
Introduction

One of the characteristics of animal life is mobility, offering mul-
tiple advantages among which are escape, food gathering and
partner encounter for reproduction. Most marine animal life is
fixed to a substratum. As a consequence, animals must adapt to
this unusual situation. Obviously they cannot escape, they must
protect themselves against deadly radiation, especially UVA,
they compete for available space, they must avoid predation and
they are exposed to colonization. According to phyla, different
strategies evolved leading to various visible morphologies and

behaviors. Millions of invertebrate species exist in contrast to
only 45 000 vertebrate species. Among such an enormous variety
of animal species one can expect to find original systems/ 
mechanisms with putative benefits for human health.

It is the immune system that plays a major role in determining
host fitness in the wild, i.e. under the constraints imposed by
ecology and life history. But immune responses are costly and
theory predicts when a host should switch between constitut-
ive (e.g. pre-existing phenoloxidase cascade) and inducible
(e.g. antimicrobial peptides or AMPs) defenses, or when they
should combine those defenses (1). In addition, genetic varia-
tions for resistance to pathogens are high and immune genes
appear to evolve relatively rapidly (2). Most of our knowledge
on the functionality of invertebrate immune systems has been
obtained through laboratory-based observations, most of the
time in the absence of true pathogens. The link with natural
forces that drive evolution of those genes in natural
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populations is still missing and it constitutes the rapidly
expanding field of ecological immunology (3).

Permanent conflict interactions with the environment are the
natural situation for a living creature. To partially resolve this,
the immune system evolved and is characterized by an enormous
variety of mechanisms and effectors, including the AMPs,
although their specificity is poor. In fact, AMPs are universal
and extremely successful in dealing with a huge range of
pathogens, including bacteria, fungi, protozoa and viruses (4).
However, AMPs differ widely in amino acid sequence and 3D
structures. Classically, they are arranged in three to five classes
(5,6). Activity of AMPs is generally restricted to one type of
target, i.e. insect defensins, diptericin, drosocin and attacin
(see 7 for review), drosomycin (8), mollusc mytimycin (9) and
myticin (10). Some of them are multipotent, i.e. ceratotoxins
(11), mytilins (12), metchnikowin (13) and cecropins (14). All the
previous peptides possess a positive surface charge, i.e. they
are cationic. Some others are anionic, i.e. lung lavage fluid
(15) and ovine pulmonary surfactant (16) with still unknown
modes of action. Some others are released from the cleavage
of macromolecules, i.e. lactoferrin (17), hen ovotransferrin
(18) and crustacean hemocyanin (19).

Whatever their commercial names, all the antibiotics we
used have been derived from a restricted number of proteins
with only slight differences introduced into the frameworks.
Systematic use and abuse of antibiotics have selected for
multi-drug resistant bacteria. The number and danger of such
adapted bacteria are already a major public health problem. We
rapidly need new antibiotic molecules possessing original
modes of action that pathogens cannot adapt to. It is the
purpose of this report to present one solution derived from
marine invertebrate AMPs. We previously reported antibacter-
ial and antifungi activities (20) of fragments derived from
mussel defensin structure (21). It is the purpose of this report
to extend such activities to protozoa and virus, In addition,
cytotoxicity towards mammal cells was evaluated.

Subjects and Methods

Truncated and Variant Fragments Defensin

Among the 19 fragments previously reported by Romestand
et al. (20) for their antibacterial and antifungi activities, we
selected three fragments of nine amino acids (B, D and E) and
two fragments of 19 amino acids (P and Q). Fragments D and
P were the counterparts of fragments B and Q including two
more positive charges each (Fig. 1). Fragment E was an open
fragment B.

Cytotoxic Assay

Human Hela MAGIC-5 cells were incubated with fragments at
100 �M. Toxicity was evaluated after 48 h at 37�C by measur-
ing the optical density of the culture at 570/690 nm using the In
Vitro Toxicology Assay Kit (Sigma), based on reduction of the

yellow tetrazolium salt MTT into purple formazan crystals by
mitochondria of active cells, as reported by Hansen et al. (23).

Antiprotozoan Assay

Frozen stabilates of Trypanosoma brucei Antat1.1 were
expanded in Balb/c mice (IFFA Credo). Four to five days 
post-infection, animals were exanguinated on heparin, and
parasites were purified by DEAE–cellulose (DE52, Whatman)
chromatography in PSG buffer (8.45 g/l Na2HPO4, 0.43 g/l
NaH2PO4, 2.13 g/l NaCl, 8 g/l glucose, pH 8.0). Trypanosoma
brucei samples (2 � 105 in 100 �l PSG) were dispensed, in
triplicate, in 96-well plates containing 100 �l of serial
dilutions of mussel peptides and incubated at 29�C. Living
parasites were counted microscopically under contrast phase at
indicated times.

Frozen stabilates of Leishmania major were injected in the
footpad of Balb/c mice. Four days later, popliteal lymph nodes
were collected, gently scratched and put in culture in RPMI
1640 containing 10% fetal calf serum. Trypomastigotes were
allowed to grow in vitro at 29�C, regularly refreshing the
medium. Leishmania major were resuspended in RPMI–10%
fetal calf serum, and the killing assay was performed as
described for T. brucei, with the exception that the experiments
were performed in RPMI–10% fetal calf serum.

Antiviral Assay

We used a simple phenotypic assay for drug susceptibility
of human immunodeficiency virus type-1 (HIV-1) using a
CCR5 and CXCR4-expressing HeLa/CD4� cell clone, named
MAGIC-5B (24). One day before the assay, 50 000 MAGIC-
5B cells in 880 �l Dulbecco’s Modified Eagles’ Medium
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Figure 1. Structure of fragments and variant analogues with special mention
of disulfide bond(s) and replacements by lysines. Amino acids are expressed
with one-letter codes: C, cysteine; S, serine; K, lysine. Drawings are from the
sequences reported by Romestand et al. (20).



(DMEM, Gibco) containing 10% fetal calf serum, were added
to each well of a 24-well microtest plate and incubated at 37�C
under 95% air–5% CO2. For the assay, 100 �l of a 10� stock
solution of the fragment in DMEM were added to the cells and
incubated for 15 min at 37�C. After gentle washing to remove
excess of fragment, 20 �l aliquots of HIV-1 solution, corre-
sponding to 80 000 c.p.m., were added. Alternatively, fragment
solutions were incubated for 15 min with HIV-1 before addi-
tion to the cells, without washing of fragment excess. 
�-Galactosidase enzyme assay with Reporter lysis buffer
(Promega, France) was used according to the manufacturer’s
instructions. Briefly, MAGIC-5B cells were incubated for 72 h
at 37�C, lysed by addition of 1 ml assay 2� buffer which con-
tained the substrate ONPG (o-nitrophenyl-�-D-galactopyra-
noside). Samples were incubated for 30 min to allow
�-galactosidase to hydrolyze the colorless substrate to yellow
o-nitrophenyl. Reaction was stopped by addition of 50 �l of 1
M Na2CO3. Absorbance at 420 nm was measured in an
enzyme-linked immunosorbent assay reader (Multiskan
Labsystems Bichromatic). Incubations with untreated HIV-1
(maximum infestation) in the presence of 10 �M AZT (used as
inhibitor of infection) were used to verify the functionality of
the assay. Except when indicated, combinations were carried
out in triplicate and entire experiments were performed twice.

Statistics

Results are expressed as arithmetical mean � SEM of at least
triplicates from one experiment (see Fig. 3) or from between
two and five independent experiments. Statistical significance
of differences was established by Student’s t-test with 
P � 0.015.

Fluorescence Detection of Fragments B and D

Biotin tagged fragments B and D were from Romestand et al.
(20). Purified T. brucei were maintained in Eppendorf tubes in
an ice bath throughout the procedure. Parasites (106 in 40 �l)
were incubated for 30 min in an ice bath in PSG containing
10% normal mouse serum prior to adding biotinylated
fragment B or D (10 �M final, in 40 �l). After 40 min, the par-
asites were washed twice in large volumes of PSG containing
10% normal mice serum (1400 r.p.m., 3 min) and fixed for 1 h
in PBS containing 3% formaldehyde, 0.5% glutaraldehyde.
After two washes in PSG containing 1% bovine serum
albumin (BSA), streptavidin-FITC (7.5 �M final, Sigma) was
added for 1 h. Observations were done after three washes
in PSG containing 1% BSA with a Nikon ECLIPSE E600
fluorescence microscope equipped with phase contrast.

Results

Antiprotozoan activity

Among the tested defensin fragments, only fragments D and
P were able to kill in vitro T. brucei (Fig. 2). As little as 1.5 �M
of fragment D killed 17.1 � 0.9% of the parasites after 2 h of
contact at 29�C. Furthermore, 89.3 � 1.9% of the parasites
were killed by 25 �M of fragment D. Fragment P was also
toxic, but to a lesser extent, as only 1.6 � 0.6% of T. brucei were
killed by 1.5 �M (P � 0.0001) and 70.3 � 1.4% by 25 �M 
(P � 0.0001). Such differences in the killing capacity was statis-
tically highly significant at all concentrations, except the lowest
values for which killing was non-existent (0.4 �M) or mar-
ginal (0.8 �M). The killing capacity was reflected by the
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Figure 2. Antiprotozoan activity of truncated defensins. Trypanosoma brucei were incubated in vitro for 2 h at 29�C in survival medium in the presence of various
fragment concentrations. Leishmania major were incubated for 24 h at 29�C in growing medium containing various fragment concentrations. Percentages of killing
or percentages of growth inhibition were determined upon microscopic examination. Values are arithmetic means of three replicates of at least three independent
experiments � SEM (bars). For T. brucei, the difference between D and P values are statistically extremely significant (P � 0.0001) except for 0.4 and 0.8 �M.
For L. major, the difference between D and P values are at least significant (P � 0.01 for 50 �M) except for 1.5 �M (P � 0.37). Dotted lines are for ID50.



respective ID50 values: 4 �M for fragment D compared to 12 �M
for fragment P. All the other tested fragments were not toxic for T.
brucei, with the exception of fragment B at the highest concen-
tration tested: 3.3 � 1.6% killed at 50 �M.

When tested against L. major in vitro, again fragment D
appeared as the most active. After 24 h of contact with
parasites at 29�C, 6.2 �M of fragment D induced 39.0 � 2.3%
of killing whereas 100 �M induced 97.6 � 1.4% of killing
(ID50 12 �M). Concomitantly, 8.6 � 2.9% (P � 0.0012) of
killing was observed with 6.2 �M of peptide P and 70.0 �
4.5% (P � 0.0045) with 100 �M (ID50 45 �M) (Fig. 2). No
activity was noted with fragment B, even at 100 �M. Only
marginal mortality was observed with 100 �M of fragments E
(3.6 � 0.6%) and Q (9.0 � 4.5%).

Kinetics of T. brucei Killing

The kinetics of in vitro killing of T. brucei were investigated in
the presence of several molarities of fragments D and P. At all
concentrations, the difference in killing activity of fragments D
and P could not be overcome by increasing incubation times
up to 6 h. This is illustrated in Fig. 3 which shows killing activ-
ity in the presence of 3.1 �M of fragments D and P. As early
as 1 h after contact with fragment D, killing was 5.5 � 2.5%,
reaching 39.5 � 1.5% after only 2 h. At that time, fragment P
induced 14.1 � 1.6% of mortality, a highly significant differ-
ence (P � 0.0001). Between 2 and 6 h, the slopes of the two
killing curves appeared parallel, reaching 53.0 � 2.0% for
fragment D at 6 h and 31.0 � 2.0% for fragment P (P �
0.016).

Temperature Effect

To investigate whether the defensin fragments needed to be
internalized by T. brucei in order to exert their activity, killing
was measured after 2 h incubations at 4, 17 and 29�C in the
presence of fragments D and P at a range of concentrations. At
temperature below 17�C, the membrane of trypanosomes
adopts a rigid conformation that impairs phagocytic processes
including endosome/lysosome fusion (25). Results indicated
that incubation at 4�C efficiently impaired the ability of frag-
ments D and P to kill the parasites (Fig. 4), suggesting that
membrane fluidity is required for peptides to be active and
that general cytotoxicity is highly improbable. The difference
between 4 and 17 �C was statistically significant at 0.8 �M
of fragment D (P � 0.0001) and 4 �M of fragment P 
(P � 0.0015). With the exception of 100 �M of fragment D,
killing observed at 29�C was always statistically higher than at
17�C. At all tested temperatures and with all concentrations,
fragment D was more toxic than fragment P, confirming the
data in Figs 2 and 3.
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Figure 3. Kinetics of in vitro killing of T. brucei at 29�C in the presence of 3.1
�M of defensin fragment D and P. Values are arithmetic means of at least three
replicates � SEM (bars). Difference between D and P values are statistically
extremely significant (P � 0.0001) after 2 h and significant (P � 0.016) after
4 and 6 h.
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Figure 4. Effect of temperature on in vitro killing of T. brucei after 2 h incubation with defensin fragment D and P. Results are arithmetic means of three repli-
cates of one experiment. SEM is not indicated as contained within marks. Differences between temperatures are at least statistically significant (P � 0.014) for
fragment D, and at least statistically very significant (P � 0.0048) for fragment P. Only the killing percentages observed with 100 �M of fragment D at 17 and
29 �C and with 0.8 �M of fragment P at 4 and 17 �C were not statistically different.
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Membrane Binding

Possible interaction between defensin fragments and T. brucei
membranes was visualized by fluorescence microscopy. We
controlled that antiprotozoan capacity of biotinylated frag-
ments B and D were not significantly different from untagged
fragments, revealing that biotinylation did not alter such
capacities. When parasites were incubated with biotinylated
fragments, the entire surface of T. brucei was labeled so that
peptides did not bind to a specific location, such as the flagel-
lar pocket (Fig. 5). Surprisingly, labeling observed with both
fragments B and D were similar, even though only fragment D
killed the parasites. We controlled so that the FITC-labeled
streptavidin used to detect the bound defensin fragments did
not bind to T. brucei (Fig. 5) and had no toxic effect on viabil-
ity of parasites at least over 2 h at 29�C (not shown).

In Vitro Prevention of Viral Infection

In addition to antiprotozoan activity, we were interested in putative
interference of defensin fragments with virus infestation. When

infected by untreated HIV-1, MAGIC-5B cells were able to
metabolize the ONPG substrate, giving measurable absorption
at 420 nm. Such absorption was dramatically reduced by ~70%
when viruses were pre-incubated with 20 �M of fragment Q or
P (Fig. 6). No significant inhibition was observed with 10 �M
of fragment Q or P. In addition, fragment B, D and E were not
inhibitory, even when tested at 20 �M. Interestingly, when the
MAGIC-5B cells were incubated with the same fragments,
washed, then submitted to HIV-1 infection, no inhibition was
observed (Fig. 6). We controlled such that 20 �M of peptide was
not toxic for MAGIC-5B cells, at least up to 100 �M of frag-
ments B, D, E, P and Q over 48 h at 37�C. In addition, the well-
known inhibitor AZT used at 10 �M totally suppressed HIV-1
infection.

Discussion

Antiprotozoan activity of defensin fragments was evaluated on
the African trypanosome T. brucei which belongs to the genus
that causes sleeping sickness, and on L. major that causes
cutaneous leishmaniasis. Our data show that two of the five

Streptavidin-FITC Fragment B, 10 µM               Fragment D, 10 µM

x 100 x 100 x 200

Figure 5. Binding of biotinylated defensin frag-
ment B and D (10 �M) on T. brucei. Note that
FITC-labeled streptavidin did not bind to the tar-
gets.

Figure 6. Interference of defensin fragments Q, P,
B, D and E with infection of MAGIC-5B cells by
HIV-1 compared to AZT inhibitory effect. Results
are from one of two independent experiments and
presented as arithmetic mean values � SEM
(bars) of triplicates. Stars indicate extremely sig-
nificant difference (P � 0.0001) with infection by
HIV-1 alone. Note that fragment P was tested
three times but only in mixture with cells and
virus, without washing of excess fragment.

Cells + fragments, then virus           Virus + fragments, then cells



tested fragments derived from mussel defensin efficiently
killed T. brucei and L. major in a time/dose-dependent manner.
Differences in ID50 (4–12 �M for T. brucei versus 12–45 �M
for L. major) can be due to the fact that experiments were
performed in a survival medium for trypanosomes and in a
growing medium for L. major. Dose–response curves of frag-
ments D and P were parallel, with stronger killing capacity of
fragment D. This stronger and faster activity of fragment D
was confirmed by kinetic curves and by the effects of temper-
ature during incubation. As revealed by observation of fluores-
cence, fragments bind to parasite membranes and fluidity of
these membranes appears to be crucial as incubation at 4�C
significantly impaired the ability to kill trypanosomes. In addi-
tion, and with the exception of the 100 �M concentration,
killing was higher at 29�C compared to 17�C, suggesting that
fusion endosome/lysosome is required to display killing.

Fragments D and P are the counterparts of fragments B and
Q, with the addition of two positive charges located at loop 3.
The presence of these extra charges appears to be fundamental
for both antiprotozoan and antiviral activities as has been
reported for antibacterial activity (20). Both fragments B and
D bound to parasite membranes, suggests that to be positively
charged is a condition sufficient to bind to the membrane.
Activity appeared to be related to peptide size as fragment
D (nine amino acids) is much more efficient than fragment P
(19 amino acids) on protozoa. It is well known that AMPs act
at the membrane level, by inserting into the phospholipid
bilayer. The better activity observed with fragment D might be
due to its small size, favoring penetration into the parasite
membrane. Concerning antiviral activity, correlation between
size and activity seems to exist as fragment Q was active in
contrast to fragment B. Increasing the net positive charge
(from Q to P and from B to D) did not result in better activity.
In all cases, activity of fragments B and E was marginal and
not sufficient to confirm the importance of folding as demon-
strated with bacteria (20).

The present paper provides evidence that truncated AMPs
act on structurally different targets: protozoa and viruses.
Compared to numerous reports on antibacterial activity of
AMPs, including truncated mussel defensin (20), there are few
reports of antiviral or antiprotozoan activity. Recently, another
mussel AMP, mytilin, has been reported as preventing in vivo
viral infection due to interference between the virus (White
Spot Syndrome Virus) and the peptide (26). Generally, anti-
viral activity is at the very early stages of viral multiplication
as for melittin (27,28), synthetic magainin derivatives (29) and
dermaseptins (30). Putative mode of action is by suppressing
viral gene expression as for melittin and cecropin (31) or by
binding to gp120 and CD4 as for retrocyclin (32).

Different effector structures are active on various target struc-
tures. We report here that a sequence of only nine amino acids
can kill both Trypanosoma and Leishmania. Longer sequences of
18 amino acids (protegrin-1), 29 amino acids (cathelicidins) or
30–50 amino acids (	-defensins) have been reported as killing
both insect and bloodstream forms of T. brucei (33). Action of

cathelicidins involves disruption of parasite membrane integrity,
which is in agreement with our observation of parasite labeling.
Meanwhile, effects were observed with 5 �M (on procyclics) to
25 �M (on bloodstream forms) and routine experiments engaged
25–50 �M, compared to 3 �M in our experiments with truncated
nine-amino-acid defensin. Concerning the antivirus activity, a
longer sequence of 19 amino acids seemed necessary to prevent
infection. This is in agreement with Dupuy et al. (26) who
reported antiviral activity of mytilin (39 amino acids) but not of
a 13 amino acid folded fragment. Minidefensins of 16–18
residues (out of 30–45) with net positive charge, �-sheet
structure and intramolecular disulfide bonds have also been
reported as capable of preventing in vitro HIV-1 infection (33).
The question is, how can a simple structure be active on multiple
target structures? Several models have been constructed to
explain modes of action at the cell membrane level (35,36).
But some authors have suggested that AMPs penetrate cells and
also act inside the cytoplasm (37,38). Adding the antivirus
activity made a unique mode of action highly improbable.

Even if short amino acid sequences were reported for potent
activity towards various targets, the definition of a unique
motif to be employed as universal killer is probably too
optimistic. In contrast, more sophisticated peptides that
combine the products of two genes have been reported (39)
and one can think about chimeric peptides constructed by
association of several active sites from different peptides, thus
increasing the target spectrum. We must also consider the
possible in vivo increase of in vitro activity by synergistic
effects with other innate immune mechanisms such as phago-
cytosis, self antimicrobial peptides and free radicals. It is most
probable that, in the near future, new antibiotic generations
will be used to complement an association with classical anti-
biotic molecules.

Introducing a single bacteria species into Drosophila
resulted in the up-regulation of more than 350 genes, most of
them being unknown or having no immune-related functions
(40). Constructions of expressed sequence tag (EST) libraries
following challenges, released panels of immune-related
genes, the vast majority with only potential immune function
in shrimp (41), oysters (42,43) and mussels (44). Consequently
(i) most of the mechanisms triggered by a microorganism are
unknown, (ii) the immune system is not the only one responding
to introduction of foreign material and (iii) complex interac-
tions between several physiological functions must occur.

Immune research focuses on polypeptide structures, relying
on genetic sequences. However, recognition is also mediated
by carbohydrate moieties, sometimes combined with lipids,
which constitute the usual external barriers. This is particularly
the case for protozoan parasites and bacteria with the crucial
role of LPS. In addition, an enormous variety of molecular
structures, mostly cyclic, isolated from marine environments
have been reported to exert anti-infectious activity (45) and to
affect the cardiovascular, immune and nervous systems (46).
Some active compounds are as simple as iron (47) or free
radicals (48). Consequently, the ribosomally synthesized

172 Activities of truncated mussel defensin



peptides involved in immune mechanisms must not be con-
sidered separately, but combined with all the other molecular
moieties employed by living creatures to ensure a more sophis-
ticated picture.
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