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Abstract: Our research has focused on in vitro and in vivo evaluations of a new Carmustine
(BCNU)-loaded clinoptilolite-based delivery system. Two clinoptilolite ionic forms—hydrogen form
(HCLI) and sodium form (NaCLI)—were prepared, allowing a loading degree of about 5–6 mg
BCNU/g of zeolite matrix due to the dual porous feature of clinoptilolite. Clinoptilolite-based delivery
systems released 35.23% of the load in 12 h for the BCNU@HCLI system and only 10.82% for the
BCNU@NaCLI system. The BCNU@HCLI system was chosen to develop gel and cream semisolid
dosage forms. The cream (C_BCNU@HCLI) released 29.6% of the loaded BCNU after 12 h in the
Nylon synthetic membrane test and 31.6% in the collagen membrane test, higher by comparison to
the gel. The new cream was evaluated in vivo in a chemically induced model of skin cancer in mice.
Quantitative immunohistochemistry analysis showed stronger inhibition of B-cell lymphoma-2 (bcl-2)
and cyclooxygenase 2 (cox-2) protein expression, known markers for cancer survival and aggressiveness,
after the treatment with C_BCNU@HCLI by comparison to all the control treatment types, including an
off-label magistral formula commercially available Carmustine cream as reference, bringing evidence
that a clinoptilolite-based delivery systems could be used as a cancer drug carriers and controlled release
systems (skin-targeted topical delivery systems).

Keywords: clinoptilolite; zeolite; drug delivery system; skin cream; Carmustine; chemically induced
skin cancer; mouse cancer model; cyclooxygenase 2 (cox-2) protein; B-cell lymphoma-2 (bcl-2) protein;
quantitative immunohistochemistry; computer aided diagnostic software
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1. Introduction

Skin-targeted topical delivery systems are needed to assure sustained release of the drugs and
to maintain a localized effect. New drug delivery systems for local release of antineoplastic agents
represent an alternative strategy to systemic administration, having many advantages such as high
stability, better bioavailability, and reduced toxic side effects [1,2].

Today, both synthetic and natural zeolites are increasingly used as drug delivery systems for
their high loading capacity and controlled release of small drug molecules [3–5]. Clinoptilolite is
a microporous mineral component of a volcanic rock from the group of natural zeolites that has
been extensively tested as a chelating agent or as an adjuvant in cancer therapy, because of its cation
exchanging and chelating properties [6,7]. Previously published studies on clinoptilolite confirmed the
bimodal porous feature of this material [8–10].

Carmustine (BCNU), a nitrosourea derivative (Figure 1) from the group of cell-cycle phase
nonspecific alkylating antineoplastic agents, is used in the treatment of brain tumours and various
other malignant neoplasms. It is preferred for the topical administration in early therapy of Mycosis
fungoides, a haematological type of cancer [11,12].
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Potentially, new delivery systems of known therapeutic cancer agents could be evaluated using 
in vitro and/or in vivo models. Experimental animal models remain essential to discover and test 
improved delivery methods and systems. A well-known and widely used in vivo model is chemically 
induced skin cancer in mice, a multistage carcinogenesis model, in which the irreversible initiation 
occurs following 7,12-dimethylbenz[a]anthracene (DMBA) application, and the promotion of the 
tumour is done with repeated application of 12-O-tetradecanoylphorbol-13-acetate (TPA) [13].  

B-cell lymphoma-2 (bcl-2) protein and cyclooxygenase 2 (cox-2) protein are known tumour 
markers, expressed in a variety of tumour cells, including skin cancers [13,14], and can be used for 
the evaluation of the stages of tumour tissue [14,15]. The bcl-2 family of proteins plays a key role as 
a regulator of epidermal homeostasis and in determining whether a cell will live or die in the case of 
stressed skin. Deregulation of bcl-2 family members is also involved in skin carcinogenesis [16,17]. 
Bcl-2, the first protein that was associated with translocations identified in follicular lymphoma, 
contributes to malignancy by inhibiting apoptosis [18]. Cox-2, the inducible form of this enzyme, 
contributes to the aggressiveness of the tumour, playing an important role in inflammation and in all 
steps in the development of solid epithelial tumours (tumour growth, promotion of angiogenesis and 
inhibition of apoptosis) [15]. In human skin cancer tumours and in skin cancer mouse models, cox-2 
levels are frequently correlated with increased skin hyperplasia and decreased apoptosis, leading to 
tumour development and/or burden [19,20]. 

Quantitative Immunohistochemistry (QIHC) is an important tool for scientific research in 
biomarkers detection field. In the last two decades, there has been an increase in publications using 
QIHC because this technique progressively repositioned itself in relation to other quantitative 
methods of target detection. In order to make immunohistochemical analysis more objective, 
quantitative immunohistochemistry analysis techniques based on digital image processing have been 
developed [21,22] and used successfully in a variety of scientific studies [23–28]. Digital values 
provide a numerical value for each individual case which can resolve the disagreement among 
different pathologists, whose diagnosis and semi-quantitative evaluation was based on the visual 
score quantifications. Commercially available programs are limited to color thresholding and pixel 
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Potentially, new delivery systems of known therapeutic cancer agents could be evaluated using
in vitro and/or in vivo models. Experimental animal models remain essential to discover and test
improved delivery methods and systems. A well-known and widely used in vivo model is chemically
induced skin cancer in mice, a multistage carcinogenesis model, in which the irreversible initiation
occurs following 7,12-dimethylbenz[a]anthracene (DMBA) application, and the promotion of the
tumour is done with repeated application of 12-O-tetradecanoylphorbol-13-acetate (TPA) [13].

B-cell lymphoma-2 (bcl-2) protein and cyclooxygenase 2 (cox-2) protein are known tumour
markers, expressed in a variety of tumour cells, including skin cancers [13,14], and can be used for
the evaluation of the stages of tumour tissue [14,15]. The bcl-2 family of proteins plays a key role as a
regulator of epidermal homeostasis and in determining whether a cell will live or die in the case of
stressed skin. Deregulation of bcl-2 family members is also involved in skin carcinogenesis [16,17].
Bcl-2, the first protein that was associated with translocations identified in follicular lymphoma,
contributes to malignancy by inhibiting apoptosis [18]. Cox-2, the inducible form of this enzyme,
contributes to the aggressiveness of the tumour, playing an important role in inflammation and in all
steps in the development of solid epithelial tumours (tumour growth, promotion of angiogenesis and
inhibition of apoptosis) [15]. In human skin cancer tumours and in skin cancer mouse models, cox-2
levels are frequently correlated with increased skin hyperplasia and decreased apoptosis, leading to
tumour development and/or burden [19,20].

Quantitative Immunohistochemistry (QIHC) is an important tool for scientific research in biomarkers
detection field. In the last two decades, there has been an increase in publications using QIHC because this
technique progressively repositioned itself in relation to other quantitative methods of target detection.
In order to make immunohistochemical analysis more objective, quantitative immunohistochemistry
analysis techniques based on digital image processing have been developed [21,22] and used successfully
in a variety of scientific studies [23–28]. Digital values provide a numerical value for each individual case
which can resolve the disagreement among different pathologists, whose diagnosis and semi-quantitative
evaluation was based on the visual score quantifications. Commercially available programs are limited to
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color thresholding and pixel counting, approaches that can only provide semi-quantitative assessments as
to the amount of chromogen present, reviewed in [21].

This research focuses on clinoptilolite used to prepare a new drug delivery system. The aim of
our study was to investigate the qualities of the new delivery system comparatively to a commercially
formulation in use, after local application on the tumour, using as control parameters the expression level
of bcl-2 and cox-2 proteins.

2. Results

2.1. Preparation, Porous Parameters and Entrapment Efficacy of the Modified Delivery
Clinoptilolite-Based System

N2-sorption analysis was used to assess the porous features of the hosts. As observed in
Figure 2a, clinoptilolite, in both cationic forms (clinoptilolite hydrogen form abbreviated HCLI and
clinoptilolite sodium form abbreviated NaCLI, respectively), show a type I isotherm, according to
IUPAC classification [29]. The isotherms rise sharply at the beginning, at low relative pressures
(P/P0 < 0.5), indicating the adsorption of the N2 molecules in the micropores of the adsorbent samples.
Moreover, the existence of the second type of porosity within the structure of clinoptilolite was
indicated by the hysteresis loop of type H3 according to the International Union of Pure and Applied
Chemistry (IUPAC) classification, observed for the N2-sorption isotherms recorded for both HCLI
and NaCLI samples. The primary clinoptilolite porosity (or microporosity) was caused by its specific
inbuilt crystalline structure (channels), but the secondary one came from the sizes of the zeolite and
other mineral grains in the rock as well as by structural features of the rock proper [29].

The pore size distribution curves (PSD) were an indicative of the pore size homogeneity and were
used for calculation of the pore sizes. The PSD curves recorded for HCLI and NaCLI samples, shown in
Figure 2b, reflected only the homogeneity and the sizes of the mesopores, since the estimation of PSD
from N2-sorption data using the classical capillary condensation–evaporation model proposed by
Barrett, Joyner, and Halenda (BJH) can be applied only for materials with isolated mesopores and
not for the materials with strong connectivity effect (i.e., characterized by the complex pore structure
composed of connected pores of various sizes).
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Clinoptilolite hydrogen form (HCLI), clinoptilolite sodium form (NaCLI).

The calculated porous features, including specific surface area, pore volume, and the pore diameter
are summarized below. The measurements were made in triplicate. Typical surface areas and pore
volumes were obtained. As expected, the surface area and the pore volume of the NaCLI sample were
lower than for HCLI matrix. This was mainly due to the presence of bulkier Na+ cations within the
microporous channels of clinoptilolite. Also, the loading degree of both matrices was about 5–6 mg
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BCNU/g of matrix, the larger amount of BCNU uptake by HCLI comparatively with NaCLI was due
to the higher free pore volumes available for absorption. These results are calculated and summarized
in Table 1.

Table 1. Porous properties and drug content of modified delivery clinoptilolite-based systems.

Clinoptilolite Matrices HCLI NaCLI BCNU@HCLI BCNU@NaCLI

BET specific surface area (SBET-m2/g) 104 ± 3.28 58 ± 1.51 93.76 ± 1.68 53.94 ± 2.11
Total pore volume (cm3/g) 0.122 ± 0.011 0.068 ± 0.002 0.1101 ± 0.006 0.063 ± 0.001

Micropore area (m2/g) 44 ± 0.89 18.5 ± 0.09 39.66 ± 0.31 17.20 ± 0.67
Pore diameter (nm) 3.70 ± 0.03 3.78 ± 0.01 3.36 ± 0.01 3.51 ± 0.02

Loaded drug (mg BCNU/g matrix) - - 5.9717 ± 0.09 5.2239 ± 0.12

Data are presented as mean ± Standard deviation (SD). SBET: Brunauer–Emmett–Teller (BET) specific surface area;
BCNU@HCLI: clinoptilolite hydrogen form loaded with carmustine; BCNU@NaCLI: clinoptilolite sodium form
with carmustine.

It is well known that the CLI framework exhibits three sets of crossing channels that are located in
the (010) plane. Two sets of the channels are parallel to the c-axis: the A channels are formed by strongly
compressed ten-membered rings (aperture of 3.0× 7.6 Å) and B channels are confined by eight-membered
rings (aperture of 3.3 × 4.6 Å). C channels are parallel to the a-axis or [102] and are also formed by
eight-membered rings (aperture of 2.6 × 4.7 Å) [30]. The size of these channels limits the size of the
molecules that can pass through them. Therefore, clinoptilolite is able to act as a molecular sieve. Because
carmustine is a small-molecular chemotherapeutic agent (its molecular size resulted from the predicted
spherical van der Waals volume being of 4.8 Å [31]), its molecule size is compatible with the A channels
aperture of the clinoptilolite framework, formed by 10-membered rings (3.0 × 7.6 Å).

It is found that the degree of the loaded carmustine on both cationic forms of clinoptilolite is
different. This result could be explained by the volume, position and intensity of the electrostatic field
induced by the Na+ and H+ compensation cations, respectively.

2.1.1. In Vitro Drug Release Profile and Kinetics of BCNU from Modified Delivery
Clinoptilolite-Based Systems

In vitro dissolution tests revealed a prolonged release of BCNU from the two modified delivery
clinoptilolite-based system (MDCS) in comparison to the free BCNU dissolution profile (Figure 3).
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Figure 3. In vitro dissolution release of BCNU from modified delivery clinoptilolite-based systems.

The modified delivery clinoptilolite-based systems based on monocationic clinoptilolite behaved
differently: BCNU@HCLI system released 35.23% of the loaded BCNU in 12 h while BCNU@NaCLI
system only 10.82%. The data from the curve fitting analysis of the results obtained from the dissolution
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test of BCNU from clinoptilolite-based systems, based on the four mathematical models, specific
for the dosage forms with modified release (zero-order kinetics, first-order kinetics, Huguchi and
Korsmeyer-Peppas models), revealed that the release of BCNU from BCNU@HCLI system is a Fick
type diffusion as a consequence of Korsmeyer-Peppas model of data fitting, while the release of BCNU
from BCNU@NaCLI system is a first order kinetics mechanism (Table 2).

Table 2. Results of curve fitting of in vitro BCNU release profile from modified delivery
clinoptilolite-based systems.

Kinetic Model Model Coefficients
Modified Delivery Clinoptilolite-Based System

BCNU@HCLI BCNU@NaCLI

Zero-order
K0 0.246 0.166
R2 0.852 0.993

First-order
K1 0.003 0.002
R2 0.899 0.990

Higuchi KH 2.300 1.500
R2 0.969 0.856

Korsmeyer-Peppas
n 0.650 0.850

KP 1.192 0.208
R2 0.974 0.971

n is the release exponent corresponding to the Korsmeyer-Peppas model; K0, K1, KH and KP are the release rate
constants corresponding to the zero-order, the first-order, the Higuchi, and the Korsmeyer-Peppas model; R2 is
determination coefficient.

2.1.2. In Vitro Dissolution BCNU Release Study and Measurement of Permeation Coefficient of BCNU

In order to emphasize the relevance of the in vitro dissolution test, we have used two types of
synthetic membranes: Nylon and a collagen membrane, supplied by Millipore (Merck, Darmstadt,
Germany). As can be easily noticed from Figure 4, there are no significant differences among the two
types of membranes.
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dosage forms: (a) Nylon membrane; (b) Collagen membrane.

The best releasing characteristics were obtained for the cream C_BCNU@HCLI formulation which
released 29.6% of the loaded BCNU after 12 h in the Nylon synthetic membrane test, compared to 31.6%
in the collagen membrane test. Both results are higher in comparison to the percentages obtained for
the gel formulation. These same types of results are also found in the permeation coefficient values
shown in Table 3.
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Table 3. Parameters specific to BCNU permeation in the semisolid dosage forms (n = 3).

Sample Formula
Nylon Membrane Collagen Membrane

Jss (µg/cm2/h) KP × 10−6 (cm/h) Jss (µg/cm2/h) KP × 10−6 (cm/h)

G_BCNU@HCLI 7.143 ± 1.924 86.111 7.156 ± 3.904 88.221
C_BCNU@HCLI 7.067 ± 1.790 88.034 7.741 ± 2.310 98.078

Data are presented as mean ± SD. KP: coefficient of permeability; Jss: steady state flux.

Based upon these results, the cream formulation, C_BCNU@HCLI, was selected for further testing
in vivo in order to evaluate its effects.

2.2. Inhibition of bcl-2 and cox-2 Protein Expression after Local Application of a New Modified Delivery
Clinoptilolite-Based System Loaded with Carmustine

The Chemically Induced Skin Tumour Model in Mice

The basic most predominant two types of skin cancer were induced: basal cell carcinoma (BCC)
and squamous cell carcinoma (SCC). However, we also noticed one mouse with the rare methatypical
form basosquamous cell carcinoma (BSQCC), as shown in Figure 5.
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From six tumour-bearing mice (n = 6) of each treatment group, TIFFalyzer and IHC Profiler
quantitative immunohistochemical analysis for the level of expression of bcl-2 (Figure 6, Tables 4–6)
and cox-2 (Figure 7, Tables 7–9) was performed as described in methods.

The treatment with C_BCNU@HCLI had a net effect on the expression of bcl-2, decreasing in a
significant manner this anti-apoptotic factor in the tumour tissue by comparison to all the other types
of treatments and thus reducing the survival chance of the tumour cells.

Based on this parameter, we believe that the new formulation deserves to be studied for
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Immunohistochemical sections for bcl-2 expression from all treated groups are presented in the
Figure 6.
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Figure 6. Bcl-2 expression in tumour sample treated with: (a) C_BCNU@HCLI; (b) cream BCNU;
(c) base cream; (d) control saline.

Quantitative levels of bcl-2 expression and inter-treatment comparisons for the tumour samples
from all treated groups are presented in the following tables (Tables 4–6).

Table 4. Bcl-2 expression level: quantitative intensity of the chromogen (diaminobenzidine, DAB)
expressed as EU/pixel (Energy Units/pixel) of the new formulation and the control type treatments;
(TIFFalyzer); standard error (SE).

DAB (EU/Pixel) C_BCNU@HCLI Cream BCNU Base Cream Control Saline

Mean 75.63 106.33 185.66 157
SD ±23.59 ±15.12 ±59.33 ±45.15
SE 8.91 5.71 22.42 17.06

Table 5. Bcl-2 expression level: the difference between the means obtained by performing the
two-tailed t-Student test for independent samples (unequal variances) and confidence interval set at
95%; (TIFFalyzer).

TREATMENT C_BCNU@HCLI Cream BCNU Base Cream Control Saline

C_BCNU@HCLi NS p < 0.05 p < 0.001 p < 0.01
Cream BCNU p < 0.05 NS p < 0.01 p < 0.05
Base Cream p < 0.001 p < 0.01 NS NS

Control Saline p < 0.01 p < 0.05 NS NS

Table 6. Bcl-2 expression level: scoring and levels of significance in paired comparison of the new
formulation and the control type treatments; (IHC Profiler).

C_BCNU@HCLI Cream BCNU Base Cream Control Saline

SCORING 1.576 2.434 2.926 2.736
High Positive - p < 0.05 p < 0.05 p < 0.05

Positive - p < 0.05 p < 0.05 p < 0.05
Low positive - NS p < 0.05 NS

Negative - p < 0.05 NS NS

The treatment with C_BCNU@HCLI had also a net effect on the expression of cox-2, decreasing
this tumour progression factor in a significant manner compared to all the other types of treatments
and thus reducing the aggressiveness of the tumour.

Based on this second evaluation parameter, we believe that the new formulation deserves to be
studied for further improvements.

Immunohistochemical sections for cox-2 expression from all treated groups are presented in
the Figure 7.



Molecules 2017, 22, 2014 9 of 19

Molecules 2017, 22, 2014 9 of 19 

 

(a) (b) 

(c) (d) 
Figure 7. Cox-2 expression in tumour sample treated with: (a) C_BCNU@HCLI; (b) cream BCNU; (c) 
base cream; (d) control saline.  

Quantitative levels of cox-2 expression and inter-treatment comparisons for the tumour samples 
from all treated groups are presented in the following tables (Tables 7–9). 

Table 7. Cox-2 expression level: quantitative intensity of the chromogen (DAB) expressed as EU/pixel 
of the new formulation and the control type treatments; (TIFFalyzer). 

DAB (EU/Pixel) C_BCNU@HCLI Cream BCNU Base Cream Control Saline 
Mean 67.41 106.86 159.46 223 

SD ±18.70 ±20.63 ±54.26 ±80.23 
SE 7.07 7.80 20.51 30.32 

Table 8. Cox-2 expression level: the difference between the means obtained by performing the  
two-tailed t-Student test for independent samples (unequal variance) and confidence interval set at 
95%; (TIFFalyzer). 

 C_BCNU@HCLI Cream BCNU Base Cream Control Saline 
C_BCNU@HCLI NS p < 0.01 p < 0.01 p < 0.05 

Cream BCNU p < 0.01 NS p < 0.05 p < 0.01 
Base Cream p < 0.01 p < 0.05 NS NS 

Control Saline p < 0.05 p < 0.01 NS NS 
  

Figure 7. Cox-2 expression in tumour sample treated with: (a) C_BCNU@HCLI; (b) cream BCNU;
(c) base cream; (d) control saline.

Quantitative levels of cox-2 expression and inter-treatment comparisons for the tumour samples
from all treated groups are presented in the following tables (Tables 7–9).

Table 7. Cox-2 expression level: quantitative intensity of the chromogen (DAB) expressed as EU/pixel
of the new formulation and the control type treatments; (TIFFalyzer).

DAB (EU/Pixel) C_BCNU@HCLI Cream BCNU Base Cream Control Saline

Mean 67.41 106.86 159.46 223
SD ±18.70 ±20.63 ±54.26 ±80.23
SE 7.07 7.80 20.51 30.32

Table 8. Cox-2 expression level: the difference between the means obtained by performing the
two-tailed t-Student test for independent samples (unequal variance) and confidence interval set
at 95%; (TIFFalyzer).

C_BCNU@HCLI Cream BCNU Base Cream Control Saline

C_BCNU@HCLI NS p < 0.01 p < 0.01 p < 0.05
Cream BCNU p < 0.01 NS p < 0.05 p < 0.01
Base Cream p < 0.01 p < 0.05 NS NS

Control Saline p < 0.05 p < 0.01 NS NS
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Table 9. Cox-2 expression level: scoring and levels of significance in paired comparison of the new
formulation and the control type treatments; (IHC Profiler).

C_BCNU@HCLI Cream Bcnu Base Cream Control Saline

SCORING 1.949 2.726 2.732 3.229
High Positive - p < 0.05 p < 0.05 p < 0.05

Positive - p < 0.05 p < 0.05 p < 0.05
Low positive - p < 0.05 p < 0.05 NS

Negative - p < 0.05 p < 0.05 p < 0.05

3. Discussion

We report about the qualities of a new modified delivery clinoptilolite-based system loaded with
Carmustine used for local application in chemically-induced skin tumour in mice and evaluated for
it’s in vivo efficacy, using as control parameters the level of expression of bcl-2 and cox-2 proteins,
comparatively to the commercially formulation in use. The MDCS for Carmustine loading were
prepared from the clinoptilolite tuff and subjected to several thermal and chemical treatments.

There are numerous studies that explored the use of zeolites in medicine for imaging mass
spectrometry, wound treatment, and drug delivery [32–36]. Zeolites are used as drug delivery systems
for small molecules due to their unique porous characteristics and when the pore size can be matched
to the size of drug molecules [35]. Clinoptilolite was used either in its initial form or in modified
form. Single or multiple step modifications of clinoptilolite by various chemical reagents gave specific
properties that extended the field for medical use [10].

BCNU, a nitrosourea derivative, is an alkylating agent used as an anticancer drug that inhibits in a
non-specific manner the cell-cycle phases by alkylating DNA and RNA. Carmustine proved efficacy for
topical administration in early therapy of Mycosis fungoides in humans [11], after more than 30 years of
use: complete response rates of approximately 63% to 75% in stage T1 patients, 21% in stage T3 patients,
and up to 11% in stage T4 patients [11,37,38].

Porous parameters of our modified delivery clinoptilolite systems were evaluated using
N2-sorption analysis to assess the porous features of the hosts and pore size distribution curves to
assess the pore size homogeneity and sizes. These were in close agreement with previously published
studies on bimodal porous feature of the clinoptilolite [9,10,39]. Typical surface areas and pore volumes
were obtained for both of our monocationic NaCLI and HCLI matrices, but as expected, these values
were lower for NaCLI matrix, which explained the lower loading degree of BCNU.

The loading capacity of both matrices was about 5–6 mg BCNU/g of matrix. This was due to
the dual porous feature of clinoptilolite matrix: the BCNU molecules can be accommodated in the
channel-like micropores and the intraparticle mesopores [35].

The MDCS based on monocationic clinoptilolite behaved differently, both in terms of the amount
of BCNU released and the release mechanism. The analysis of the release kinetics of BCNU from the
MDCS revealed the fact that the clinoptilolite-based systems release BCNU in two different ways:
BCNU@HCLI releases by Fick diffusion, as a consequence of Korsmeyer-Peppas model of data fitting,
while BCNU@NaCLI releases the drug following a zero order kinetics. The results of curve fitting of
in vitro BCNU release profile from MDCS confirmed that the zeolite matrix had a primordial role in
defining the release kinetics of the active substance. The crystalline structure of clinoptilolite zeolite
was the same, but the compensation cations differed in volume and hydration sphere, occupying
different volumes in the pore system and inducing an electrostatic field of different intensity [40,41].
Therefore, BCNU release was strongly influenced by the compensation cations present in the zeolite
channel system. Having these results in mind, it was easy to understand why BCNU@NaCLI system
had demonstrated too slow release characteristics of BCNU for skin administration, but it might be
suitable to be studied for the development of other pharmaceutical products with prolonged release
and administration by other routes (e.g., oral, subcutaneous, or mucosal). The model for zero order
kinetics describes the release of the drug from pharmaceutical matrix dosage forms with modified
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release, with a constant rhythm per unit of time independent of the concentration gradient [42,43].
BCNU release from BCNU@HCLI system by Fick diffusion recommends the use of this system for
further study for the formulation of semisolid products meant for skin application [44,45].

We evaluated the release kinetics of BCNU from the BCNU@HCLI system dispersed in two semisolid
formulations, cream type and gel type, obtained as it was presented in Methods. Better release of BCNU
from the cream formulation compared to the gel formulation could be attributed to the strong lipophilic
character of BCNU that had generated a greater affinity to the cream dispersion medium, thereby facilitating
the diffusion and release process [46,47]. Based upon the results from in vitro dissolution of BCNU release
study and measurement of permeation coefficient of BCNU, the C_BCNU@HCLI was selected for further
testing in vivo in order to evaluate its effects.

All potentially new delivery systems of therapeutic agents should be evaluated using in vitro
and in vivo models. In vitro evaluations give a lot of information, but in vivo experiments remain
essential to characterize the new delivery systems. Therefore, we chose a widely used in vivo model
of chemically induced skin cancer in mice [13] to test the effects of our new delivery system using
as control parameters bcl-2 and on cox-2 protein expression levels. Deregulation of bcl-2 family
members is involved in skin carcinogenesis [16,17]. Bcl-2, the first protein that was associated with
translocations identified in follicular lymphoma, contributes to malignancy by inhibiting apoptosis [18].
The overexpression of cox-2 has been reported in pre-cancerous lesions, in several forms of cancer,
including basal cell carcinoma or squamous cell carcinoma of the skin [15].

Calculating the mathematical “energy” of an image by determining the cumulative signal strength,
or norm, of the digital file encoding that image can be used as the basis for accurate quantification
of the amount of chromogen generated during immunohistochemistry [21]. The algorithm for QIHC
provides the first mathematically valid approach for determining the absolute amount of chromogen
present per pixel and shows that QIHC so performed can be used to accurately determine the amount
of the target of interest in the tissues. IHC Profiler, integrates options for quantitative analysis of digital
IHC images stained for either cytoplasmic or nuclear proteins. We have used both programs and
obtained the same results for QIHC evaluation of the expression level of bcl-2 and cox-2 proteins.

Local application of our new modified delivery clinoptilolite-based system loaded with Carmustine
on the skin of laboratory animals with artificially chemically induced skin cancers, lead to decreased
bcl-2 protein expression and cox-2 protein expression, so decreasing tumour survival chances and tumour
aggressiveness, respectively, better than a reference Carmustine containing cream.

4. Materials and Methods

4.1. Chemicals

Carmustine (98%) was purchased from Sigma Aldrich (Hamburg, Germany).
Hydroxypropyl cellulose (HPC) 150–4000 cP was purchased from Nisso Chemical Europe GmbH
(Düsseldorf, Germany); other chemicals (glycerol monostearate, cetil alcohol, petroleum jelly, propylene
glycol, triethanolamine (TEA), ammonia solution (NH3) minimum 25%, hydrochloric acid 35–38% for
analysis, oxalic acid dihydrate 99% for analysis, and sodium hydroxide dimethyl sulfoxide (NaOH
DMSO)) were purchased from local sources. The reagents used for the high performance liquid
chromatography (HPLC) analysis, Trifluoroacetic acid (TFA), acetonitrile (ACN) chromatographic
purity, and glacial acetic acid, were purchased from Merck (Darmstadt, Germany); potassium
phosphate, alcohol (pro analysis), and double-distilled water (Millipore, conductivity 0.01 µS/cm) were
purchased from Sigma Aldrich (Hamburg, Germany). All reagents were used without purification.
The deionized water was obtained from the Milli-Q water purification system, Elga Pure Lab
(High Wycombe, UK). The initiator, 7,12-dimethylbenz[a]anthracene (DMBA), and the promoter,
12-O-tetradecanoylphorbol-13-acetate (TPA) were purchased from Ubichem (Redditch, UK). DMBA was
solved in acetone to a concentration of 100 mg/100 mL. TPA was mixed in acetone to obtain a solution
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of 1%. Primary Antibody to cox-2, primary antibody to Bcl-2 Oncoprotein and secondary peroxidase
anti-mouse IgG (H + L) were purchased from Vector Laboratories (Burlingame, CA, USA).

4.2. Preparation and Characterization of Carmustine-Loaded Clinoptilolite Modified Drug Delivery System

4.2.1. Purification of Natural Clinoptilolite and Preparation of Monocationic Forms of Zeolite Matrix

Clinoptilolite was prepared in two ionic forms, HCLI and NaCLI, in order to immobilize the
BCNU. The option for using these ionic forms was based on the amphoteric character of clinoptilolite,
which can accept or release protons in an aqueous medium, mainly through an ion exchange process,
thus being a good pH regulator. The two zeolite materials were prepared using volcanic tuff from the
Mirsid quarry, Salaj county, Romania.

First, clinoptilolite tuff sample was subjected to grinding and sorting through screening. For this
study, we have chosen clinoptilolite sample with particle size of ≈20 µm. Further, this sample was
subjected to a mild thermal treatment to remove water, and then to several chemical treatments for
purification: acid treatment with 5 N HCl at 25 ◦C, using the ratio solid:liquid = 1:10; secondary acid
treatment with 2 N HCl solution concentration at the temperature of 90 ◦C, the ratio solid:liquid = 1:10;
thermal treatment at 450 ◦C; treatment with 0.1 N solution of oxalic acid , the ratio solid:liquid = 1:10 at
25 ◦C followed by filtration, carefully washing and drying the filter. Monocationic H+ form was obtained
by two-step ion exchange with NH4Cl with the ratio solid:liquid of 1:10 exchange 1M solution. After
the ion exchange, the sample was calcined for 6 h at 450 ◦C. Monocationic Na+ form was obtained by
ion exchange in two stages using NaCl. The samples prepared in this way were stored in a desiccator
and protected from moisture. The samples prepared in this way were used to prepare MDCS for
loading carmustine.

4.2.2. Drug Loading and Obtain of the Modified Delivery Clinoptilolite–Based Systems

BCNU is practically insoluble in water but soluble in ethanol and DMSO and highly soluble in
lipids. Therefore, an alcoholic solution was chosen to perform BCNU immobilization tests. The amount
of BCNU immobilized on the two zeolite matrices was determined on the basis of its disappearance from
the solution by high performance liquid chromatography. Practically an amount of 1 g of each of the two
zeolite matrix forms, HCLI and NaCLI, respectively, were mixed with 300 mL of 1 mg/mL of BCNU
alcoholic solution. Samples were stored with magnetic stirring at 60 rpm, at room temperature for 3 h.

After separation by centrifugation and washing, the samples were dried at room temperature in
the dark and they were labelled as BCNU@HCLI and BCNU@NaCLI, respectively.

4.2.3. HPLC Assay of BCNU

The chromatographic method, applied for the assessment of the loading capacity of MDCS with
BCNU and for the in vitro dissolution tests, was developed and validated in-house.

The amount of retained BCNU was determined using the HPLC method, developed, validated,
verified and revalidated in house with a HPLC Dionex UltimateTM 3000 system (Thermo Fisher Scientific
Inc., Cleveland, OH, USA) equipped with a UV-VIS Diode Array Detector. The working conditions
optimized for the chromatographic system involved the utilization of the mobile phase consisting in a 0.1%
TFA in H2O solution (solvent A) and acetonitril (solvent B), in a ratio of 60:40 (v/v), working temperature
30 ◦C in column Hypersil GOLD (Thermo Fisher Sciencific Inc., Cleveland, OH, USA), 4.6 × 150 mm,
5 µm, injection of a sample volume of 10 µL and chromatogram recording with detection at a wavelength
of 230 nm. The method was validated by measuring the following parameters: method repeatability and
intermediate precision for a concentration of 0.1 mg/mL, when we obtained relative standard deviation
(RSD) values≤2 for peak area, retention time and concentration; method linearity in the concentration
range of 0.25–2 mg/mL, equation of curve calibration y = 225.19x + 0.1074) determination coefficient
(R2) = 0.9995); detection limit—0.00944 mg/mL and quantification limit—0.0286 mg/mL.
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4.2.4. Characterization Methods of the Modified Delivery Clinoptilolite-Based Systems

The Assessment of Porous Parameters of Modified Delivery Clinoptilolite-Based Systems

The nitrogen sorption isotherms of MDCS, before and after drug loading process, were recorded
on a Quantachrome Nova 2200 Instrument and Pore Size Surface Area Analyzer (Beckman Coulter, Inc.,
Atlanta, GA, USA) at −196 ◦C. Before measurements, the samples were outgassed under high vacuum
at room temperature for 12 h. The Brunauer–Emmett–Teller (BET) specific surface area (SBET (m2/g))
was calculated from the linear part of the BET plot. Micropore area (Sµ (m2/g)) was determined by
t-plot method. The average pore diameter (Dp (nm)) was estimated using the desorption branch of the
isotherm and the BJH method. The volume of liquid nitrogen adsorbed P/P0 = 0.95 was used to assess
the total pore volume (TPV (cm3/g)).

In Vitro Drug Release Profile of BCNU from Modified Delivery Clinoptilolite-Based Systems

The in vitro dissolution tests of BCNU from the BCNU@HCLI and BCNU@NaCLI systems
were performed using as a dissolution media a mixture of ethyl alcohol: phosphate-buffered saline
(EtOH:PBS) in a 3:1 ratio. The test was performed on a SR8 Plus Series (AB & L JASCO, Chatsworth, CA,
USA) apparatus 2 (paddles) equipped with a Dissoette autosampler (Hanson Research Corporation,
Chatsworth, CA, USA) according to the following protocol: a specific amount of MDCS containing
25 mg of BCNU was introduced into containers having 50 mL of dissolution media, with a bath
temperature of 37± 0.5 ◦C, rotation speed 50 rpm; the sampling interval was set at every 60 min during
12 h. Aliquots (1 mL) were withdrawn and subjected to high-performance liquid chromatography
coupled to diode array detector (HPLC-DAD) method described above, in order to determine the
amount of BCNU released. After every sampling, the aliquots were replaced with equal volumes of
medium at 37 ◦C.

In order to highlight the characteristics of systems with modified release for the matrices
under investigation, in the in vitro dissolution test, we also recorded the dissolution profile of the
unincorporated BCNU.

Analysis of In Vitro BCNU Release Kinetics

In order to predict and correlate the behaviour of the in vitro BCNU release from the MDCS
systems, a suitable mathematical model was used. Thus, the experimental data obtained from the
in vitro dissolution tests were investigated using four predictable models: zero-order and first-order
kinetics, Higuchi and Korsmeyer-Peppas models [48].

Let C0 be the initial concentration of drug in the pharmaceutical dosage form and Ct the
concentration of drug in the pharmaceutical dosage form at time t. If Ft = 1 − Ct/C0 denotes the
released percentage at time t, then the release formulae corresponding to the four models are

Ft = K0 × t (the zero-order model), (1)

Ft = 1 − e−K1×t (the first-order model), (2)

Ft = KH ×
√

t (the Higuchi model) (3)

Ft = KP × tn (the Korsmeyer-Peppas model) (4)

Here, n is the release exponent corresponding to the Korsmeyer-Peppas model, while K0, K1, KH, and
KP are the release rate constants corresponding to the zero-order, the first-order, the Higuchi, and the
Korsmeyer-Peppas model, respectively. These constants have been fitted using linear and nonlinear
regression in Matlab 7.1 and the results were displayed in Table 2. The determination coefficient was the
criteria for selecting the model that most dependably describes the release profile of each formula. In a
reliable prediction model, the value of R2 is as close to 1 as possible [49,50].
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4.2.5. Development of Semisolid Dosage form with BCNU@HCLI System

Preparation of Semisolid Dosage Forms

Two types of semisolid dosage forms were formulated by dispersing the BCNU@HCLI system,
which exhibited the best dissolution characteristics in the dissolution in vitro test, in a HPC gel and
in a cream base according to the data presented in Table 10. The dispersed BCNU@HCLI quantity
was calculated according to the matrix loading degree so that the semisolid products had a final 0.4%
BCNU concentration.

Table 10. Formulations of semisolid dosage forms with BCNU@HCLI: composition and abbreviation.

Raw Materials
Sample Formulation

G_BCNU@HCLI C_BCNU@HCLI

HPC 3.5 g -
Glycerol monostearate - 12 g

Cetil alcohool - 1 g
Propylene glycol 3 g 3 g
Triethanolamine 1 g -
Petroleum jelly - 12 g
BCNU@HCLI 6.40 g 6.40 g
Purified water ... up to 100 g ... ... up to 100 g ...

HPC: hydroxypropyl cellulose.

In Vitro Dissolution BCNU Release Study and Measurement of the Permeation Coefficient of BCNU

The in vitro dissolution test was performed on the Enhancer cell having a diameter of 2.5 cm,
employing the SR 8 Plus Series device (AB & L Jasco, Cremella, Italy), according to the following
protocol: dissolution media: a mixture of ethyl alcohol : EtOH:PBS in a 3:1 ratio, 100 mL; mass of
sample: for each formulation studied, 1 g; two types of synthetic membrane (supplied by Millipore,
Merck, Darmstadt, Germany): Nylon membrane with a pore diameter Ø = 45 µm and collagen
membrane (Strat-M® membrane, Sigma Aldrich, Hamburg, Germany); temperature: 37 ◦C ± 0.2 ◦C;
sampling interval: the test was carried out over a period of 12 h, every 60 min we drawn out a sample
volume of 1 mL, which was replaced with fresh medium; speed: 100 rpm. The synthetic membrane
was placed in the dissolution medium for 24 h before the in vitro test.

The in vitro permeability coefficient of BCNU was calculated by the following equation:

Kp =
J
C
× A, (5)

where: KP—coefficient of permeability (cm/h); J—rate of drug substance permeation or stationary
phase flow (µg/h); C—concentration in the donor compartment (µg/mL); A—contact surface area
(cm2).

4.3. In Vivo Evaluation of the Modified Delivery Clinoptilolite-Based Systems Loaded with Carmustine,
Using as Control Parameters the Level of Expression of bcl-2 and cox-2 Proteins after the Local Application on
the Skin Tumour

4.3.1. Animals

The protocol of the experimental study was approved (17 September 2015, PN-II-PT-PCCA-
2013-4-2024) by the Institutional Ethical Committee of the University of Medicine and Pharmacy “Gr.
T. Popa”. Animals were male CD1 Swiss mice (seven weeks old, weighing 18 ± 2 g), purchased
from “Cantacuzino” Institute Bucharest, Romania. Animal care and handling were done according
to the international guidelines. The animals were housed in polypropylene cages with controlled
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environmental conditions of temperature (21 ± 2 ◦C), humidity (50–70%), and light (12-h light/dark
cycle) and had ad libitum access to food and water.

4.3.2. Experimental Design

A two-step modified protocol (DMBA followed by TPA) was used to induce skin tumours in
mice [13,51–53]. The dorsal region of the mice was shaved with an electric clipper. Two days later, mice
were treated topically each time with 200 nmol DMBA in 200 µL acetone, with three administrations
in two-week at three-day interval, and control mice received 200 µL acetone. After two weeks, the
tumour initiation by DMBA was promoted by the topical application each time with 200 µL TPA
solution 1% in acetone, three times per week, for 16 weeks.

After 16 weeks of carcinogen treatment, the animals were divided into groups of 12 animals/group
and the substances were applied on the skin once a day, daily, for three weeks, as follows:

• Group I (experimental: C_BCNU@HCLI): topical application of 0.5 g Carmustine in the new
delivery system/mouse;

• Group II (control for Carmustine: Cream BCNU): topical application of 0.5 g Carmustine®

cream/mouse);
• Group III (control for the base: Base cream): topical application of 0.5 g base cream/mouse);
• Group IV (Saline control): topical application of 100 µL NaCl 9‰/mouse.

4.3.3. Quantitative Immunohistochemistry Analysis for the Evaluation of the Expression of bcl-2 and
cox-2 Proteins, Using Computer Aided Diagnosis Software: TIFFalyzer and IHC Profiler

On the completion of the third week of local application of different treatments, skin and
tumour tissue samples from six tumour-bearing mice from each type of treatment, were collected for
histopathological examination. Skin and tumour tissue samples were fixed with Bouin, dehydrated with
ethanol and embedded in paraffin. After cutting, 4 µm sections were dewaxed and blocked epitopes
in the sections were revealed by heating at 95 ◦C in 10 mmol citrate acid buffer pH6 for 10 min in a
microwave oven and then were left at room temperature for 20 min. The slides were then washed twice
in PBS (pH = 7.5) for 5 min and incubated with the primary antibody—purified Mouse Anti human bcl-2
or Mouse Anti human cox-2 antibody, diluted 1:100, at room temperature in humid chamber overnight.
After washing with PBS, slides were then incubated with the secondary antibody, horseradish peroxidase
(HRP) Goat anti Mouse IgG for 1 h in humid chamber at 4 ◦C, then washed with PBS and incubated with
the DAB (3,39-diaminobenzidine tetrahydrochloride) substrate for 5 min and counter-stained with Harris
haematoxylin, clarified in xylene. Slides were mounted and examined with a Leica DM 750 microscope
(model Leica DM 750 Microsystems Ltd., Heerbrugg, Switzerland). For all cross sections, controls were
obtained from consecutive sections by using the same procedure, except that they were not exposed to
primary antibody.

TIFFalyzer

This is an algorithm for performing QIHC. Chromogen abundance was quantified by quantitative
immunohistochemistry as previously described by Matkowskyj et al. [21,23,24]. This technique relies
on calculating the cumulative signal strength, or mathematical energy (EM) [54] of the image under
consideration. The amount of chromogen per pixel was determined by subtracting the value for
chromogen abundance of the control slide from that in the homologous region of the experimental
slide. Data relative to the amount of total chromogen present was given as energy units per pixel
(EU/pixel). For all images, the relevant stained region was isolated from the rest of the image
using Adobe Photoshop version 18 (Adobe Systems, San Jose, CA, USA) and used for chromogen
quantification using the MATLAB program running TIFFalyzer code (developed by Randal Cox,
Bioinformatics Group, Departments of Genetics and Medicine, University of Illinois, Chicago, IL, USA
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and modified for batch analysis by Iulian Stoleriu, Faculty of Mathematics, “Al. I. Cuza” University,
Iasi, Romania).

IHC Profiler

A simple method of automated digital IHC image analysis algorithm for an unbiased, quantitative
assessment of antibody staining intensity in tissue sections was used for the quantification of the
expression of Bcl-2 and cox-2 proteins. This software is an open source plugin named IHC Profiler [55],
which is compatible with the ImageJ software and is a demonstrated method for IHC analysis using
colour deconvolution and computerized pixel profiling leading to the assignment of an automated
score to the respective image. The result of colour deconvolution leads to the production of three
images, namely, DAB, haematoxylin and a complimentary image. For analyzing the cytoplasmic
staining pattern, a histogram profile is assigned for the deconvoluted DAB image, which is a plot
between the intensity values of the pixels (X axis) vs. the number of pixels representing the intensity
(Y axis). In digital image analysis, the pixel intensity values for any colour range from 0 to 255,
wherein, 0 represents the darkest shade of the colour and 255 represent the lightest shade of the colour
as standard. Keeping in view the standard grading procedure, the histogram profile was divided into
four zones: high positive, positive, low positive, and negative. These four zones were equally divided
on the pixel colour intensity bar. The intensity range for the positive zone was from 61 to 120, 121 to
180 for the low positive zone, and 181 to 235 for the negative zone, respectively. It was determined that
the pixels with intensity values ranging from 235–255 predominantly represent fatty tissues which
are occasionally present but do not typically contribute to pathological scoring and were therefore
excluded from the score determination zones. A simple algebraic formula was conceptualized for
score assignment to the IHC images.

Score =
(Number of pixels in a zone)× (Score of the zone)

Total number of pixels in the image
(6)

Wherein the score of the zone is assigned as 4 for the high positive zone, 3 for the positive zone,
2 for the low positive zone, and 1 for the negative zone. The global score is the sum of the partial scores
for the four zones. The higher the score, the higher is the level of expression in the sample.

4.3.4. Statistical Analysis

Data were expressed as mean standard deviation. Statistical analysis was performed using IBM
SPSS Statistics version 20.0 (SPSS, Inc., Chicago, IL, USA), to evaluate the difference between the means
of the scores of each zone: high positive, positive, low positive, and negative. The significance of
difference was obtained by performing the two-tailed t Student test for independent samples (unequal
variances) and confidence interval set at 95%. Values of p lesser than 0.05 were considered significant.

5. Conclusions

We found that local application of our new modified delivery clinoptilolite-based system loaded
with Carmustine on the skin of laboratory animals with artificially chemically induced skin cancers
lead to decreased bcl-2 protein expression and cox-2 protein expression, so decreasing tumour survival
chances and tumour aggressiveness, respectively, better than a reference Carmustine containing cream.

Our new formulation, a Carmustine-loaded clinoptilolite delivery cream, could be a better and
more effective drug delivery tool for the topical system.
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