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1 | INTRODUCTION 1995). Most of the heritable deafness is inherited by an au-

tosomal recessive pattern. Autosomal dominant, X-linked,
Deafness (or hearing loss) is a disease characterized by mitochondrial, and digenic inheritance were also observed in
partial or total inability to hear. It can be inherited (Duman heritable deafness. More than 100 genes have been identified
& Tekin, 2012; Meena & Ayub, 2017; da Silva & Duarte, in heritable deafness. Targeted next-generation sequencing
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enabled us to efficiently screen mutations in several deafness
genes compared to PCR-based Sanger sequencing (Lin et al.,
2012; Yang et al., 2013). It evolutionarily improves the clin-
ical diagnosis rate of heritable deafness (Shearer & Smith,
2012; Vona et al., 2014). Several studies showed that it is
an efficient tool to identify causative genes in deaf patients
(Miyagawa et al., 2013, 2015). Different cultures, ethnicities,
and living environments lead to various genetic backgrounds
in the world (Donovan, 1984). Yunnan province, a region in
southwestern China, has a higher attitude compared to other
plain areas of China. The populations in this region might
have their unique features, and the molecular epidemiology
of deaf patients here is still unclear now.

In the present study, a panel containing 127 deafness
genes was generated. These genes were associated with non-
syndromic, syndromic, and mitochondrial deafness. Eighty-
four deaf patients were subjected to 127 deafness genes
sequencing. We aimed to preliminarily analyze the molecular
epidemiology of deaf patients from southwestern China.

2 | MATERIALS AND METHODS
2.1 | Statement of ethics, patients, and DNA
preparation

Peripheral blood samples of deaf patients were collected
in First People's Hospital of Yunnan Province from 2016
to 2019. The study was approved by the Ethics Committee
of First People's Hospital of Yunnan Province (Affiliated
Hospital of Kunming University of Science and Technology).
Each patient in this study signed informed consent. By
E.Z.N.A.® Blood DNA Kit (cat. no. D3392-02; Omega Bio-
tek, Inc.), genomic DNA was extracted from the peripheral
blood leukocytes.

2.2 | Targeted sequence capture and high-
throughput sequencing

One hundred and twenty-seven deafness genes (Table S1)
were sequenced and captured in this study. The experimental
procedures were referred to our previously published article
(Li et al., 2016; Li et al., 2019). Briefly, probe capture pan-
els (Roche NimbleGen Inc.) were designed for 127 deafness
genes, and total size for targeted regions (exons, splicing
sites, and immediate flanking intron sequences of 100 bp)
was 619167 bp. DNA was fragmented, and the fragmented
DNA was end-repaired and ligated to the adapter oligonu-
cleotides. After that, PCR was used to make a library preen-
richment amplification. The qualified libraries were used for
the capture of fragments of 127 genes. The capture of 127
genes was performed according to the NimbleGen capture

protocol. The captured fragments were further sequenced by
HiSeq 2500 Analyzers (Illumina).

2.3 | Data filtering, read mapping, variant
detection, and analysis pipeline

Data filtering, read mapping, and variant detection were
based on our previous descriptions (Li et al., 2016). Briefly,
following the Illumina Pipeline (version 1.3.4), primary data
were achieved after image analyses, error estimation, and
base calling. Data were further filtered, and clean reads were
kept. Clean reads were aligned to the UCSC hg19 reference
genome by the BWA (Burrows-Wheeler Aligner) Multi-
Vision software package. SOAPsnp software (Li et al., 2009)
and GATK Indel Genotyper (http://www.broadinstitute.org/
gsa/wiki/index.php/, The Genome Analysis Toolkit) were
used to detect SNPs (single-nucleotide polymorphisms) and
indels (insertion-deletions).

Missense, indel, nonsense and splice-site variants in
each patient were selected out and screened for quality. The
frequency of these variants was further referred to 1000
Genomes public variant databases, dbSNP, and ExAC da-
tabases. The known disease-causing mutations were deter-
mined by the HGMD database (Stenson et al., 2014).

2.4 | Molecular modeling

Amino acids sequences of candidate causative genes were re-
ferred to the GenBank database. 3D protein structure of can-
didate pathogenic genes was modeled by RaptorX web server
(Wang et al., 2016). PyYMOL was used to view 3D structure
of proteins which was constructed by RaptorX. Structure of
mutated and wild-type protein was compared.

3 | RESULTS

Total of 84 deaf patients participated in this study, includ-
ing 70 simplex probands and 14 multiplex probands. They
are clinically diagnosed with deafness. Environmental causes
were excluded in these patients. Most of them were con-
genital profound deafness (>95 dB). Of these patients, two
patients were diagnosed with Charge syndrome and Usher
syndrome 1B, respectively.

Patients participated in this study were previously
screened by common mutations in GJB2 gene, includ-
ing c.35delG, c.109 G>A, c.167delT, c.176_191dell6,
¢.235delC and ¢.299_300delAT. Only the negative patients
of GJB2 common mutations were subjected to 127 deafness
genes sequencing. The lists of genes are shown in Table S1.
The targeted region was 619167 bp. Sequencing data showed
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high quality. The average sequencing depth was approxi-
mately 200 X. Several variants were detected in each patient,
including SNPs and indels. In further data analysis, variants
with minor allele frequency (MAF)>0.01 were filtered out.
Subsequently, nonsynonymous and splicing site variants
were selected out for the next data analysis. Splicing site
variants located in 100 bp upstream and 100 bp downstream
of the exon—intron or intron—-exon boundary. At last, candi-
date pathogenic variants were identified by combining anal-
ysis of genotype and clinical phenotype of each deaf patient.
According to the ACMG guideline, candidate variants were
defined as “pathogenic,” “likely pathogenic,” *
known significance (VUS),” “likely benign,” and “benign.”
In total 84 deaf patients, we did not find any pathogenic
variants in 14 patients (16%). In other 74 patients (84% of
total patients), we found candidate pathogenic variants which

variants of un-

N
(a) identiﬁ:atiun

Unsolved 2

52.9%
asza) |

Solved patients/Total patients: 36/84, 42.9%
Unsolved patients/Total patients: 34/84, 40.5%

(b)
14
12 mSolved  m Unsolved
10
8
6
4
z | |
0..-.. mn Illll- HEm III...I EEEEEE®
ShIg8gg83sdiQEggigaesdssioggereeigsggs
(e) 01
0.09
008
0.07
0.06
'ybv“ & &
FIGURE 1

—WILEY——

[Open Access]

were directly or possibly associated with phenotypes of pa-
tients, as shown in Figure la. Both monogenic and digenic
deafness were considered during analysis. Candidate patho-
genic variants could be classified as three inheritance modes:
autosomal dominant, autosomal recessive, maternally in-
herited (mitochondrial). Digenic inheritance of deafness
was not observed in our deafness patients. Subsequently,
based on the descriptions by Yan et al., (2016), we classi-
fied deaf patients harboring candidate variants as “Solved”
and “Unsolved” groups, respectively. “Solved” patients were
caused by “pathogenic” or “likely pathogenic” variants,
while “Unsolved” patients harbored at least one “VUS” vari-
ant. The percentage of “Solved” and “Unsolved” deaf pa-
tients was 51.43% (36/70) and 48.57% (34/70), respectively.
In multiplex families, the solved rate in the patients’ group of
“Solved” and “Unsolved” were 36.11% (13/36) and 20.59%
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(a) Percentage of patients in “Solved” and “Unsolved” groups. (b and c). Candidate causative genes in “Solved” and “Unsolved”

groups. The number of patients was annotated in each gene group. (d and e) Candidate causative genes in “Unsolved]” and “Unsolved2” groups.

The number of patients was annotated in each gene group.
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(7/34), respectively. “Unsolved” deaf patients were divided
into two groups: “Unsolved 17 and “Unsolved 2.” Deaf
patients in “Unsovledl” group harbored candidate patho-
genic variants that could possibly explain their pathology.
Candidate pathogenic variants identified in “Unsolved2” pa-
tients could not possibly explain their pathology. Some spe-
cific candidate pathogenic variants in “Unsolved” patients of
multiplex families are highlighted in Table 2. Compared with
simplex families, these variants in multiplex families were
more likely to be associated with deafness.

In the “Solved” group, most of the causative genes were
SLC26A4 and MT-RNRI1 (Table 1 and Figure 1b,c). Other
causative genes were also identified, like MYO7A, SOX10,
CHD7, etc. Nine patients were caused by mutations in the
SLC26A4 gene. SLC264 ¢.919-2A>G was a frequent muta-
tion. Eight patients were caused by the MT-RNR1 gene, all
of them were caused by homogeneous m.1555A>G muta-
tion. Two patients were caused by compound heterozygous
mutations in the MYO7A gene. Mutations were ¢.1679A>C,
c.6115G>C, ¢.2183T>C and ¢.2187 +2_+8 delTGAGCAC.
Two patients harbored mutations in OTOF gene. Other pa-
tients were caused by each one different gene. There were
two patients with syndromic deafness in “Solved” patients.
They were Charge syndrome and Usher syndrome 1B, re-
spectively. A patient with Charge syndrome harbored CHD7
¢.1714C>T mutation. Compound mutations of MYO7A
c.1679 A>C and c.6115 G>C were identified in a patient
with Usher syndrome 1B.

In the “Unsolved” group, we found 21 possibly caus-
ative genes (Table 2 and Figure 1D,E), including MYO7A,
DIAPH3, PDZD7, OTOF, SLC26A4, GPR98, etc. In the
dominant inheritance model, we found candidate pathogenic
variants in COCH, DIAPHI1, DIAPH3, MYH14, MYHO9,
MYO1A,MYO6, MYO7A, POU4F3, PTPRQ, and SLC17A8
genes. In the recessive inheritance model, candidate patho-
genic variants were identified in GJB2, ADGRV1, LOXHDI,
MYO15A, OTOF, PDZD7, SLC26A4, TMC1, and TRIOBP
genes. In the mitochondrial inheritance model, m.681T>C
was identified in the MT-RNRI gene. Nonsynonymous
variants were predicted by bioinformatics tools: SIFT and
Polyphen-2. Candidate variants that were predicted to be
both tolerated and benign were GJB2 ¢.471G>A, LOXHDI1
c.977A>G, MYH9 c.1897C>T, SLC26A4 c.2110G>A,
TMCI1 ¢.373A>C, and TRIOBP ¢.4442C>T. Four patients
were associated with the MYO7A gene. PDZD7 ¢.490C>T,
a recurrent pathogenic variant, was identified in two deaf pa-
tients. SLC26A4 ¢.290T>G and ¢.599A>G were novel likely
pathogenic variants.

To further analyze candidate pathogenic variants classi-
fied as “VUS,” the 3D protein structure of each mutant were
constructed by Raptor X web server, as shown in Figure S1.
ADGRV1 p.Leu4546His, LOXHD1 p.Asn326Ser, MYO15A
p.Gly1318Ser, MYO7A p.Thr381Met, TMC1 p.Lys125GIn

might result in alteration (increase or disappearance) of hy-
drogen bonds. PDZD7 p.Arg164Trp, TMC1 p.Glu483Asp,
MYO7A p.Arg853His might lead to the adaptation of a-
Helix or pB-sheet. GIB2 p.Met1571le, MYO7A p.Pro541Leu,
OTOF p.Thr597Met, OTOF p.Arg1583Cys might not have
an influence on hydrogen bonds, a-Helix, and p-sheet. We
could not analyze some candidate pathogenic variants, like
TRIOBP p.Ser1481Phe, since we could not generate the
3D protein structure of its corresponding wild-type protein.
Representative 3D protein structure of candidate pathogenic
variants in SLC26A4, MYO7A, and PDZD7 genes is shown
in Figure 2.

Generally, autosomal dominant, autosomal recessive, and
maternally (mitochondrial) inheritance were observed in our
cohorts of deaf patients. Candidate pathogenic variants were
identified in 34 deafness genes, like SLC26A4, MT-RNRI,
MYO7A, OTOF, and PDZD7 genes.

4 | DISCUSSION

In the present study, by high throughput sequencing of 127
deafness genes, we aimed to preliminarily analyze causative
genes of Southwestern China in a cohort of 84 deaf patients
from Southwestern China. The deafness genes in this area
were rarely studied. In addition to GJB2, SLC26A4, and MT-
RNRI1 genes (common deafness genes), we found candidate
pathogenic variants in 34 deafness genes, like MYO7A,
PDZD7, and OTOF genes.

In our cohorts of deaf patients, we found 34 genes related
to deafness (Tables 1,2). The number of “Solved” patients
was 34, while that of “Unsolved” patients was 36. The per-
centage of “Unsolved” patients in total deaf patients was
higher than that of “Solved” patients. “Unsolved” patients
harbored “VUS” and “likely benign” variants. Some of
these variants had no allele frequency data in 1000 Genome
(Clarke et al., 2012) and ExAC databases. It might be caused
by genetic background differences. Altitude is closely related
to oxygen density. In the present study, patients were all from
Yunnan province, China. The average altitude of Yunnan
province is higher than the coastal areas of China. It might
lead to genetic background differences between people liv-
ing in coastal areas and Yunnan province. This might be an
explanation for the identification of several “VUS” variants
in our cohorts of deaf patients. Several studies have shown
that people in different regions have different genetic back-
grounds, especially for ethnicities (Liu et al., 2002; Manzoli
et al., 2016; Miyagawa et al., 2013; Yan et al., 2016). This
suggested that allele frequency database of deafness genes in
local people should be established. It might be very helpful.
In addition, functional studies should be performed on some
recurrent candidate pathogenic variants, like PDZD7 ¢.490
C>T.
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FIGURE 2 Three-dimensional (3D) protein structure prediction and analysis of mutants in genes, like SLC26A4 (a), MYO7A (b), and PDZD7
(c) genes. These genes were shown to contain variants of unknown significance (VUS) in the present study. Hydrogen bonds were predicted by

PyMOL software and shown in yellow dotted lines. a-Helix and p-sheet were colored as blue and red, respectively.

GJB2, SLC26A4, and MT-RNRI1 genes have been iden-
tified in Chinese deaf patients of different regions (Chan &
Chang, 2014; Lu et al., 2010; Shen et al., 2011; Tsukada
etal., 2015). They are thought to be common deafness genes

in Chinese. The distributions of uncommon deafness genes
are still unclear in different populations and regions. In the
study of uncommon deafness genes by Yan et al., (2016),
MYOI15A, USH2A, MYO7A, MYO6, and TRIOBP were
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their most identified genes. The results of the present study
might have some difference from that of Yan et al., (2016).
Although we also identified the MYO7A gene in our co-
horts of deaf patients, the frequency of other candidate caus-
ative genes in our deaf patients was different from that of
Yan et al., (2016), like OTOF, PDZD7, and DIAPH3 genes.
The result suggested that the distribution of deafness genes
might have its features in deaf patients from Southwestern
China. The conclusion needs to be further confirmed, since
the sample size was limited in the present study. In addition,
candidate pathogenic variants in multiplex families were not
tested in affected family members, since we were not able to
collect their samples. It was another limitation of the present
study.

Heritable deafness is a complicated disease. More than
200 deafness genes have been reported (Angeli et al., 2012;
Liu et al., 2006; Petersen, 2002). Here, 127 deafness genes
screening was applied to 84 deaf patients from southwest-
ern China. Only half of the deaf patients (“Solved” patients)
could be clearly diagnosed. Therefore, 127 deafness genes
screening had its limitation in clinical application.

By 127 deafness genes screening, no candidate patho-
genic mutations/variants were detected in 14 deaf patients.
Whether these patients harbored other pathogenic mutations
was still unknown. Whole-exome/genome sequencing has
been widely used to identify uncommon deafness genes (Berg
et al., 2011; Choi et al., 2009; Ormond et al., 2010; Yang,
Muzny, et al., 2013). To further explore molecular pathology
of these patients, whole-exome/genome sequencing might be
very effective. Our results also indicated the possibility that
some deaf patients from southwestern China might be caused
by other deafness genes. It should be further explored.

In summary, the present study provided a preliminary
overview of the spectrum of mutations in deaf patients from
Southwestern China. Thirty-four genes were found to have
candidate pathogenic variants in our cohorts of patients. The
findings will be helpful in the prevention and molecular di-
agnosis of deafness.
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