (modularity values

presented within parentheses). Edge thickness represents edge weight and nodes’ color possible coordinated users’

communities. Node position is the same as in the original network.

https://doi.org/10.1371/journal.pone.0274218.g002
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is quite different and misses the strong groups of users found by the Threshold and Disparity

Filter that form a very tightly connected community. These users shared the same content

many times (indicated by the reddest edges), which is a strong evidence of coordination. The

spatial layout of the nodes is fixed for all networks. This makes nodes that are members of the

same community spread out, which makes it hard to see how interconnected they really are.

The threshold-based and Disparity Filter backbones (Fig 2c and 2d) look somehow similar.

Both reveal four tightly connected groups of users, but the threshold-based model misses some

strong edges among users, resulting in smaller communities. At the end, in this simple case,

the Disparity Filter provides the best results.

Note that such conclusions cannot be based solely on topological/structural metrics. Indeed

the modularity of the Gloss Filter backbone is the highest, but the extracted communities are

not linked with the phenomenon under study. We must thus also consider contextual aspects

related to the specific case study.

To generalize and tackle our target problem, in the following we propose a methodology to

target the studies of collective behavior emerging from networks. Despite the focus on social

media, our proposed methodology is generic enough to be applied to phenomena in other

online and offline domains that are also modeled by noisy networks (e.g., co-voting [69, 70]

and co-authorship [65] networks).

4 Selection and evaluation of network backbone extraction

methods

The methodology we propose consists of the 4 steps presented in Fig 3. We describe each step

in details in the following.

Fig 3. Overall methodology.

https://doi.org/10.1371/journal.pone.0274218.g003
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4.1 Step 1—Building a network model

We assume the availability of a dataset containing a temporal sequence of user interactions

gathered from the target system taking place over a period of interest. In essence, these interac-

tions may occur among multiple users simultaneously, being thus referred to as many-to-
many interactions. They are observable actions (e.g., comments posted in a social media appli-

cation) reflecting different user behavior patterns. We are interested in revealing those patterns

that are fundamentally related to (and drive) the phenomenon that will be studied.

Such many-to-many interactions can be modeled as a network by building bipartite, a

hypergraph or, more broadly, higher order models [53]. Yet, a large number of backbone

extraction models work directly on projected networks where edges are added to represent

interactions among pairs of users [10, 12, 19, 20, 56–58]. This is the case of Disparity Filter,

Noise Corrected, among others [33, 36, 77]. Other methods adopt alternative network models

by explicitly representing users as well as phenomenon-specific artifacts through which users

interact with each others. As such these methods adopt an n-partite network model. Examples

are TriBE that works on a tripartite model representing commenting users, influencers and

their posts, and SDSM, which in turn works on a bipartite network representing, for instance,

members of congress and voting sessions [22, 26, 70]. However, both methods (as others [26,

37]) end up building a backbone composed of salient user-user edges, thus effectively building

a projected backbone. Therefore, we chose to present here the common projected network

model. Yet, we note that both Tribe and SDSM operate on the original n-partite network to

extract the projected backbone. We thus adopt an undirected and weighted projected network

G = (V, E) as the base model for our methodology, such that:

• V is the set of users who interacted at least once during the period of interest;

• E is the set of undirected and weighted edges connecting pairs of users, such that the weight

of edge ei1 ;i2 connecting users i1, i2 2 V is γ(i1, i2) = f(i1, i2), where f(i1, i2) is any aggregation

function (e.g., count) defined over the set of interactions between i1 and i2 and/or any con-

textual information available associated to them. Examples include the sharing of similar

content (e.g., same URLs, same hashtags, or same messages) and/or temporarily synchro-

nized activities [8, 10, 12, 18–20].

Our methodology must give us the means to extract the backbone of the original network

where noisy edges are filtered out. Before proceeding, we note that one might be interested on

the dynamics of such backbone over different periods of time covered by the input dataset. In

that case, one strategy is to break the original data into subsets covering non-overlapping and

consecutive time windows (e.g., weeks or months) and build one network model for each win-

dow. Given that the phenomenon under study remains the same, it is reasonable to assume

that the contextual criteria impacting the selection of the best backbone extraction method

would be maintained across network models. Thus, the methodology could be applied to one

of such network models to identify the most adequate backbone extraction method. Such

method could then be used to extract different backbones (one for each window) allowing an

assessment of the temporal evolution of their properties (as done in [21, 22, 25, 55, 69, 70, 76,

86]).

4.2 Step 2—Selecting candidate backbone extraction methods

In principle, any backbone extraction method could be applied to a given network model, and

the backbones extracted by different methods may be quite different (as illustrated in Fig 2).

Some backbones may miss a few important edges while still offering important insights,
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whereas others may be composed mostly of edges of little relevance to the study. Detecting the

latter is not always easy, especially for large-size networks. Thus, we argue that a careful and

principled selection of candidate methods must be performed before evaluating the extracted

backbones to avoid misinterpretations and facilitate evaluation. To that end, our goal in this

step is to shortlist backbone extraction methods that are adequate to study the given phenome-

non. By adequate we mean that their assumptions and requirements are in alignment with key

characteristics of the phenomenon, at the cost of generating completely unrelated backbones

otherwise.

In the following we offer a characterization of ten alternative methods (cfr. Section 2.3) and

discuss issues one must consider to study a target phenomenon. The discussion below reflects

our analyses of the methods’ applicability to different scenarios. To guide this discussion, in

Table 1 we present a summary with some key properties of each method. We categorize the

methods along with four aspects that are important to assist one in determining the suitable

methods for a given case study.

Before we look at the edge salience criteria, the first aspect that should be considered when

deciding which backbone method to apply is the nature of the edge weights (2nd column of

Table 1). This preliminary aspect is a fundamental step in our proposed methodology to dis-

card methods that are not applicable to the problem. Most of the methods considered here are

limited to discrete weight values (Noise Corrected, Disparity Filter, TriBE, RECAST and

SDSM), while others work with continuous values too (HSS, Threshold and GloSS). Similarly,

another factor to be considered is whether the method expects only positive weights—e.g.,

Table 1. Our characterization of selected backbone extraction methods.

Method Edge weight Domain Edge Salience Criteria Parameters

Local vs.

Global

Structural vs. Statistical

Threshold-based

Backbone Extraction

Positive/negative

continuous or

discrete

Global Structural Threshold (Edge Weight) or %

Edges

High Salient Skeleton

(HSS) [32]

Positive continuous

or discrete

Global Structural Threshold (% Edges or HSS

Score)

RECAST [34] Positive discrete Global Statistical Reference model: Two global distributions for all edges

from random graphs with the same topology as the original network

alpha (significance level)

Disparity Filter (DF) [77] Positive discrete Local Statistical Reference model: Uniform distribution of edge weight per

node

alpha (significance level)

Polya Urn Filter [36] Positive discrete Local Statistical Reference model: Beta-Binomial distribution of edge weight

per edge

alpha (significance level) and a
(Reinforcement Learning)

Marginal Likelihood

Filter (MLF) [35]

Positive discrete Local Statistical Reference model: Binomial distribution of edge weight per

edge

alpha (significance level)

Noise Corrected (NC)

[33]

Positive discrete Local Statistical Reference model: Binomial distribution or a

Hypergeometric distribution (obtained by a Bayesian Framework) of

edge weight per edge

alpha (significance level)

Global Statistical

Significance (GloSS) [31]

Positive continuous

or discrete

Local Statistical Reference model: A single null model considering both the

edges between nodes and the weight distributions of the original

network. Each edge is evaluated under its end nodes’ properties using

a Bayesian Approach

alpha (significance level)

Tripartite Backbone

Extraction (TriBE) [22,

23]

Positive discrete Local Statistical Reference model: Poisson-Binomial distribution of edge

weight per edge

alpha (significance level)

Stochastic Degree

Sequence Model (SDSM)

[37]

Positive discrete Local Statistical Reference model: Poisson-Binomial distribution of edge

weight per edge considering the bipartite degree sequence

alpha (significance level)

https://doi.org/10.1371/journal.pone.0274218.t001
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only the Threshold-based approach can work with negative weights among the ten evaluated

methods.

4.2.1 Global vs. Local methods. The second aspect is inherently related to how the

method determines whether an edge is salient or not (3nd column of Table 1). While some

methods apply a single criterion to all edges, others may use different criteria for different

edges. Thus, we propose to classify each method as either local or global. The former refers to

methods that determine the salience of each edge based on local information associated with

the neighborhood of the edge, thus capturing aspects that are specific to the edge (and adjacent

nodes) being analyzed. Global methods, instead, use the entire graph or a single global prop-

erty for all edges in the graph. As such, the same (global) criterion is applied to all edges. As

shown in Table 1, the simple threshold-based backbone extraction, HSS and RECAST are

global methods. All other seven methods are local. It is important to note that while GloSS

uses a single reference model, the selection of salient edges is based on local information about

the degree and strength of adjacent nodes [31].

The choice between a local or a global method should take into account whether the phe-

nomenon exhibits an inherent heterogeneity or possible biases across different edges that are

relevant to the understanding of the phenomenon. For example, it is well-known that several

attributes related to user behavior in social media applications (e.g., content popularity, con-

tent sharing etc.) are very heterogeneous, resulting in heavy-tailed distributions [87, 88]. Such

distributions naturally lead to network models with edge weights, node strengths and other

properties that are widely distributed, often over different scales [13, 89, 90]. If the phenome-

non under investigation is inherently related to a single (dominant) scale (e.g., revealing the

most frequent interactions) or to properties that go beyond single edges and their adjacent

nodes (e.g., revealing users who can easily reach all others in the network), then a global

method should be adequate.

Otherwise, if the phenomenon occurs at all scales defined by the heterogeneous structure of

the network, a local method is probably more adequate. By exploring local information to

define the salience of an edge, such methods might be able to retain edges that are representa-

tive of multiple scales, thus being relevant to the phenomenon. One such example is the study

of online discussions in social media. Participation in such discussions is naturally highly het-

erogeneous reflecting the differences in user behavior. Yet, to get a clear picture of what is

being discussed, one must capture the contributions of users with different levels of activity.

Applying a global method may bias the extracted backbone to the interactions among the most

active users or the most popular content, which would offer only a partial view of the discus-

sions. A local method, instead, would be able to retain interactions among users with different

levels of activity, thus offering a more complete and accurate representation of the interactions

driving the phenomenon. We further elaborate on this particular study in Section 5.

4.2.2 Structural vs. statistical methods. A third aspect to be considered is whether edge

salience is based on structural properties or on a statistical reference model (4rd column of

Table 1). The former relates to methods that determine whether an edge is salient based solely

on topological attributes of the network (e.g., edge weights, neighborhood overlap, paths etc.),

thus relying only on the empirical distributions of these attributes. These distributions are

often evaluated via thresholds. As shown in Table 1, both the threshold-based and HSS meth-

ods fall into this category. For the former, salient edges are those whose weights are above (or

below) a given threshold. For the latter, the number of shortest path trees that use the edge is

used as attribute. Structural methods are more adequate if the phenomenon is inherently

related to the network topology or connectivity, as represented by the used attribute. Examples

include revealing the interactions among users/nodes with the largest number of neighbors in
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common (highly neighborhood overlap) [69, 70], or revealing users who are sources of infor-

mation with greater reach in the network [91].

In contrast, other phenomena may be studied in more details by examining statistical devia-

tions from an expected reference behavior. In such cases, one should consider methods that

build statistical reference models for edge weights. These methods consider as salient the edges

whose weights deviate significantly (according to a given alpha) from the reference model. The

idea is that such reference model reflects the random network structure that would emerge if

the phenomenon would not be taking place. As such, it is built based on network properties

(e.g., distribution of node degrees, node strengths, or edge weights) often under the assump-

tion of independent user behavior. By looking at edges that statistically deviate from the refer-

ence, these methods avoid uninteresting (common) behaviors, thus focusing on the edges that

have greater chance of reflecting uncommon interactions that drive the phenomenon under

investigation.

Different methods employ different reference models, thus directly impacting the definition

of salience. To select a method, one should consider whether the employed reference model

reflects a baseline for analysis. Consider, for instance, the study of coordination among users

to spread information where interaction occurs when two users share the same content. A

strategy to model this phenomenon is to consider that users should have similar sharing pat-

terns with their neighbors in the network if no coordination is taking place. This behavior

leads (as the reference model) to a uniform distribution of edge weights for all edges incident

to the same node. Edges with weights that significantly deviate from such reference offer

potential evidence of coordination and, thus, should be retained as part of the backbone. We

further elaborate on this study in Section 6.

4.2.3 Parameters to filter. The fourth aspect relates to parameters employed by each

method (5th column). As shown in Table 1, all structural methods rely on a threshold parame-

ter to determine salient edges. As mentioned in Section 2, the use of such approach may lead

to biases in the analyses. To avoid such problems, a threshold can be set contextually, i.e.,

based on an expected value for an edge according to the phenomenon. Since setting the thresh-

old based on a contextual decision may be quite complex, prior work has proposed to consider

a percentile of the empirical distribution of weights, analyzing the impact of this value on topo-

logical properties, e.g., density and community quality [24, 69, 74].

Conversely, all statistical methods make use of a parameter alpha for statistical testing to

identify salient edges. Typically, the literature uses classical values (i.e., 0.1, 0.05, 0.01 or 0.005

or 0.001) [31, 32, 36]. However, some studies have argued that such classical values do not

always yield the best topological structure of the network [24, 45]. Moreover, methods yield

different reference models, some of which provide more tighter estimates than others. Thus,

we propose here to test a range within these values to examine the effects on both topological

and contextual properties, as we will explain later, and to choose values that represent a good

compromise between the two metrics for each method. In addition to the parameter alpha, the

Polya Urn filter also requires a parameter a that governs the process of reinforcement of exist-

ing interactions [36]. The higher the value of a, the larger the weight of an edge between two

nodes must be, compared to the weights of the other edges adjacent to those nodes, for the

edge to be considered salient.

4.2.4 Additional considerations. Having discussed the aspects that must be considered

when selecting backbone extraction methods, we complete this step with some general consid-

erations and insights about specific methods that may also help guide the selection. First, we

note that some of the local statistical methods, notably TriBE, SDSM, MLF and NC, use bino-

mial or Poisson binomial distribution as reference model for edge weights. These statistical

distributions assume—by design [92]—that each unit of edge weight is assigned to a pair of
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nodes under the assumption of independence. Deviations from this assumption are considered

relevant evidence of salience in the context of social media applications, as they suggest that

the weights are generated by hidden effects, e.g., when users are attracted to certain content

and therefore interact around them [22, 47]. The Polya-Urn filter, on the other hand, assumes

the beta-binomial distribution which breaks with the assumption of independence since each

assignment is not independent of the others and changes from trial to trial (see section 2).

Moreover, recall that social media applications are characterized by a great degree of hetero-

geneity in user activity and content popularity. TriBE, being designed for this context, captures

such heterogeneity directly, by using these factors to build the reference model. In contrast, the

SDSM method captures these aspects through the corresponding degree sequences in the

bipartite graph. By setting these properties, the degree at the top (artifacts) of the bipartite net-

work represents content popularity while the degree sequence at the bottom (agents) repre-

sents users activity level. MLF and NC capture that indirectly, by considering node degrees and

node strengths to build the reference models. Intuitively, these node attributes are closely

related to user activity and content popularity. On one hand, as very active users tend to inter-

act more with others, the degrees and strengths of the corresponding nodes in the network

tend to be larger. Similarly, more popular content tends to attract more users, thus contributing

to increasing the strengths and degrees of the corresponding nodes. GloSS filter also uses the

same attributes to determine whether an edge is salient, though using a somewhat different

approach. Therefore, all these five methods share similarities in terms of the definition of edge

salience, producing backbones that include edges with great variety of weights.

In contrast, the other evaluated methods explore network heterogeneity in the sense that

edges with larger weights, either from a local (Polya Urn and DF) or a global (RECAST, HSS

and threshold-based) perspective, are more likely to be salient. Both Polya Urn and DF build

different reference models to seek edges that stand out (from a local point of view) by their

weights considering a subset of nodes/edges. HSS and the threshold-based method, instead,

take a global perspective (the structure of the whole network or a target threshold) as reference

to identify salient edges. RECAST, in turn, characterizes edges into four classes, allowing dif-

ferent definitions of edge salience (see Section 2). Yet, by exploring such classes, namely

Friends and Bridges, one may produce backbones that also favor edges with heavier weights. In

short, in some cases structural and statistical methods can capture similar behaviors (e.g.,

Threshold vs. Disparity Filter and Polya Urn), but in other cases they capture completely dif-

ferent behaviors (e.g., Threshold vs. GloSS Filter). Thus, the choice of methods depends pri-

marily on the domain and the context. Considering that the network model we build encodes

user interactions, such methods favor keeping edges in the backbone based on repetitive and

consistent patterns of interactions.

4.3 Steps 3 and 4—Backbone extraction and evaluation

Having identified a set of backbone extraction methods that could be employed in a particular

study, step 3 consists of applying the selected methods to the original network to extract the

corresponding backbone. Specifically, each candidate method c in a set of methods C identified

in step 2 is applied to extract a backbone Bc ¼ ðVc
b;E

c
bÞ, such that Ec

b � E consists of only edges

considered salient by c and Vc
b � V is the set of nodes with at least one edge in the backbone

extracted by method c. In other words, after backbone extraction, all isolated nodes are disre-

garded. Step 4 consists of evaluating the quality of the produced backbones. In case multiple

methods were selected in step 2, the best alternative should be chosen according to a trade-off

between the metrics discussed next. The backbone produced by the best method would then

be used to carry out the study.
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Building on prior work [33, 36, 47, 64, 85, 93], we consider metrics of backbone quality in

two categories: topological, which are closely related to network and community structure,

and contextual, which refers to phenomenon-specific attributes.

4.3.1 Topological metrics. The topology-related metrics aim at quantifying the extent to

which the network structure emerging from the backbone provides a clear view of how users

are organized. Metrics such as node degree, density, clustering coefficient, number of con-

nected components, modularity (see discussion below) characterize the structural properties

of interactions considered as salient by the backbone extraction process. For the sake of brev-

ity, we refrain from formally presenting all such metrics here and refer the reader to [94] for

formal definitions.

Recall that our main focus is on phenomena related to collective user behavior. Examples in

the social media domain include efforts to promote particular ideas, brands, or ideologies. The

graph concept that can be directly applied to this notion of collective behavior is community.

Thus, the emergence of clearly defined (i.e., strongly structured) communities in the backbone

offer potential evidence of groups of users actively engaging in common behavior. Identifying

such communities is an important step to uncover relevant knowledge about the phenomenon

[21–23, 25, 64, 70, 74, 76].

The community detection literature is quite extensive, with approaches focusing on specific

concepts of communities defined over different network models [48, 95, 96]. However, in gen-

eral terms, the definition of a community naturally implies groups of users who are more simi-
lar with respect to common interactions and other behavioral patterns. Therefore, users in a

given community are more strongly connected to each other than to the rest of the network.

We chose to apply the Louvain algorithm [85, 97] to identify communities in the backbones,

as it is one of the most used algorithms for community detection. Yet, this component of our

methodology could be changed to employ alternative methods such those described in [96].

The goal of the Louvain algorithm is to maximize the modularity of the communities.

Intuitively, the modularity captures how much densely connected the nodes within a com-

munity are, compared to how connected they would be in a random network with the same

degree sequence. Modularity is defined in the range of -0.5 to +1, and modularity scores of 0.3

or higher are considered strong evidence of well-shaped communities. The Louvain method is

a heuristic that operates by finding first small communities optimizing modularity locally on

all nodes. Then, each small community is merged into one meta-node and the first step is

repeated. The final number of communities is the result of an optimization procedure. We

refer the reader to [97] for a detailed description of the Louvain algorithm.

4.3.2 Contextual metrics. In addition to topological metrics, the quality of a backbone

should be assessed with respect to how well it represents properties of the phenomenon. For

example, by focusing on communities and, in particular, by exploring the contextual proper-

ties associated with them—i.e., characteristics of the communities that are not explicitly cap-

tured by the network topology, but are intrinsically related to the phenomenon—we may

uncover properties that can help explain the emergence of different collective behavior pat-

terns. In this way, we can gain insights into factors driving the phenomenon [5, 16, 48, 49].

Unlike topological attributes, contextual criteria of backbone quality require additional

information about the phenomenon. For example, in the case of social media applications,

contextual information can be obtained through metadata that is usually collected when study-

ing these applications. We thus also propose to assess how well the backbone captures phe-

nomenon-specific properties by means of regression models. Specifically, we build upon prior

work [33, 46, 47], where contextual (phenomenon-specific) properties are used as explanatory

variables to build linear regression models with edge weights as the response (dependent)

variable.
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Although only linear regression models have been used in these previous studies, nonlinear

models could also be considered. They are particularly appropriate when the chosen covariates

are known or expected to have a nonlinear relationship with the edge weights. One could con-

sider, for example, the task of jointly predicting the edge weights using Exponential Random

Graph Models (ERGM) or even Graph Neural Networks, despite some limitations of the

ERGMs when it comes to estimating parameters from sampled graphs (see [98] for a deep

discussion).

Driven by the case studies presented in Sections 5 and 6, we restrict ourselves to linear mod-

els to estimate the edge weights in the backbone (or in the entire network). Since our goal is to

compare the ability of backbone extraction models in removing spurious edges, we argue that

measuring the accuracy when estimating individual edge weights is a good proxy for perfor-

mance in this task. Specifically, we consider the following regression model:

gði1; i2Þ ¼ b0 þ b1X1 þ b2X2 þ . . .þ bnXn þ �; ð1Þ

where γ(i1, i2) is the weight of ei1 ;i2 , X1. . .Xn is a set of covariates related to the phenomenon,

β0. . .βn are the model coefficients and � is an error factor.

The quality of the model fitted to the data captures how well the covariates (contextual

properties) can be used to explain the edge weights (topological property). The better the fit-

ting of the regression model, the more representative the considered edges (and corresponding

weights) are of the underlying network structure driving the target phenomenon. In particular,

we expect that the fitting of the regression model produced for the edges in a backbone (i.e.,

only edges in Eb) to be better than the fitting of the model produced using the entire (noisy)

network (i.e., all edges in E). Similarly, we can compare the quality of different backbones by

comparing the fitting of the models produced for them.

Although this approach has been used in previous studies [33, 46, 47], we point out some

limitations. First, prior work only considered as a quality measure the coefficient of determina-

tion R2, or its relative improvement for the backbone over the original network. However, R2

values may be misleading as they do not account for error estimates [99]. Therefore, we pro-

pose to assess the quality of the fitting by using both R2 and the root mean square error

(RMSE), which is the square root of the mean squared difference between estimated and

observed values [100]. Smaller RMSE values suggest better (i.e., more accurate) fittings of the

model. To compare RMSE values for different networks/backbones, we use a normalized ver-

sion of RMSE, where edge weights are normalized by the average value. We recommend the

following references for more details [99–101].

Another issue is that backbones extracted by different methods may be quite different in

terms of both the number of salient edges and the ranges of weight values, as the methods may

favor very different edges during selection of the salient ones. On the one hand, one would like

to assess the quality of each backbone using all (or most of) its edges. On the other hand, it

may be interesting to compare different methods over the same set of (salient) edges. As a

trade-off between these two scenarios, we propose to split the data into a training and a test

set, whereas the latter consists of a smaller set of edges common to all backbones. We then

evaluate the backbone quality in both sets.

Specifically, we first identify the largest common set of edges present in all extracted back-

bones E\b ¼
T

c2CE
c
b, where C is the set of alternative backbone extraction methods to be evalu-

ated. We then propose to randomly select a sample T of E\b as test edges. We choose to select

20% of E\b as test edges, but other sample sizes could be adopted [102]. Next, for each method

c 2 C, we build the regression model using all edges in Ec
bnT, that is, all edges in the extracted
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backbone except those in the testing set are used as training edges. We do the same for the

entire network, using set E − T as training edges.

We first evaluate the quality of each regression model using both R2 and NRMSE over the

training edges to assess how well the model fits the training data. Note that the training data

captures the majority of the edges in the original backbones. As such, by analyzing the model

fitting to this data we are able to assess the extent to which each backbone is indeed capturing

relevant information for the phenomenon under study.

We then assess the quality of each model in the common set of test edges T. That is, we use

the trained models to estimate the weights of edges in T, and evaluate the quality of the fitting

using NRMSE. We only use the NRMSE because it is better suited for checking how far the

points of the common test set are from the regression line [100]. In a sense, T captures the con-

sensus in terms of edge saliency among all methods. As such, we note that similar NRMSE val-

ues in the training and test sets for a given method suggests that this consensus is

representative of the entire backbone extracted by the method. In contrast, larger NRMSE val-

ues in the test set suggests that the backbone extracted by the method deviates significantly

from the other backbones (that is, the test set is not representative of the training data).

Note that we chose to use a sample of E\b as test edges, instead of the complete set, to avoid

favoring particular methods. For example, backbones with larger relative intersections with E\b
(i.e., the smaller backbones) could be favored in the quality assessment as edges in E\b are more

representative of the training data. Indeed, we did observe this effect in a preliminary set of

experiments when the complete set E\b was used as test edges in our case studies. This effect

has been reduced as we adopt the strategy of using a sample of E\b as test edges instead. This

strategy has also the side effect of leaving more edges to build the model, which may lead to

more accurate models.

4.3.3 Deciding on the best parameters and methods. One question remains: How to
select the best parameters for each method, which indeed may change the obtained backbones
and, as such, the respective topological and contextual metrics for the method? The final decision

on which methods to take depends on these choices. The selection of the best parameters is a

multicriteria optimization, in particular for the statistical methods. It should take into account

the backbone quality in terms of both topological and contextual perspectives (i.e., modularity,

R2 and NRMSE) as well as node and edge coverage. As argued above, for the sake of a fair com-

parison among methods, we create a common set of edges across the extracted backbones out

of which we build a common (sub)set of test edges. Similar regression values in the training

and test sets for a given method suggests that the common set is representative of the entire

backbone extracted by the method, while divergent results indicate that the backbone

extracted by the method differs significantly from the others. Thus, an important constraint

on the selection of parameter values is the size of the common set of backbone edges for all

methods. Given that the methods differ greatly in terms of how aggressively they remove

edges/nodes as well as in the quality of the extracted backbones, we must look for a

compromise.

Our strategy is to start with the most aggressive method and choose a value for alpha that

delivers the best trade-off between modularity and regression results while still leaving a large

subset of edges. We then proceeded with the following methods in decreasing order of aggres-

siveness, potentially reviewing our previous choices in case the common subset of edges

becomes small.

Finally, although here we focus on the quantitative assessment of backbone quality, one

could also resort to visualization to identify possible differences between backbones extracted

by different methods, especially on the denser components of each backbone. This is
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important because both the topological and the contextual perspectives are subject to approxi-

mations and should therefore be considered complementary. In addition, one should be aware

that backbone analysis from a contextual perspective, as opposed to a topological perspective,

inevitably includes subjective factors (e.g., the selection of predictor variables).

5 Case study 1: Online discussions on Instagram

5.1 Characterization of the phenomenon

Our first case study focuses on online discussions on Instagram. In this social media applica-

tion, top public profiles (called “influencers”) create posts that attract the interest of users, who

may like or leave comments associated with them. Specifically, Instagram users engage in online
discussions by commenting on posts [22, 23, 103–107]. The study of such discussions can offer

important insights into how information is disseminated on the platform and how the online

debate impacts our society [108–113].

We rely on a sample of the dataset gathered and analyzed in our earlier work [22, 23]. It is

composed of public content published by political influencers in Brazil in the week surround-

ing the first round of Brazil’s 2018 general elections (e.g., from September 30th to October

6th). We gather posts by the eight candidate runners: @jairmessiasbolsonaro, @fernandohad-

dadoficial, @lulaoficial, @cirogomes, @_marinasilva_, @guilhermeboulos.oficial, @caboda-

ciolo, @ad.alvarodias. We use all posts created by these profiles during the election week, as

well as the comments they received from other Instagram users. We choose not to include

users who commented on a single post, as these clearly reflect sporadic behavior. In total, we

analyze 41099 users who made 376779 comments on 540 posts.

5.2 Step 1—Building the network model

We model the interactions among users commenting on the Instagram posts using the net-

work model proposed in [22, 23]. This network model is defined as a weighted undirected

graph GInstagram = (V, E), where:

• V is the set nodes representing the users who commented on posts; and

• E is the set of edges, where each edge (i1, i2) 2 E connects nodes i1 and i2, representing two

users who commented on the same post. The edge weight γ(i1, i2) is the number of posts that

received comments by the same two users.

Many interactions represented by edges in this network model may not reflect actual dis-
cussions. For example, a very popular post naturally attracts many users, who comment on

them often in an independent manner, without actually engaging in a discussion about the

topic. Moreover, some users are more active than others. Such cases lead to the emergence of a

number of edges simply by chance. As these edges do not reflect discussions among the users/

commenters, they represent noise to the study of the target phenomenon.

5.3 Step 2—Selection of candidate backbone extraction methods

The understanding on how the inherent properties of the phenomenon impact the network

model helps us to focus on backbone extraction methods that do take such properties into con-

sideration to identify salient edges. In this context, salient edges are those with greater evidence

of reflecting online discussions. Hence, we are looking for methods that consider the effects of

user activity level and post popularity on the emergence of irrelevant edges. As such, methods

that are based on the assumption that edge salience is necessarily related to edge weight (e.g.,

methods that assume that edges with larger weights are more likely to be salient), either from a
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local or a global perspective, are not adequate. These methods tend to retain in the backbone

only edges representing repetitive patterns of the most active users, disregarding interactions

reflecting discussions carried out by less active (though still important) users.

Given these considerations, we select the following set of candidate methods for further

evaluation: C = {MLF, NC, Gloss Filter, TriBE, SDSM}. These methods are fundamentally

local and statistical, and factor both user activity level and content popularity. TriBE and SDSM

explicitly build a reference model based on both characteristics. MLF, NC and GloSS Filter

evaluate the salience of an edge taking these factors into account indirectly, by exploring struc-

tural aspects of the network, notably node strength and degree, which are affected by user

activity level and content popularity (cfr. Section 4.2.4).

Notice that although we argue that the SDSM method is adequate to the study of online dis-

cussions [37], it has some theoretical advantages and disadvantages with respect to the other

methods. First, while SDSM explicitly controls the degree sequence of both artifacts and

agents, it does not consider that some artifacts can only have links to certain subsets of agents.

In the context under study, this implies the assumption that all 41 k users (i.e., agents) can

comment on all 540 posts (i.e., artifacts). Even though this is possible in theory, it does not

happen in reality, as users select specific posts and influencers to comment on [22, 23]. Thus,

the expected value of an edge between two users is underestimated, making it more likely that

edges are considered salient. In contrast, the other considered methods, which work on a pro-

jected network (i.e., [23, 31, 33, 35]), allow for disjoint subsets of commenters per post as only

the actual edges (which capture user preferences) are represented in their reference models. In

particular, TriBE [22, 23] was designed to capture such inherent heterogeneity of user behavior

and preferences. It does so by considering user engagement towards posts of specific influen-

cers, i.e., a disjoint relationship between subsets of artifacts (posts) and subsets of agents

(users). In other words, a tripartite structure is considered, which is able to compute different

distributions for a subset of users and posts and thus more accurately determine the expected

value of an edge.

5.4 Step 3—Backbone extraction

We apply each candidate backbone extraction method in C to the network model built in step

1. Recall that all the selected methods require alpha as parameter, and we test a range of possi-

ble values. Table 2 summarizes the topological properties of the original network and the back-

bones extracted using the considered methods. The reported backbone results were obtained

with the following alpha parameters: TriBE = 0.05, SDSM = 0.001, GloSS = 0.10, MLF = 0.001,

and Noise Corrected = 0.00001. Results for other values of alpha are reasonably consistent—

see Table 6 in Appendix B. Recall that we chose alpha that offered the best tradeoff between

Table 2. Online discussions on Instagram: Topological metrics of the network and backbones extracted by each candidate method. Columns 2-3 contain total num-

bers for the original network and also the corresponding percentages for backbones.

Network Model Nodes Edges Avg. Deg. Density Avg. Clust. # C.C. # Comm. Mod.

Original network 41 099 1 193 201 9 236 0.2248 0.68 1 4 0.25

TriBE’s backbone 40 816 (99.3%) 4 152 501 (2.1%) 203 0.0050 0.30 1 9 0.56

SDSM’s backbone 31 811 (77.4%) 2 794 969 (1.4%) 175 0.0055 0.33 2 10 0.46

GloSS’s backbone 28 065 (68.2%) 4 891 339 (2.5%) 348 0.0124 0.54 1 7 0.32

NC’s backbone 28 459 (69.2%) 4 285 139 (2.2%) 301 0.0106 0.31 1 7 0.61

MLF’s backbone 20 461 (49.7%) 2 195 999 (1.1%) 214 0.0105 0.33 1 7 0.62

https://doi.org/10.1371/journal.pone.0274218.t002
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modularity and regression results while still producing a large subset of common edges across

methods.

Columns 2-7 in the table show the results for topological metrics: nodes and edges (total

numbers for the original network and also corresponding percentages remaining in the

extracted backbones), average degree (Avg. Deg.), density, average clustering coefficient (Avg.

Clust.) and the number of connected components (# C.C.). Due to the high execution time, we

use 20% of the nodes in each network to estimate the clustering coefficient. Overall the back-

bones are sparser than the original graph, since a large fraction of the nodes and edges have

been removed. Moreover, the average clustering coefficient shows a moderate number of con-

nected triangles in the network for all methods. Interestingly, four out of the five resulting

backbones have only one connected component, as is also the case for the original graph, sug-

gesting the presence of key users promoting online discussions across different Instagram pro-

files and connecting salient edges into a single component.

The three rightmost columns of Table 2 show results of community-related metrics. We

consider only communities with more than 100 users. The number of communities (#

Comm.) is larger than in the original network. This is expected since backbones are sparser

than the original graph. Finally, the rightmost column of Table 2 shows the modularity results

as a measure of community quality. All backbones clearly have more strongly connected com-

munities (i.e., higher modularity) than the original network, although we still need to assess

the representativeness of these backbones using contextual information.

Since the methods extract backbones with different topological structures, we further ana-

lyze how each method deals with edges with respect to their weights. Fig 4 shows the distribu-

tions of weights for edges retained in the backbone by each method. Each plot also shows the

distribution of edge weight in the original network for comparison. TriBE and SDSM (Fig 4a

and 4b) remove many edges with small weights as well as some edges with large weights.

GloSS Filter (Fig 4c) is more aggressive towards heavy edges and removes some of the edges

over the whole range of values. Note that this method filters out all heaviest edges. NC (Fig 4d)

is the most conservative method with respect to heavy edges and removes a smaller fraction of

the edges through the whole range of weight values. MLF (Fig 4e) follows a similar pattern as

NC, preserving heaviest edges. In summary, the results show that while all five methods share

similarities (e.g., they all capture the effects of user activity levels and post popularity), they

have their peculiarities when it comes to identifying an edge as salient, and they produce quite

different backbones.

5.5 Step 4—Backbone evaluation

5.5.1 Topological evaluation. We delve further into results of Table 2, comparing the

backbones using the topological metrics. We focus on the modularity, since it gives us infor-

mation about the communities, i.e., graphs representing collective patterns. GloSS Filter, for

instance, produces the smallest improvement with respect to the original network (the modu-

larity increases from 0.25 to 0.32), while NC and MLF show the largest improvements (from

0.25 to 0.61 and 0.62, respectively).

5.5.2 Contextual evaluation. We shift to the quality of the backbones from a contextual

point of view. We build regression models considering the following key assumption: If two
users i1 and i2 engage in the same online discussions, then the individual activities (comments)
performed by each user are strongly correlated with the joint activities performed by both users.
If, however, comments posted by one user (or both) are mostly reactions to popular content or

to some automatic tool (e.g., advertising or personalization mechanisms), or simply sporadic
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behavior, the activities of the user individually are only weakly correlated with the joint behav-

ior of both users.

Based on this assumption, we build a regression model for each backbone and the original

network. Given the edge weight γ(i1, i2) as dependent variable, the explanatory covariates are:

(i) number of posts that user i1 commented on, (ii) number of posts that user i2 commented

on, (iii) number of influencers that user i1 commented on, and (iv) number of influencers that

user i2 commented on. We capture user activities by considering both the number of influen-

cers and the number of posts each user commented on because it is often the case that the

same influencer has multiple posts on different topics, each one attracting a different group of

users (community) [22, 23]. Thus, we expect that only edges representing user interactions

Fig 4. Online discussions on Instagram: Weight distribution for edges retained in the backbone by each method

(distribution for original/complete network shown for comparison).

https://doi.org/10.1371/journal.pone.0274218.g004
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driven by joint engagement to be reasonably well explained by these covariates. Thus, the bet-

ter the fitting of the model to the edge weights in a backbone, the better the quality of this back-

bone from a contextual perspective.

We check whether the covariates are linearly related to the dependent variable, a key

assumption to use a linear regression model. We found that such linear relationship exists if a

log transformation is applied to all covariates and to the dependent variable. Such transforma-

tion is often employed in variables with very skewed distributions, which is the case of edge

weights (see Fig 4) and measures of user activity in social media applications [114, 115].

Table 3 shows the results of the model fitting for the five backbones and the original net-

work. We assess the quality of model fitting using the coefficient of determination R2 and the

NMRSE for the training edges and the NMRSE for the test edges.

Focusing first on the results for the training edges, we see that both SDSM and TriBE

achieve significant improvements over the original network, both in terms of R2 and NMRSE.

Indeed, these two methods are able to filter out many noisy edges and retain those more closely

related to the phenomenon under study, which is reflected in the covariates used to build the

regression models. SDSM and TriBE, by explicitly taking into account both the users’ activity

level and the posts’ popularity when building the reference model, lead to high R2 values of

0.91 and 0.87, and an NRMSE of only 0.13 and 0.18. In turn, the other three methods, NC,

MLF and GloSS, despite filtering out many edges (as shown in Table 2), lead to only moderate

improvements over the original network.

The same conclusion holds for the test edges. Compared to the original network, the fits for

both SDSM and TriBE show a notable reduction in NRMSE. This suggests that the edges con-

sidered salient by NC, MLF, and GloSS deviate the most from the common set of edges consid-

ered salient by all methods. This observation, in turn, suggests that these three methods retain

a large fraction of possibly non-salient edges, which ultimately affects the fitting of the regres-

sion model.

SDSM performs slightly better than TriBE. Since we are only studying 8 popular influencers

talking about politics, the effect of the third part (influencers) explicitly captured by TriBE but

ignored by SDSM is mostly marginal. We expect a greater difference between the two meth-

ods, favoring TriBE for scenarios with a larger diversity of influencers in terms of both popu-

larity and topics of posts.

In conclusion, our results indicate that evaluating backbone quality based solely on a single

perspective may be misleading. For example, Table 2 shows that the backbones extracted from

NC and MLF have the highest modularity scores. Yet, the regression analysis shows that the

edges identified as salient by both, although well structured into strongly connected communi-

ties, do not offer a clearer understanding of the user behavior patterns driving the online dis-

cussions than the (poorly structured) original network. SDSM and TriBE, in turn, stand out as

Table 3. Online discussions on Instagram: Contextual evaluation of backbones by regression analysis.

Network Model Training edges Test edges (20% of common edges)

R2 NRMSE NRMSE

Original network 0.25 0.48 0.69

TriBE’s backbone 0.82 0.18 0.20

SDSM’s backbone 0.91 0.13 0.15

GloSS’s backbone 0.34 0.26 0.39

NC’s backbone 0.52 0.44 0.58

MLF’s backbone 0.49 0.35 0.51

https://doi.org/10.1371/journal.pone.0274218.t003
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the best approach when considering a tradeoff between the quality of their communities and

the ability of the selected edges to capture the user interactions that are driving the online

discussions.

6 Case study 2: Coordinated behavior on WhatsApp

6.1 Characterization of the phenomenon

Our second case study concerns coordinated actions to disseminate information in WhatsApp

groups. The platform connects users in end-to-end as well as group conversations. Despite

being limited to only 256 simultaneous members, WhatsApp groups have been shown to be

effective channels for the large dissemination of information [21, 76, 116, 117], notably misin-

formation [21, 118]. We here adopt the following widely used definition of coordination of

users [20, 119, 120]: coordinated users typically exhibit a repetitive and synchronized pattern

of activity.

Our present investigation relies on a dataset of anonymized messages shared in publicly

accessible political-oriented WhatsApp groups in Brazil [21, 76], originally collected by the

WhatsApp Monitor [116]. We focus our analysis on the month of the general presidential elec-

tion in Brazil (October 2018), a time of great political mobilization and strong evidence of

message coordination and orchestration in WhatsApp [21, 76, 116, 121, 122]. In summary, we

analyze 4341 users who participated in 155 groups and shared 91417 unique pieces of informa-

tion, in the form of text messages, images, audios and videos.

6.2 Step 1—Building the network model

We use the same network model adopted in [21, 76], referred to as media-centric network,

which is defined as an undirected and weighted graph GWhatsApp = (V, E) such that:

• V is the set of nodes representing users who shared at least one message in one of the moni-

tored groups during the period of analysis;

• E represents the set of edges, where each edge connects two users if they share similar con-

tent in the same or different groups. The similarity between message content was estimated

using a set of heuristics for filtering and identifying (near-)duplicate content. We refer the

reader to [21] for more details on these heuristics. Each edge is weighted by the number of

times the two users shared similar content.

In light of the adopted definition of coordination, salient edges are those whose weights are

unusually high. The network may contain several noisy edges due to sporadic or weak interac-

tions. For example, endogenous factors (e.g., temporary common interest or even large popu-

larity of some particular content) may cause different users to share similar content, which

may overshadow the actions of coordinated users who regularly and repeatedly share the same

content. Therefore, the interest is to separate users who persistently engage in such common

sharing from users who only sporadically exhibit such behavior. This separation implies favor-

ing as salient those edges with heavier weights, either taking a local perspective (e.g., other

edges incident to the same two nodes) or a global perspective (i.e., all edges in the network).

This principle is used as a guideline in selecting candidate backbone extraction methods, as

discussed next.

6.3 Step 2—Selection of candidate backbone extraction methods

We aim at selecting methods that explore the heterogeneity of the network by identifying as

salient the edges with unusually heavier weights, based on individual (local) or network
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(global) patterns, as representative of persistent and repetitive interactions. As argued in Sec-

tion 4.2.1, Threshold, HSS and RECAST are global methods that explore the heterogeneity of

the edge weight distribution, favoring as salient the edges with heavier weights in the whole

network. From a local perspective, Polya Urn Filter and Disparity Filter (DF) select as salient

those edges whose weights are heavier than the weights associated with a subset of the edges

(e.g., edges incident to the same pair of nodes). Thus, we define the set C of candidate methods

as C = {Threshold, HSS, RECAST, Poly Urn and DF}. Recall that both Threshold and HSS

explore structural properties, whereas the other three methods rely on statistical reference

models to identify the salient edges.

6.4 Step 3—Backbone extraction

Table 4 summarizes the topological characteristics of the original network and the backbones

extracted by each candidate method. The candidate methods have different parameters. Dis-

parity Filter (DF), Polya Urn Filter (Polya) and RECAST require a a, which we set to 0.05, as

shown in Table 7 in Appendix B. The Polya Urn method also requires a second parameter a
related to the heterogeneity of the network. This parameter was set to 0.25, following a fine-

tuning process, as briefly mentioned in Appendix A. The High Salient Skeleton (HSS) and

Threshold approaches, on the other hand, take an arbitrary threshold value τ as input parame-

ter. In both cases, we select τ to retain the top-k% most salient edges. Table 4 shows results for

values of τ corresponding to the top 5% edges but we also tested for other values of k (thus of

τ), as reported in Table 7. According to Table 4, the fractions of edges retained by both HSS

and Threshold are slightly below 5%. This discrepancy is due to the removal of very small com-

ponents (up to 3 nodes) of the backbone and the original network.

In each graph, nodes belonging to the same community are represented by the same color,

and edge weights are represented by both edge thickness and color (heavier/lighter edges are

colored in red/blue).

As shown in the table and the graphs, DF, Polya and Threshold retain somewhat similar

fractions of nodes (11-18%) and edges (4%) in the extracted backbones. Despite such large

removal of nodes and edges, all three backbones have a number of connected components that

approximate the original network. Interestingly, we also find that these backbones have larger

density (especially the backbone extracted by Threshold) and comparable (if not higher) aver-

age clustering coefficient to the original network. RECAST, in turn, is the most aggressive

method, retaining only around 7% of the original nodes and fewer than 1% of the original

edges. This leads to a smaller number of components and average clustering coefficient,

though the backbone’s density is still comparable to that of the DF’s and Polya’s backbones. At

the other extreme, HSS extracts a rather large backbone while preserving all the original nodes.

Table 4. Coordinated behavior on WhatsApp: Topological metrics of the network and backbones extracted by each candidate method (Columns 2-3 contain total

numbers for the original network and also corresponding percentages for backbones).

Network Model Nodes Edges Avg. Deg. Density Avg. Clust. # C.C. # Comm. Mod.

Original network 4341 221002 103 0.0241 0.62 4 15 0.25

DF’s backbone 800 (18.7%) 9962 (4.51%) 24 0.0312 0.59 4 13 0.48

Polya’s backbone 734 (17.1%) 10527 (4.76%) 28 0.0391 0.59 5 15 0.48

Threshold’s backbone 495 (11.5%) 9489 (4.29%) 38 0.0776 0.73 3 8 0.45

RECAST’s backbone 313 (7.3%) 1875 (0.85%) 11 0.0384 0.49 2 7 0.37

HSS’s backbone 4281 (100%) 10996 (4.98%) 5 0.0012 0.14 4 29 0.44

https://doi.org/10.1371/journal.pone.0274218.t004
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This backbone has a very different topological structure than the others, being much sparser

and exhibiting lower density, degree, and average clustering.

Turning to the analysis of the communities (3 rightmost columns of Table 4), we observe

that the number of communities varies considerably, being smaller for the backbones extracted

by Threshold and RECAST. The former may be a consequence of the much denser backbone,

while the latter may be related to the smaller number of nodes in the backbone. Recall that we

still need contextual information to investigate the extent to which such communities are rep-

resentative of the phenomenon.

To further understand how the selected methods work, we analyze the distribution of edge

weights, reported in Fig 5. All methods except HSS remove mostly edges with small weights. In

Fig 5. Coordinated behavior on WhatsApp: Weight distribution for edges retained in the backbone by each

method (distribution for original/complete network shown for comparison purposes).

https://doi.org/10.1371/journal.pone.0274218.g005

PLOS ONE On network backbone extraction for modeling online collective behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0274218 September 15, 2022 24 / 36

https://doi.org/10.1371/journal.pone.0274218.g005
https://doi.org/10.1371/journal.pone.0274218


particular, all edges with weights between 1 and 3 are removed by all four methods. HSS, in

contrast, removes large fractions of edges across the whole range of weight values. As we will

see in the next section, the HSS backbone is inferior to the others from a contextual perspective

and, therefore, in terms of how well it captures edges related to the phenomenon under study.

6.5 Step 4—Backbone evaluation

6.5.1 Topological evaluation. As in our first case study, the results presented in Table 4

show that all backbones are composed of more strongly connected and more clearly discrimi-

nated communities than the original network. The improvements in community structure, as

captured by the modularity metric, are particularly large for the DF, Polya Urn and Threshold

approaches. The backbones extracted by these methods are mostly composed of well struc-

tured communities of users who repeatedly share the same content, which favors the informa-

tion spread at large. RECAST and HSS, in turn, produce backbones with weaker community

structures.

6.5.2 Contextual evaluation. The following key assumption guides our contextual evalua-

tion of the backbone extraction methods: If two users i1 and i2 are acting in coordination to
share the same pieces of content repeatedly, such coordination should be reflected in their sharing
patterns and user activity. Guided by this assumption, we build a regression model where the

dependent variable γ(i1, i2) is related with the following 11 explanatory variables: (i) total num-

ber of messages shared by i1 (i2); (ii) number of distinct messages shared by i1 (i2); (iii) number

of messages with new content introduced (i.e., shared first) by i1 (i2); (iv) number of groups i1
(i2) participates in (inferred by the groups he/she shared content at least once); (v) Gini index

of the number of messages shared by i1 (i2) across different groups; and (vi) number of com-

mon groups both i1 and i2 participate in. All variables, but the last one, are computed sepa-

rately for i1 and i2, thus contributing as two covariates to the model. These variables capture

different facets of user activity. The only variable related to the joint behavior of both users is

the number of common groups, which indirectly captures whether or not the two users act in

the same subset of observed groups. For example, users may act in a coordinated manner by

frequently sharing the same content (i.e., heavy edge), even though the number of groups in

which both participate is small. This could indicate, for example, that each of them forwards

the same content to a particular subset of groups. As in our first case study, we also tested for

the assumption of linearity, finding that it holds reasonably well after a square root transforma-

tion is applied to all covariates and the dependent variable.

Table 5 summarizes the results of the model fitting for each backbone and the original net-

work for both training and test edges. Compared to our first case study, the fittings are gener-

ally poorer (note the lower R2 values in the training edges). We emphasize that it is much more

challenging to perform a contextual evaluation of the network and backbone structures in this

Table 5. Coordinated behavior on WhatsApp: Contextual evaluation of backbones by regression analysis.

Network Model Training edges Test edges (20% common edges)

R2 NMRSE NMRSE

Original network 0.21 1.33 0.92

DF’s backbone 0.35 0.40 0.53

Polya Urn’s backbone 0.30 0.51 0.55

Threshold’s backbone 0.22 0.37 0.51

RECAST’s backbone 0.22 0.51 0.51

HSS’s backbone 0.44 1.25 0.71

https://doi.org/10.1371/journal.pone.0274218.t005
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case study because we are focusing on messages shared in only 155 groups. All monitored

groups belong to the same context (political domain) and are strongly interconnected as many

users belong to multiple groups. However, these groups offer only a partial view of WhatsApp.

The same users might participate in other groups, where they share and forward content, con-

tributing to the information spread at large (see [116]). Thus, our analysis is limited by the lack

of an unknown number of edges that most probably exist in the real underlying network con-

necting these users.

Under this constraint, the contextual evaluation leads to results consistent with those of

topological evaluation. HSS has the highest R2, but also the highest errors (NMRSE), which are

almost similar to the original network. The backbones extracted by DF, Polya Urn and Thresh-

old, have the lowest errors in both the training and test sets. Concerning R2 the results are gen-

erally poor, with DF and Polya Urn performing better. Threshold performs worse than DF

and Polya, suggesting that a global approach may leave out some important edges for the

investigation. Indeed, as shown in Fig 5, both DF and Polya retain a more diversified set of

edges in terms of edge weights.

In sum, we find that both DF and Polya Urn are the best methods to uncover evidence of

user coordination when sharing similar content on WhatsApp. If one has to choose a method,

DF is possibly the best choice as it contextually reveals communities closer to the

phenomenon.

7 Conclusions and future work

We have proposed a principled methodology to select and evaluate the methods for extracting

the network backbones that accurately represent collective behavior patterns in social media

applications. In a fundamental and systematic way, this effort contributes to several recent net-

work-oriented studies relying on backbone extraction strategies. In particular, this work fills a

gap in the literature by emphasizing the need to: (1) carefully match assumptions and proper-

ties of the method with characteristics of the given phenomenon, showing that different meth-

ods may indeed extract quite different backbones, some of which offering little (if any) useful

knowledge to the study; and (2) consider different criteria to evaluate the quality of alternative

backbones, particularly in the absence of ground truth.

We offered a reasoned characterization of ten state-of-the-art backbone extraction meth-

ods, discussing their assumptions, properties and issues one must consider to apply them in

practice. Such characterization advances existing knowledge available in the literature and is

meant to help one in the selection of candidate methods for a target study. We propose alterna-

tives to validate the extracted backbones, both structurally (based on topological measures

extracted from the network) and contextually (based on phenomenon-specific attributes).

We applied our methodology to two very different scenarios that require different solutions

and illustrate the complexity of selecting adequate methods for backbone extraction. In both

scenarios, we found that some methods extract quite poor backbones. In contrast, others are

suited to capture and describe the phenomenon under study, taking into account a trade-off

between topological and contextual measures. We hope this work contributes by highlighting

and demonstrating the risks of applying unfit and inadequate backbone extraction techniques.

A natural extension of this work is the application of the proposed methodology to other

case studies. In particular, we hope that our methodology can foster the systematic evaluation

of novel backbone extraction methods so as to broaden the range of alternative solutions, espe-

cially to study phenomena in social media applications, which have recently gained major

importance to society. Going beyond the social media realm, our methodology can be applied

to other domains. Examples include: (i) cultural mapping of communities by analyzing
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people’s visits to different places driven by the need to pursue cultural interests; (ii) coordi-

nated actions in co-authorship or citation networks; (iii) collective economic changes in stocks

or cryptocurrency market as a result of successive changes in different financial assets. An

orthogonal direction to be pursued is the extension of the methodology to explore the tempo-

ral dimension, notably investigating strategies to accurately capture the temporal dynamics of

the backbones and their communities.

8 Appendices

A Backbone Extraction Methods Summary

Threshold-based backbone extraction. one of the simplest, most intuitive and most used

methods [69–71, 74]. It consists on removing edges whose weights are smaller (or higher) than

a pre-defined threshold τ, that is, edge saliency refers simply to edge weight. This method is

adequate to studies where the salient edges are those with higher (or lower) weights. Other-

wise, as previously argued [72], thresholds may bias the analysis and lead to misinterpretation

of the results.

High Salient Skeleton (HSS) [32]. the backbone is extracted by first normalizing the edge

weights and then computing shortest-path trees from each node to all other nodes in the net-

work. Edge saliency is defined based on the frequency of its occurrence in the shortest path

trees: edges with frequency below a pre-defined threshold τ are disregarded. In doing so, this

method attempts to capture edges that simultaneously have heavy weights and are fundamen-

tal for keeping nodes connected. As such, the notion of edge saliency is inherently connected

to network topology. Moreover, like for the threshold-based method, the use of a global

threshold may lead to biases and misinterpretation [32].

Disparity Filter (DF) [77]. it assumes that an edge connecting a given pair of nodes is

salient if it has a disproportionate weight compared to the other edges leading from the nodes

to their respective neighbors. In other words, salient edges are those whose weights deviate sig-

nificantly from the null hypothesis that the weights of all edges incident to a given node are

uniformly distributed.

Polya Urn Filter [36]. similarly to DF, this method assumes that edge weights emerge from

the aggregate process of individual nodes’ preferences to interact with each other over time. It

also assumes that interactions between nodes are maintained and reinforced, such that the

larger the number of interactions between the same two nodes, the higher the probability of

they interacting again. A reference model is built for each edge, using the Polya Urn model

[123] which captures the reinforcement of existing interactions by examining the degree and

strength (the sum of the weights of all edges incident to the node) of each node incident to this

edge. This reinforcement mechanism can be regulated and estimated by the system through a

fine-tuning process. Salient edges are those that deviate significantly from such reference

model (according to a given alpha).

Marginal Likelihood Filter (MLF) [35]. assumes that edge saliency should be analyzed in

light of the strengths of the two nodes the edge connects. The higher the strengths the larger

the edge weight must be to be considered salient. Specifically, the method builds a reference

edge weight distribution model for each edge: the probability that edge between nodes i and j
ends up with weight wij is based on a Binomial distribution with parameters n defined by the

total strengths of all nodes in the network and p computed based on the strengths of nodes i
and j. An edge is considered salient if the observed weight deviates significantly from the one

predicted by the reference model.

Noise Corrected (NC) [33]. similarly to DF and the Polya Urn Filter methods, NC also

assumes that edge saliency arises from the cooperation between nodes. However, unlike those
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methods, NC preserves peripheral-peripheral connections, which is crucial for capturing

edges that, despite having small weights, may still be considered relevant for the phenomenon

under study. These connections may be preserved by estimating the expectation and variance

of edge weights using a hypergeometric distribution, taking into account the propensity of

both nodes to send and receive edges. It also provides a direct approximation through a per-

edge reference Binomial distribution (similarly to the MLF method). The main advantage of

NC, though, is the ability to estimate an error for the expectation of the weights. As in the

other methods, an edge is considered salient if its observed weight significantly exceeds the

expected weight (given the strengths of both nodes).

Global Statistical Significance (GloSS) Filter [31]. it assumes that salient edges cannot be

identified independently of the overall network topology, once nodes have different degrees.

As such, it builds a single (null) reference model that preserves the edges between nodes as

well as the overall edge weight distribution. Yet, when selecting salient edges, i.e., edges whose

observed weights significantly deviate from the reference model, the method estimates the

probability of observing an edge weight between two given nodes considering the nodes’

observed degrees and strengths as constraints.

Tripartite Backbone Extraction (TriBE) [22, 23]. this method was proposed to study phe-

nomena driven by user interactions in social media applications. It exploits the tripartite struc-

ture commonly found in such platforms, that is, a piece of content, the content creator, and

the other users (e.g., the followers) who interact with each other in reaction to that content

(e.g., by commenting on a post, retweeting the same tweet, etc). As such, the method addresses

the heterogeneity in user activity level and content popularity typically observed in social

media applications. Specifically, it builds a reference weight distribution model for each edge,

based on a Poisson binomial distribution, whose parameters are computed based on the distri-

butions of content popularity and user engagement towards content from the same creator (as

estimated by prior interactions). Once again, salient edges are those whose observed weights

significantly deviate from their corresponding reference models.

Stochastic Degree Sequence Model (SDSM) [37]. This method considers a bipartite net-

work to evaluate the salience of an edge in the projection. The SDSM specifies the degree

sequence of agents and artifacts of a bipartite network on the average constraint such that their

expected row sums and expected column sums are equal to the observed ones. In this way, a

reference model is built based on the Poisson binomial distribution that selects as salient those

edges whose observed weights differ significantly from the expected value given the degree

sequence constraints.

B Parameter sensitivity analysis

We report in this appendix additional results from a sensitivity analysis we performed to

parameterize the backbone extraction methods. Table 6 shows results of the impact of the

alpha (input parameter) on the methods selected as candidates for the study of online discus-

sions on Instagram (case study 1 reported in Section 5). Table 7 shows corresponding results

for the methods selected as candidates for the study of coordinated behavior on WhatsApp

(case study 2, discussed in Section 6).

As pointed out in Section 4, defining such parametrization leads to a multicriteria problem.

To guarantee the existence of a common set of edges under the notion of saliency consensus

between the methods, we adopted the following strategy. In both scenarios, we based the most

aggressive method in terms of the number of removed edges in the backbone and adjusted the

parameters so that each method maintains an approximate percentage of edges in the back-

bone. For the first case study in Table 6, this bound was based on the GloSS Filter retaining
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0.18% of the edges in the backbone. However, keeping this approximate percentage of edges

for all methods does not allow us to create the minimum common set. To account for this, we

parameterized the GloSS Filter with alpha = 0.1. Consequently, we look for parameters within

the tested values for all methods that hold approximately 2.58% edges in the backbone. We

Table 6. Online discussions on Instagram: Impact of method parameters on topological and contextual metrics.

Method % N % E # Comm. Mod. Parameter R2 NMRSE

TriBE 99.86 9.43 6 0.43 alpha 0.1 0.80 0.18

TriBE 99.31 2.19 11 0.56 0.05 0.82 0.18

TriBE 92.97 0.48 18 0.73 0.01 0.85 0.18

TriBE 62.43 0.14 93 0.81 5e-3 0.91 0.21

TriBE 28.32 0.03 44 0.74 1e-3 0.95 0.18

TriBE 21.64 0.02 38 0.77 5e-4 0.96 0.17

TriBE 12.40 0.01 45 0.86 1e-4 0.96 0.19

SDSM 99.87 25.07 7 0.27 alpha 0.1 0.60 0.23

SDSM 99.54 15.71 8 0.30 0.05 0.80 0.18

SDSM 94.22 5.43 8 0.38 0.01 0.91 0.14

SDSM 92.66 4.61 9 0.40 0.005 0.93 0.13

SDSM 77.40 1.47 12 0.46 0.001 0.91 0.13

GloSS 68.29 2.58 7 0.32 alpha 0.1 0.34 0.26

GloSS 65.45 0.73 6 0.39 0.05 0.65 0.28

GloSS 58.59 0.27 7 0.58 0.01 0.71 0.32

GloSS 56.44 0.18 7 0.70 0.005 0.81 0.37

NC 100.00 63.74 5 0.39 alpha 0.1 0.28 0.46

NC 100.00 47.20 5 0.49 0.05 0.27 0.48

NC 100.00 23.93 5 0.59 0.01 0.21 0.52

NC 100.00 18.96 6 0.57 0.005 0.21 0.54

NC 98.10 11.52 6 0.52 0.001 0.28 0.52

NC 95.80 9.12 8 0.52 5e-4 0.33 0.51

NC 86.20 5.17 9 0.56 1e-4 0.41 0.48

NC 81.18 4.06 10 0.57 5e-5 0.45 0.47

NC 69.24 2.26 8 0.61 1e-5 0.52 0.45

NC 64.88 1.73 10 0.62 5e-6 0.53 0.44

NC 57.31 0.96 8 0.67 1e-6 0.55 0.42

NC 54.96 0.76 8 0.68 5e-7 0.56 0.42

NC 50.16 0.44 9 0.69 1e-7 0.60 0.41

NC 47.95 0.35 11 0.69 5e-8 0.62 0.41

NC 41.99 0.21 16 0.70 1e-8 0.65 0.40

NC 39.21 0.17 19 0.70 5e-9 0.67 0.40

NC 32.96 0.11 22 0.70 1e-9 0.70 0.40

NC 30.54 0.09 20 0.69 5e-10 0.71 0.40

NC 25.63 0.06 22 0.69 1e-10 0.74 0.39

MLF 98.79 16.16 7 0.51 alpha 0.1 0.17 0.54

MLF 94.78 10.27 19 0.49 0.05 0.28 0.49

MLF 74.61 3.95 8 0.55 0.01 0.47 0.38

MLF 65.75 2.71 9 0.54 5e-3 0.50 0.36

MLF 49.78 1.16 12 0.62 1e-3 0.49 0.35

MLF 46.82 0.85 10 0.63 5e-4 0.52 0.35

MLF 43.95 0.45 12 0.63 1e-4 0.63 0.35

https://doi.org/10.1371/journal.pone.0274218.t006
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found that such parameterization is detrimental to the GloSS Filter, but on the other hand, it

allows us to create such a set that is representative of a consensus among methods with respect

to a set of edges that are considered salient.

For the second case study, presented in Table 7, we started with RECAST, which is quite

aggressive and consequently alpha = 0.05. Note that RECAST produces a global discrete distri-

bution and thus some alpha values do not change the backbone extraction. Thus, we assumed

that each method has about 0.85% of the edges in the backbone. However, with such a restric-

tive value, we could not create a common set. After incrementally increasing each method and

assuming that this was the limit for RECAST, we found that a percentage of 4% to 5% of edges

would satisfy this requirement.
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