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Studies have shown that lysosomal activation increases in Schwann cells after nerve injury. Lysosomal activation is thought to
promote the engulfment of myelin debris or fragments of injured axons in Schwann cells duringWallerian degeneration. However,
a recent interpretation of lysosomal activation proposes a different view of the phenomenon. During Wallerian degeneration,
lysosomes become secretory vesicles and are activated for lysosomal exocytosis. The lysosomal exocytosis triggers adenosine 5-
triphosphate (ATP) release from peripheral neurons and Schwann cells during Wallerian degeneration. Exocytosis is involved in
demyelination and axonal degradation, which facilitate nerve regeneration following nerve degeneration. At this time, released
ATP may affect the communication between cells in peripheral nerves. In this review, our description of the relationship between
lysosomal exocytosis andWallerian degeneration has implications for the understanding of peripheral nerve degenerative diseases
and peripheral neuropathies, such as Charcot-Marie-Tooth disease or Guillain-Barré syndrome.

1. Introduction

Lysosomes are acidified, enzyme-containing intracellular
organelles that break down phagocytosed materials, cell
debris, and waste materials [1]. Therefore, lysosomes (con-
ventional lysosomes) are considered to be the end-point of a
final degradative pathway, the final destination of internalized
macromolecules [2, 3]. However, it was recently demon-
strated that lysosomes play an additional role in regulating
exocytosis (secretory lysosomes) in addition to degrading
old materials [4]: regulated secretion. This mature lysosome
exocytic process can be triggered following an increase in
the free Ca2+ concentration above 1𝜇M. A microtubule-
dependent step then provides the movement of exocytic
lysosomes towards the plasma membrane [5]. Lysosomal
vesicles are usually acidified by its H+-ATPase [4]. Chemicals

that cause alkalinization of lysosomes can trigger lysosomal
exocytosis [6].

Lysosomal exocytosis is required for plasma membrane
repair via extracellular Ca2+ influx [7]. Plasma membrane
resealing by lysosomal exocytosis is triggered within sec-
onds after cell injury [7, 8]. Synaptotagmin VII, a plasma
membrane Ca2+ sensor in lysosomal exocytosis, provides a
mechanism by which a rise in intracellular Ca2+ upregulates
the fusion of lysosomal vesicles with the plasma membrane
[9, 10]. However, our understanding of the role of the
lysosomal contents in the exocytic process of the peripheral
nervous system (PNS) remains limited.

ATP is well established as a free energy source involved
in biochemical pathways. However, ATP is now recognized
as both an intracellular energy source and an extracellular
messenger. Thus, ATP is a transmitter of relevant purinergic
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signaling in all nerves [11, 12]. In central synapses, there
may be a corelease of ATP with other neurotransmitters
or a separate release of ATP [13, 14]. ATP is a functionally
important extracellular signaling molecule in the central
nervous system (CNS) because activation of P2X and P2Y
receptors in postsynaptic neurons, microglia, and astrocytes
can trigger significant Ca2+ entry into the cytoplasm [15–
17]. A recent study revealed that both resting microglia
and activated microglia after nerve injury express P2X4,
P2X7, and P2Y12 ATP receptors [18] and that released ATP
contributes to the activation of the resting microglia near
the activated microglia [19]. A previous report indicated
that nonadrenergic, noncholinergic autonomic nerves con-
tain ATP concentrated in lysosomal vesicles in vivo [20].
A considerable amount of ATP is stored and released by
astrocytes and microglia through lysosomal exocytosis [21–
24]. Contrary to a previous study [24], recently, it was
reported that ATP release from microglia is dependent on
the exocytosis via a vesicular nucleotide transporter (VNUT)
but not lysosomal vesicles [25]. However, comparedwith glial
cells in the CNS, the mechanism of ATP release via vesicular
exocytosis in Schwann cells and peripheral nerve axons and
their behaviors to Wallerian degeneration by released ATP
in the PNS are not well known. Therefore, in this review, we
discuss the dynamics of ATP related to lysosomal exocytosis
in the PNS and the role of lysosomal exocytosis during
Wallerian degeneration (Figure 1).

2. ATP Release through Lysosomal Exocytosis
in the PNS

ATP is a significant signaling molecule in the PNS, as it
plays an important role in chemical communication between
several cell types [26, 27]. During Schwann cell development,
extracellular ATP inhibits Schwann cell proliferation and
differentiation [28]. In primary Schwann cells, extracellular
ATP also triggers the release of ATP or amino acids [29,
30]. How can Schwann cells and peripheral neurons then
release ATP into the extracellular space? One ATP-releasing
mechanism in the PNS is secretory lysosomal exocytosis.

2.1. ATP Release from Schwann Cells through Lysosomal Exo-
cytosis. In Schwann cells, uridine triphosphate or glutamate
induces ATP release through vesicular exocytosis [31, 32].
Inhibitors of exocytosis that inhibit the formation of vesicles
from the Golgi complex or prevent the delivery of vesicles
disrupt ATP release from Schwann cells [31]. Recently, our
group found that lysosomal vesicles are an exocytic ATP-
releasing vesicle in Schwann cells [33]. Lysosomal-associated
membrane protein 1 (LAMP1), a lysosomal vesicle marker,
colocalizes with quinacrine, a specific ATP-combining chem-
ical, in primary Schwann cell granules in culture, thus
indicating that ATP is stored in lysosomal vesicles [33].

Fusion between exocytic vesicles and cell membranes
is necessary to release vesicular contents. Vesicle-associated
membrane protein 7 (VAMP7), a member of the vesicular
soluble NSF attachment protein receptor (SNARE) family,
is involved in Ca2+-dependent lysosomal exocytosis, and
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Figure 1: Model of lysosomal exocytosis events in Schwann cells
duringWallerian degeneration. After peripheral nerve injury, secre-
tory lysosomal activation is increased, which triggers lysosomal
exocytosis during Wallerian degeneration. Through lysosomal exo-
cytosis, Schwann cells release ATP into the extracellular space. The
released ATP transmits to neighboring Schwann cells and promotes
lysosomal activation and subsequent lysosomal exocytosis.

its interaction with synaptotagmin VII (SytVII), a member
of the synaptotagmin family of Ca2+-binding proteins, is
required for lysosomal exocytosis [34, 35]. In in vivo and in
vitro Schwann cells, SytVII/VAMP7-positive vesicles are also
observed in lysosomal vesicles [33]. The existence of SytVII
and VAMP7 indicates that lysosomal exocytosis in Schwann
cells is a Ca2+-dependent process.

VNUT has the capacity to transport cytosolic ATP into
vesicles [36]. Intracellular vesicles that contain ATP through
the interaction of VNUT are fused with the plasma mem-
brane and, then, ATP through vesicular exocytosis is released
into the extracellular space [36]. In Schwann cells, VNUTalso
induces the entry of ATP into lysosomal vesicles [33]. Thus,
during Wallerian degeneration, VNUT induces ATP to enter
lysosomal vesicles, and ATP is subsequently released through
Ca2+-triggered lysosomal exocytosis in Schwann cells. These
studies demonstrate that ATP is stored in lysosomal vesicles
via VNUT following stimulation, and ATP secretion from
Schwann cells occurs through Ca2+-dependent lysosomal
exocytosis during Wallerian degeneration.

2.2. ATP Release from Peripheral Neurons via Lysosomal Exo-
cytosis. ATP is liberated from stimulated peripheral nerves
[37] and is important for signaling injurious nociceptive
information [38]. ATP, as a neurotransmitter, is released from
exocytic vesicles at presynaptic terminals and is the medium
of the communication between the cells [28, 39–44]. In
peripheral neurons, lysosomal vesicles contain a considerable
amount of ATP in vivo [20]. However, the characteristics of
ATP release via lysosomes in neurons remain to be elucidated.
In dorsal root ganglion (DRG) neurons, the existence of
lysosomal exocytosis and vesicular ATP release was reported
separately [28, 43, 44]. Recently, our group reported that
ATP is stored in lysosomes and is released from lysosomal
exocytosis in cultured DRG neurons [45]. In primary DRG
cultures, staining for quinacrine, an ATP-binding chemical,
is visualized in lysosomal vesicles [45]. Quinacrine-positive



BioMed Research International 3

vesicles were observed in neuronal soma and in the tip of
elongating processes of cultured DRG neurons [45]. VNUT-
positive vesicles containing quinacrine staining are also
observed in neuronal soma and the tips of the elongating
processes of cultured DRG neurons which are similar to the
distribution of quinacrine-stained lysosomal vesicles [45].
Thus, in peripheral neurons, ATP was thought to enter into
lysosomal vesicles through VNUT.

DRG neurons are pseudopolar neurons that contain both
central and peripheral processes. Thus, ATP released from
DRG neurons could affect DRG-glia interactions in the PNS
andCNS.The existence of ATP-containing lysosomal vesicles
in the tips of neuronal processes suggests the possibility that
ATP released from DRG neuronal axon terminals through
lysosomal exocytosis may induce microglial activation and
neuropathic pain in the spinal cord dorsal horn after nerve
injury [46], as well as Schwann cell proliferation or differ-
entiation during Schwann cell development in peripheral
nerves [28]. For example, lysosomal exocytosis is involved
in axonal degradation during Wallerian degeneration. The
high concentration of extracellular ATP, which is released
fromSchwann cells, inhibits axonal degradation in peripheral
nerves during Wallerian degeneration [45]. Thus, neuronal
mechanisms of ATP release through lysosomal exocytosis
may increase our understanding of physiological or patho-
physiological neuron-glia interactions in both PNS and CNS.

3. Lysosomal Exocytosis and Schwann
Cell Demyelination

After nerve injury, during Wallerian degeneration, demyeli-
nation of Schwann cells occurs via fragmentation of the
myelin sheath into ovoid-like structures near Schmidt-
Lanterman incisures (SLI) [47–49]. Lysosomal activation is
increased in Schwann cells during Wallerian degeneration
[50, 51]. Increased lysosomal activation (conventional lyso-
somes), which indicates an increased number of acidified
lysosomal vesicles, affects myelin fragmentation in Schwann
cells during Wallerian degeneration [51]. It seems likely
that the activated lysosomal vesicles engulf and remove
myelin fragment debris in Schwann cells during Walle-
rian degeneration. However, the mechanisms by which the
reduced lysosomal activation inhibits demyelination have
not been studied previously. On the other hand, lysosomal
exocytosis also occurs in Schwann cells during Wallerian
degeneration. Recently, our group presented evidence that
increased lysosomal exocytosis inhibits myelin fragmenta-
tion in Schwann cells during Wallerian degeneration [52].
Several lysosomal exocytosis activators (highly concentrated
extracellular ATP and NH

4
Cl) inhibit myelin fragmentation

in sciatic explant cultures duringWallerian degeneration [52].
In contrast, sciatic nerve explant incubation with both a
lysosomal exocytosis activator and inhibitor (metformin and
chlorpromazine) for 3 days restores myelin fragmentation
[52]. Thus, we believe that one mechanism by which lysoso-
mal exocytosis inhibits demyelination is through enhanced
release of ATP fromSchwann cells into the extracellular space
in the PNS.The increased extracellular ATP level may induce

Ca2+-dependent alkalization of existing acidified lysosomal
vesicles in Schwann cells during Wallerian degeneration [24,
30] and may reduce the amount of activated conventional
lysosomes. Decreased lysosomal vesicles may affect the inhi-
bition of myelin fragmentation during Wallerian degener-
ation. In addition, the increased ATP concentration in the
extracellular space may induce the alkalization of lysosomal
vesicles and subsequently enhance lysosomal exocytosis in
neighboring Schwann cells. In addition to the increased
extracellular ATP, it is possible that unidentified secretory
proteins induced by lysosomal exocytosis in Schwann cells
prevent myelin fragmentation and degradation. Thus, fur-
ther evaluation is needed to reveal the underlying proteins
released by lysosomal exocytosis in demyelination during
Wallerian degeneration.

During Wallerian degeneration, recruited macrophages
into the peripheral nerves engulf the debris of myelin sheaths
[53, 54]. Because macrophages express several ATP receptors
[55, 56], the extracellular ATP may activate the recruited
macrophages and, subsequently, inhibit the removal of
myelin debris by the macrophage. However, because ex vivo
Wallerian degeneration system is closed, the recruitment of
macrophage into the sciatic nerve explants could be excluded.
Thus, we think that the inhibition of demyelination in ex vivo
sciatic nerves through the increasedATP concentration is not
involved in the effect of macrophages [52].

Are there effects of lysosomal exocytosis during Walle-
rian degeneration other than ATP secretion in denervated
Schwann cells? Lysosomal exocytosis is also involved in
Schwann cell remyelination. Lysosomal vesicles in Schwann
cells contain a compact myelin-consisting protein [57]. This
secretory vesicle fuses with the plasma membrane through
lysosomal exocytosis in Schwann cells and promotes remyeli-
nation by the addition of myelin protein to the plasma
membrane [57]. Thus, several studies showed that lysosomal
exocytosis in Schwann cells closely affects myelin sheath
dynamics in response to stimuli.

4. Lysosomal Exocytosis and Schwann Cell
Dedifferentiation and Proliferation

During Wallerian degeneration, Schwann cells detached
from axons undergo dedifferentiation and reenter the cell
cycle to promote axonal regeneration. These dedifferentiated
Schwann cells are similar to their immature state during
Schwann cell development. The transition from myelinating
Schwann cells to their dedifferentiated state involves sev-
eral regulatory proteins. Extracellular signal-regulated kinase
(ERK), c-jun, and p38 mitogen-activated protein kinase (p38
MAPK), members of the MAPK family, induce the initiation
of Schwann cell dedifferentiation and act as negative regula-
tors of myelin differentiation in Schwann cells [58–61]. The
p75 neurotrophin receptor (NGFR), which is a low affinity
nerve growth factor receptor, is activated in demyelinating
myelinated Schwann cells after nerve injury and is involved in
the Schwann cell dedifferentiation process during Wallerian
degeneration [50, 51, 62]. p75NGFR induction also mediates
lysosomal activation in demyelinating Schwann cells during
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Wallerian degeneration [51]. Thus, understanding the rela-
tionship between lysosomal vesicles and members of the
MAPK family or neurotrophin receptors during Wallerian
degeneration may help to identify the molecular mechanism
of Schwann cell dedifferentiation.

Using a sciatic nerve explant system, our group found
that p38 MAPK and ERK1/2 are involved in lysosomal
exocytosis in Schwann cell dedifferentiation duringWallerian
degeneration [63]. A lysosomal exocytosis activator (i.e.,
highly concentrated ATP) induces the downregulation of
p-p38MAPK and p-ERK1/2 in Schwann cells during Wal-
lerian degeneration [63]. Lysosomal exocytosis is involved
in p75NGFR expression and lysosomal activation during
Wallerian degeneration. Highly concentrated ATP (2mM)
inhibits conventional lysosomal activation and the expression
of p75NGFR in the denervated state of Schwann cells during
Wallerian degeneration [63]. At this time, a decrease in
conventional lysosomal activation is likely to induce the
reduction in acidified vesicles for scavenging myelin frag-
ments and the transfiguration into secretory vesicles (secre-
tory lysosomal activation). Thus, these studies indicate that
lysosomal exocytosis affects Schwann cell dedifferentiation
during Wallerian degeneration. In addition, increased lyso-
somal exocytosis blocks Schwann cell proliferation, which
is involved in axonal regeneration during the process of
peripheral nerve regeneration [63].

Which molecules released through lysosomal exocyto-
sis affect Schwann cell dedifferentiation during Wallerian
degeneration? During Schwann cell development, increased
extracellular ATP (300 𝜇M) inhibits the proliferation and
differentiation of Schwann cells cocultured with DRG neu-
rons [28, 64]. Because Schwann cells return to an immature
developmental stage during Wallerian degeneration, it is
possible that ATP released through lysosomal exocytosis
could affect dedifferentiating Schwann cells duringWallerian
degeneration. ATP released from dedifferentiated Schwann
cells during Wallerian degeneration may function as a neu-
rotransmitter in the peripheral nervous system and com-
municate with neighboring Schwann cells to inhibit their
dedifferentiation. Thus, these studies have confirmed that
ATP and lysosomal exocytosis in the PNS are closely related
to Wallerian degeneration.

5. Concluding Remarks

The role of lysosomal exocytosis in the PNS has been studied
recently. The current belief is that lysosomal exocytosis is
involved in Schwann cell demyelination, remyelination, ded-
ifferentiation, and proliferation during Wallerian degenera-
tion. In addition, secretory vesicles affect axonal degeneration
during Wallerian degeneration. In the PNS, an important
role for lysosomal exocytosis is that it releases ATP from
peripheral neurons and Schwann cells. ATP may function
as a neurotransmitter and affect nerve degeneration during
Wallerian degeneration. According to our previous studies
[52, 63], peripheral nerve injury should increase ATP release
through lysosomal exocytosis into the extracellular space
of the sciatic nerves and the increased ATP should have

inhibitedWallerian degeneration in the injured sciatic nerves
without any treatments of lysosomal exocytosis activators.
However,Wallerian degeneration in the injured sciatic nerves
without any treatments is ongoing [52]. Then why does
not the inhibition of Schwann cell dedifferentiation and
proliferation through secretory lysosomal ATP release occur
in vivo duringWallerian degeneration?We believe that extra-
cellular ATP released from Schwann cells or peripheral axon
terminals is easily degraded in the extracellular environment
in vivo [65]. The efficient prevention of ATP degradation
in the extracellular space is likely to regulate the processes
of Schwann cell dedifferentiation and proliferation during
Wallerian degeneration. Consequently, these recent results
have opened up a new research area to understand the mech-
anisms of peripheral nerve degeneration and regeneration.
Furthermore, the regulation of ATP release in peripheral
nerves may make lysosomal exocytosis a potentially valuable
therapeutic target for peripheral nerve degenerative diseases
and peripheral neuropathies, such as Charcot-Marie-Tooth
disease or Guillain-Barré syndrome.
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