
METHODS
published: 27 September 2019
doi: 10.3389/frobt.2019.00094

Frontiers in Robotics and AI | www.frontiersin.org 1 September 2019 | Volume 6 | Article 94

Edited by:

Agnieszka Wykowska,

Italian Institute of Technology, Italy

Reviewed by:

Ulysses Bernardet,

Aston University, United Kingdom

Ruud Hortensius,

University of Glasgow,

United Kingdom

*Correspondence:

Sebastian Lammers

sebastian.lammers@uk-koeln.de

Specialty section:

This article was submitted to

Humanoid Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 23 February 2019

Accepted: 13 September 2019

Published: 27 September 2019

Citation:

Lammers S, Bente G, Tepest R,

Jording M, Roth D and Vogeley K

(2019) Introducing ACASS: An

Annotated Character Animation

Stimulus Set for Controlled (e)Motion

Perception Studies.

Front. Robot. AI 6:94.

doi: 10.3389/frobt.2019.00094

Introducing ACASS: An Annotated
Character Animation Stimulus Set for
Controlled (e)Motion Perception
Studies
Sebastian Lammers 1,2*, Gary Bente 3, Ralf Tepest 1, Mathis Jording 2, Daniel Roth 4 and

Kai Vogeley 1,2

1Department of Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,
2Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany,
3Department of Communication, Michigan State University, East Lansing, MI, United States, 4Human-Computer Interaction,

Institute for Computer Science, University of Würzburg, Würzburg, Germany

Others’ movements inform us about their current activities as well as their intentions

and emotions. Research on the distinct mechanisms underlying action recognition and

emotion inferences has been limited due to a lack of suitable comparative stimulus

material. Problematic confounds can derive from low-level physical features (e.g.,

luminance), as well as from higher-level psychological features (e.g., stimulus difficulty).

Here we present a standardized stimulus dataset, which allows to address both action

and emotion recognition with identical stimuli. The stimulus set consists of 792 computer

animations with a neutral avatar based on full body motion capture protocols. Motion

capture was performed on 22 human volunteers, instructed to perform six everyday

activities (mopping, sweeping, painting with a roller, painting with a brush, wiping,

sanding) in three different moods (angry, happy, sad). Five-second clips of each motion

protocol were rendered into AVI-files using two virtual camera perspectives for each

clip. In contrast to video stimuli, the computer animations allowed to standardize the

physical appearance of the avatar and to control lighting and coloring conditions, thus

reducing the stimulus variation to mere movement. To control for low level optical features

of the stimuli, we developed and applied a set of MATLAB routines extracting basic

physical features of the stimuli, including average background-foreground proportion and

frame-by-frame pixel change dynamics. This information was used to identify outliers

and to homogenize the stimuli across action and emotion categories. This led to a

smaller stimulus subset (n = 83 animations within the 792 clip database) which only

contained two different actions (mopping, sweeping) and two different moods (angry,

happy). To further homogenize this stimulus subset with regard to psychological criteria

we conducted an online observer study (N = 112 participants) to assess the recognition

rates for actions and moods, which led to a final sub-selection of 32 clips (eight per
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category) within the database. The ACASS database and its subsets provide unique

opportunities for research applications in social psychology, social neuroscience, and

applied clinical studies on communication disorders. All 792 AVI-files, selected subsets,

MATLAB code, annotations, and motion capture data (FBX-files) are available online.

Keywords: body motion, experimental paradigms, human interaction, motion capture, non-verbal behavior, social

cognition, visual stimuli

INTRODUCTION

Observations of others’ movements provide important
information about our social environment. Not only do
movements tell us what people are doing or what they intend to
do (Dittrich, 1993; Thompson and Parasuraman, 2012; Cavallo
et al., 2016), they also build the basis for far-reaching inferences
about others’ motivational states, moods, and emotions
(Atkinson et al., 2004; Loula et al., 2005; Chouchourelou et al.,
2006; Gross et al., 2012; Barliya et al., 2013). The cognitive
mechanisms and the putatively distinct neural mechanisms
underlying action recognition on the one hand and emotion
inferences on the other hand are not yet fully understood
(Vogeley, 2017). A limiting factor in previous studies has
been the lack of naturalistic movement stimuli that are free of
confounds and allow for high levels of experimental control (cf.
Bente, 2019). This is a general requirement in motion perception
studies, but particularly crucial for studies in the field of
cognitive neuroscience, where distinct stimulus features that are
not subject to the experimental variation, can contaminate the
observed effects and aggravate their interpretation. Problematic
confounds can derive from low-level physical features, such
as differences in luminance or pixel changes, as well as from
higher-level psychological features, such as differences in the
stimulus difficulty and recognition base rates. The demand for
internal validity, stands opposite to the quest for ecologically
valid social stimuli, which has led to the use of more complex,
real-life samples of human behavior, as captured in video
documents (Bartels and Zeki, 2004; Hasson et al., 2004;
Nishimoto et al., 2011; Lahnakoski et al., 2012; de Borst and
de Gelder, 2015). Beyond the mentioned threats to internal
validity, the disadvantage of video stimuli, in particular those
collected in naturalistic settings, is evident: video documents
usually disclose person variables such as age, ethnicity, gender,
or attractiveness relevant to stereotypes that might interfere with
inferences based on movement (Meadors and Murray, 2014).
Further confounds concern the visibility of context, which has
been shown to massively influence the recognition of bodily
expressions (Kret and de Gelder, 2010). Last but not least, when
falling back on existing media content, such as samples from
TV shows or movies (Hasson et al., 2004; Spunt and Lieberman,
2012; Schmälzle et al., 2015) there is no way to control any of the
visual features and no access to behavioral information of the
actors, except through time consuming coding.

Different methods for stimulus production have been
proposed to preserve the natural movement dynamics while
avoiding the typical issues of video stimuli (cf. Bernieri et al.,

1994) such as the use of point light displays (Johansson, 1973,
1976) or video quantization techniques (Berry et al., 1991, 1992).
However, both methods come along with specific limitations.
Although point-light displays have been shown to carry relevant
information for the recognition of intentions (Manera et al.,
2010) and emotions (Atkinson et al., 2004; Chouchourelou
et al., 2006; Gross et al., 2012; Barliya et al., 2013; von der
Lühe et al., 2016) they can only portray movements but not
postural patterns (see Cutting and Proffitt, 1981), which also
convey relevant emotional information (cf. Aviezer et al., 2012).
Quantization techniques used to degrade video images to rougher
mosaic patterns are restricted as they cannot completely obscure
person characteristics, such as gender and ethnicity (see stimulus
examples in Bernieri et al., 1994). These limitations can be
overcome by using motion capture technologies and hereon
based character animations (cf. Kret and de Gelder, 2010). Such
procedures for stimulus production not only allow to systemically
vary or obscure aspects of physical appearance (Bente et al., 2008,
2010) but also provide rich datasets to analyze the behavioral
variations in the stimuli (Poppe et al., 2014). Importantly, we
could show that character animations (lacking several visible
features) produce similar impressions as videos of the original
human movement they are based on (Bente et al., 2001a,b).

A setback of motion capture and character animation
applications can be seen in the time consuming production
process including marker application and calibration and
particularly the labor intense post-production to clear the motion
data from measurement artifacts and jitter before rendering. To
protect these considerable investments it is reasonable to produce
and publish larger stimulus data sets formultiple (re-)use. Ideally,
these stimulus sets should contain annotations of low-level and
high-level stimulus features, which allow other researchers to
select stimulus subsets tailored to their specific research questions
and methodological requirements. This is particularly true for
brain imaging studies that might require the control of physical
stimulus features such as brightness, contrast or pixel change
dynamics in order to avoid contaminations of low-level sensory
effects and high-level inferential processes. We here introduce
such an annotated stimulus database suitable for the study of
action recognition and emotion inferences in social perception
research and social neuroscience.

Motion capture was performed on 22 human volunteers,
instructed to perform six everyday activities (mopping, sweeping,
painting with a roller, painting with a brush, wiping, sanding)
in three different moods (angry, happy, sad; see Table 1). The
six activities were chosen to be recognizable for the majority
of viewers without specific expertise in contrast to movements
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TABLE 1 | Activities and moods recorded in the motion capture setup.

Activities Moods

1. Mopping 2. Sweeping 1. Happy

3. Wiping a table with a rag 4. Sanding a piece of wood

on a table

2. Angry

5. Painting a wall with a

brush

6. Painting a wall with a

roller

3. Sad

All six activities were performed in three designated recording blocks for each mood.

requiring expert knowledge (e.g., particular dancing styles). Five-
second clips of eachmotion protocol were rendered into AVI-files
using two virtual camera perspectives for each clip, yielding a set
of 792 stimuli. Based on this, we identified an exemplary subset of
clips controlled for low- and high-level confounds: By applying a
MATLAB routine for feature extraction we identified a subset of
83 clips free of outliers and characterized by maximal similarity
of low-level physical stimulus features across actions and moods
(see Figure 1 for an overview). In the next step we conducted
an online observer study to obtain recognition rates for action
and emotion which could serve as high-level psychological
selection criteria for stimulus sets. Applying this data to further
homogenize the stimulus set we ended with a fully balanced
subset of 32 animation clips (eight variations of each of four
possible combinations: two actions × two moods). This specific
subset was prepared for a particular fMRI study that focused on
the differential activation of the action observation network and
the mentalizing system (also called theory of mind system) as
related to action and emotion recognition (Geiger et al., 2019).

The current article introduces the ACASS database
(Annotated Character Animation Stimulus Set) and reports the
details of stimulus generation, the algorithm used for feature
extraction, as well as the exemplary stepwise stimulus selection
procedure leading to the subset(s). The publication includes
the complete database including all animations (N = 792)
annotated with low-level features along with two subsets: (a)
with additional recognition rate annotation (n = 83 animations)
and (b) selected for maximum homogenous and balanced
properties (n = 32 animations). Additionally, we provide the
3D data (FBX-files, N = 396). Readers interested in existing
motion capture databases can refer to Table 2 and the respective
publications mentioned therein.

STIMULUS DATABASE

Performers
We recruited 31 volunteers (17 females, mean age= 25.55, SD=

6.01) via (a) mailing lists of the study programs Psychology and
Neuroscience of the University of Cologne, (b) word of mouth or
(c) publicly visible notices. The volunteers which participated in
the study to produce motion capture data will in the following
be called “performers.” Four performers were excluded due to
technical issues. Five other performers were excluded because
they stated that they did not empathize sufficiently with the
demanded moods during the procedure (see section Instructions

and Recording-Procedures for details), resulting in a total sample
of n= 22 (12 females, mean age= 24.73, SD= 4.84).

All performers were informed about the scientific background
of the envisaged use of their motion capture recordings
as stimulus material and gave informed consent prior
to participation. All performers were either compensated
monetarily (15€) or with credits for participation. Procedures
were approved by the ethics committee of the Medical Faculty of
the University of Cologne.

Instructions and Recording-Procedures
All performers filled out a questionnaire via computer which
included basic demographic information, as well as the following
psychological traits (see Supplementary Data Sheet 1): a short
version of the Big Five Inventory (Rammstedt and John, 2007),
the Toronto Empathy Questionnaire (Spreng et al., 2009), and the
Emotional Intelligence Scale (Schutte et al., 1998). Correlations
between these traits and the subsequent recognition rates (see
section Homogenizing for Recognition Rates) showed that
the personality traits of the performers have no significant
influence on the subsequent recognition rates when presenting
the animations to naïve volunteers (Lammers, 2017).

We selected six everyday household activities (mopping,
sweeping, painting with a roller, painting with a brush, wiping a
table, sanding a piece of wood) in combination with three moods
(angry, happy, sad; see Table 1) to yield animations that contain
information about a specific activity (What is the person doing?)
and at the same time about the underlying mood that the person
was in (How is the person doing it?). The six activities can be
separated in three domains (floor, table, wall) with two pairs of
actions each. For instance, sweeping and mopping (floor) are
not too easily differentiated when shown as wooden mannequin
without the used tool (see Figure 2A).

Each volunteer performed all activities in combination with
the different moods resulting in 18 recordings per performer
(see Table 1). To ensure that the performers execute the
different movements naturally while displaying the different
moods, we used the followingmood induction procedure. Specific
instructions were presented as audio recordings to which the
volunteers listened before each of the 18 recordings. Mood
induction was achieved by an Imagination Mood Induction
Procedure, which is considered to be one of the most effective
ways to induce different moods (for a meta-analysis on mood
induction procedures, see Westermann et al., 1996; a transcript
of the instructions is provided in Supplementary Table 2).

The recordings were organized in three recording blocks
according to the moods: angry, happy, and sad. The order of the
three moods was randomized for each performer, while the order
of activities remained the same in all three blocks. To control
for immersion of the volunteers into the different moods, the
performers’ level of immersion into the demanded mood was
assessed after each recording block via a Likert scale (How well
were you able to empathize with the required feeling?; German:Wie
gut konnten Sie das von Ihnen geforderte Gefühl nachempfinden?)
ranging from 1 (not at all) to 11 (very well). The mean level of
immersion was 9.197 (SD 1.184). Performers’ data as a whole
were excluded from further processing if they responded with a
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FIGURE 1 | This flowchart summarizes the rationale and process of stimulus production (A), annotation (A,C), and selection of the stimulus subsets (B–D).

value equal to or smaller than five for any of the recording blocks
to ensure sufficiently mood-influencedmovements. Additionally,
performers were asked to briefly describe the situation(s), which
they imagined in order to immerse into the different moods.
Directly before the next recording block they were presented with
a 90 s relaxation-video (showing a tree with relaxing background
music) to neutralize the mood.

Technical Setup and Processing
The movements were recorded using an optical motion capture
system with 16 infrared cameras (frame rate = 100Hz) and the
Motive Software (OptitrackTM, NaturalPoint, Inc., Oregon, USA).
After recordings, the 3D-data were processed and rendered using
MotionBuilder R© and Maya R© (Autodesk Inc., California, USA)
to retarget the human movements onto a virtual character in a
virtual scene. We used a virtual character on a black background
that looked like a wooden mannequin without a face, with
detectable gross hand movements but without visibility of the
fingers and the used tools (see Figure 2A).

Light sources and virtual cameras were added to all
recordings in an identical fashion to ensure uniform brightness
conditions. The virtual cameras defined the perspective (position,
orientation, field of view) from which the resulting animation
showed the mannequin. We placed two virtual cameras in each
virtual scene to render the material from both the left-hand
45 degree angle and the right-hand 45 degree angle from the
frontal axis. We chose this angle, because in pretests it achieved
the best tradeoff between ecological validity and recognizability
compared to other orientations.

From the total recording length of ∼30 s only the first 5 s
of the respective action were batch-rendered as PNG-files with
the mental ray Plugin for Maya. We decided to use the first 5 s,
because we expect the mood to be performed at peak intensity
at the beginning of the recording sequence. Using a custom
MATLAB script, these image-files were subsequently converted
to high definition AVI-files (1280× 720 pixels) with a frame rate
of 25 frames per second.

The rendering resulted in 792 animation clips featuring
22 volunteers performing six everyday household activities in
combination with three moods (see Table 1).

Additionally we provide the 396 FBX-files that allow the use
in virtual reality and to further change camera angles, choose
different appearances of the avatar or computations based on the
3D data.

Low-Level Physical Feature Extraction and
Stimulus Annotation
Our aim is to provide solid animation stimuli for research
paradigms. As such, we deem it most important to be able to
characterize the stimuli that are shown to (future) participants.
While the analysis of the motion capture data would yield
additional insight about the individual movements, we aimed at
specifying details about the stimulus material that is presented
to volunteers of future studies. This means that the analysis of
the visual features of the AVI-files gains the best insight into
what future participants will perceive when confronted with
the stimuli.
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TABLE 2 | Existing motion capture databases.

Name Publication Availability

The Korea University Gesture

Database

Hwang, B. W., Kim, S., and Lee, S. W. (2006). A full-body gesture

database for automatic gesture recognition. 7th International

Conference on Automatic Face and Gesture Recognition (FGR06),

243–248. https://doi.org/10.1109/FGR.2006.8

Upon request:

gesturedb@image.korea.ac.kr

The Biological Motion Library Ma, Y., Paterson, H. M., and Pollick, F. E. (2006). A motion capture

library for the study of identity, gender, and emotion perception from

biological motion. Behavior Research Methods, 38(1), 134–141.

https://doi.org/10.3758/BF03192758

http://paco.psy.gla.ac.uk/index.php/res/download-data

CMU Mocap Database Not available http://mocap.cs.cmu.edu

HDM05 Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., and

Weber, A. (2007). Documentation Mocap Database HDM05 (No.

CG-2007-2). Universität Bonn.

http://resources.mpi-inf.mpg.de/HDM05

HMDB Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre, T.

(2011). HMDB: A large video database for human motion

recognition. 2011 International Conference on Computer Vision,

2556–2563. https://doi.org/10.1109/ICCV.2011.6126543

http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-

motion-database

ICS Action Database Not available Upon request:

tmori@ics.t.u-tokyo.ac.jp

Overview: http://www.miubiq.cs.titech.ac.jp/action/index.html

IEMOCAP Busso, C., Bulut, M., Lee, C. C., Kazemzadeh, A., Mower, E., Kim,

S., Narayanan, S. S. (2008). IEMOCAP: interactive emotional dyadic

motion capture database. Language Resources and Evaluation,

42(4), 335. https://doi.org/10.1007/s10579-008-9076-6

Upon request:

https://sail.usc.edu/iemocap/release_form.php

GEMEP Corpus Bänziger, T., Mortillaro, M., and Scherer, K. R. (2012). Introducing

the Geneva Multimodal expression corpus for experimental research

on emotion perception. Emotion, 12(5), 1161–1179. https://doi.org/

10.1037/a0025827

Upon request:

https://www.unige.ch/cisa/gemep

The KIT whole-body human

motion database

Mandery, C., Terlemez, O., Do, M., Vahrenkamp, N., and Asfour, T.

(2015). The KIT whole-body human motion database. 2015

International Conference on Advanced Robotics (ICAR), 329–336.

https://doi.org/10.1109/ICAR.2015.7251476

https://motion-database.humanoids.kit.edu/

Only databases that were available to the authors are listed here. Databases that have an accompanying article but can no longer be accessed are not listed.

TABLE 3 | Overview of Value Categories Computed by Matlab Algorithm.

No. Value category Description

1. pixelamount Number of non-black pixels in current frame

2. intensitydiff Changes of gray-scale values across time

3. rel_intensitydiff Amount of pixels in avatar ÷ sum of intensity

differences (1 ÷ 2)

4. MA_X The horizontal extension of the motion area

5. MA_Y The vertical extension of the motion area

6. MA_size MA-X-Dimension × MA-Y-Dimension (4 × 5)

To help understand the variable-names in the supplementary spreadsheets, the value

categories are named accordingly here. One of the six categories always builds the

first part of the variable-name. For each of these six categories, ten values (see

Supplementary Table 1) were computed, resulting in a total of 60 variables. Example

for the variable-name for the mean amount of pixels of a clip: pixelamount_mean. MA,

motion area.

To this end, we developed a special algorithm, which
accepts most common video file formats (e.g., AVI, MPEG-
1, MPEG-4). The algorithm is implemented and executed in
MATLAB (R2017a, The MathWorks, Inc., Natick, USA). The
routine performs a frame-by-frame comparison based on 8-bit
gray-scale converted images with a black threshold of 30. The

resulting signal is filtered with a moving average filter (window
size = 5). The algorithm extracts two main features: (a) the size
of a “motion area” (MA) and (b) differences in pixel intensity
(i.e., pixel change). The MA is automatically defined by the 2D-
area that the avatar occupies per frame and can be thought
of as the smallest possible rectangle encompassing the whole
body including the most distal parts (minimum bounding box).
Usually these are head and feet, as well as hands, elbows or
shoulders (see Figure 2B for illustration). The MA gives an
impression of the extension of movements (e.g., stretched arms)
and the frequency of occurring motion patterns (e.g., back and
forth movements). On a more abstract level, the MA measures
the size of the area in a given frame that is occupied by non-black
pixels (proportion of foreground to background).

Pixel change is computed by comparing the absolute
differences of gray values of each pixel frame-by-frame.
This allows to infer motion parameters in general, but is
particularly interesting for cases when the changes in MA
are subtle (e.g., small movements in front of the body).
These concepts are based on common approaches, namely
motion energy analysis (Ramseyer and Tschacher, 2011)
and motion energy detection (Grammer et al., 1999). The
output of the low-level feature annotation is structured in
60 variables, with six main categories (Table 3) and 10
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FIGURE 2 | Standardized virtual character with blank face used in the animations (A). The red rectangle illustrates the detected motion area for the current frame (B).

values each (see Supplementary Table 1). Three of the
six categories are centered on pixel change computations
(categories 1–3), while the other three reflect characteristics
of the MA (categories 4–6). Automated curve sketching
is implemented to compare the progression of motion
features within and between animation clips (see Figure 3

for an example). One core element of this procedure is
the translation of visible motion features into quantitative
properties (e.g., number of maxima; see Supplementary Table 1,
Values 3–10).

Based on these values we defined motion frequency as the
number of maxima of the MA-size-curve (e.g., how often does
the avatar stretch its arms) and motion expansiveness as the
amplitude of the MA-size-curve (e.g., how far does the avatar
stretch its arms).

Most of the 60 parameters show weak correlations, however
some are inherently connected and thus show strong correlations
(e.g., the number of maxima and the mean distance between
those maxima; for a graphical representation of correlations
between all parameters, see Figure 4).

Resulting Database
The 60 variables resulting from the low-level feature extraction
were computed for all 792 animation clips and included in
the database metafile (see Supplementary Data Sheet 2; see also
Figures 5, 6 for an overview of all animations across actions
and moods).

We used R (R Core Team, 2019), RStudio (RStudio Team,
2018) and the lme4 package (Bates et al., 2015) to fit generalized
linear mixed effects models of the relationship between motion
frequency and action, as well as mood. Likelihood ratio tests
were used to assess the general influence of predictors, comparing

how well models including different predictors fit a given
data set while taking into account the models’ complexity.
The significance of the effect of each predictor was tested by
comparing a model including the predictor with the same model
without the predictor against a significance level of 0.05.

Post hoc tests were computed for the comparison between
factor levels (correcting for multiple comparisons) with the
glht() function from the multcomp package (Hothorn et al.,
2008). To analyze motion frequency, a model including action
and mood (without interaction term) as fixed effects with
random intercepts for motion capture performers was fitted and
performed significantly better than the null model including only
the intercept or models with only one of the fixed effects [χ2

(2) =

176.31, p < 0.001].
In post hoc tests we found significant differences in the mean

motion frequency for sanding vs. wiping (M=−0.14, SE= 0.04,
z = −3.16, p < 0.01; see also Figure 7), but not between the
two other pairs of activities. The tests further revealed significant
differences in the mean motion frequency between happy and
sad movements, M = −0.19, SE = 0.04, z = −5.28, p <

0.001, angry and sad movements, M = −0.44, SE = 0.03, z =

−12.99, p < 0.001 and notably also between happy and angry
movements, M = 0.25, SE = 0.03, z = 7.84, p < 0.001 (see
also Figure 8).

DEFINING STIMULUS SUBSETS

In the following we exemplarily demonstrate a stimulus selection
procedure which results in an optimal set to compare neural
correlates of action and emotion recognition. This selection is
based on the low level video features described above, as well
as on an additional annotation based on observer recognition
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FIGURE 3 | Exemplary curves computed from the raw output of the MATLAB algorithm for one animation clip. (A) shows an example for “Pixels in Avatar” (categories

1 – 3 in Table 2), while (B) displays an example for “MA-Size” (categories 4 – 6 in Table 2). The trajectories of the curves are used to derive variables such as the

number of maxima or the mean amplitude (for a full list of computed variables, see Table 2 and Supplementary Table 1).

FIGURE 4 | Overview of correlations between all 60 variables from the MATLAB algorithm. Most correlations are weak, but some parameters are inherently

connected, and thus show strong correlations (e.g., number of minima and number of maxima in the same category).

rates for actions and emotions (see section Homogenizing for
Recognition Rates). The procedure comprises three selection
steps, which lead to a highly homogenous set of 32 stimuli with

eight clips for each of the four different possible combinations
(two actions × two emotions; see Figures 1B–D for an overview
of the selection procedure).
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FIGURE 5 | Scatter plots showing the relations of motion frequency and motion expansiveness for all six activities. Darker areas indicate the overlap of multiple

animation-files. Sanding and wiping show the highest values for motion frequency, while sweeping, and mopping show the highest values for motion expansiveness.

Homogenizing for Low-Level Physical
Features
Procedure

First, we excluded single animation clips with outliers in any of
the 60 variables (outlier defined as a value outside the range of
M ± 2× SD) to ensure comparability across action and emotion
categories. To this end a z-score for each variable was computed.
After excluding clips with outlier data in any of the 60 variables,
328 of the initial 792 animations remained (see Figure 1B). The
distribution of the remaining clips across conditions (actions,
moods) is illustrated in Figure 9. In a second step, the remaining
328 videos were subsequently analyzed with R (R Core Team,
2019) and RStudio (RStudio Team, 2018) in (generalized)
linear mixed effects models, followed by post hoc tests
as described above.

The goal was to remove groups that show significant
differences in their motion frequency and to identify the
subset of clips with the highest possible homogeneity
(see Figure 1C). Since motion frequency is reported
to be the most characteristic parameter of movements
under varying emotional conditions (Paterson et al.,
2001; Sawada et al., 2003), we decided to focus on
this variable in the selection process. The results for
motion expansiveness are reported as an additional
descriptive parameter.

RESULTS

Motion frequency was analyzed in generalized linear mixed
effects models with action and mood as fixed effects and random
intercepts for motion capture performers. A model including
action and mood (without interaction term) as fixed effects fitted
the data significantly better than the null model including only
the intercept or models with only one of the fixed effects [χ2

(2) =

16.67, p < 0.001].
Even after filtering outliers there were still significant

differences between sad and happy activities, M = −0.13, SE =

0.05, z = −2.52, p < 0.05, as well as sad and angry actions, M =

−0.22, SE= 0.05, z=−4.05, p < 0.001. No significant difference
was found between happy and angry actions, M = 0.09, SE =

0.05, z= 1.82, p= 0.16. Hence animations containing sad actions
were excluded, to homogenize the stimulus set with respect to
motion frequency.

In contrast to the analysis prior to the exclusion of outliers,

the post hoc tests now did not show any significant differences

between the motion frequency of either of the three pairs of

activities (floor, table, wall). Painting activities were excluded

more often by the procedure of outlier removals (see Figure 9). In
the four other actions (domains: floor, table) there was an uneven
distribution among sanding and wiping across moods (see
Figure 9). Thus, we decided to exclude table- and wall-activities.
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FIGURE 6 | Scatter plots showing the relations of motion frequency and motion expansiveness for all three moods. Darker areas indicate the overlap of multiple

animation-files. Sad movements show the highest values for motion expansiveness, while angry movements show the highest motion frequency values.

FIGURE 7 | Distribution of motion frequency across activities. A significant difference is found between the mean motion frequency of sanding vs. wiping (p < 0.01).
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FIGURE 8 | Distribution of motion frequency across moods. Significant differences are found in the mean motion frequency between happy and sad movements,

angry and sad movements and notably also between happy and angry movements (in all mentioned contrasts: ps < 0.001).

FIGURE 9 | Distribution of animation clips (n = 328) across activities and moods after exclusion of outliers based on low-level feature extraction. Painting-activities

were excluded significantly more often than the four other activities. The distribution of sanding and wiping across moods is unbalanced compared to sweeping and

mopping.
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Motion expansiveness was investigated by comparing the fit
of linear mixed effects models with random intercepts for motion
capture performers. Amodel including action as fixed effect fitted
the data significantly better than the null model including only
the intercept [χ2

(5) = 123.90, p < 0.001]. Adding mood as fixed
effect (without interaction term) did not significantly improve the
model fit [χ2

(2) = 1.94, p = 0.38] and was thus not included in
the model.

Post hoc tests revealed significant differences between
mopping and sweeping, M = −3.38, SE = 0.84, z = −4.04,
p < 0.001, as well as between sanding and wiping, M = 4.23,
SE = 0.78, z = 5.40, p < 0.001, but no significant difference
between the two painting-activities, M = −0.19, SE = 1.05, z =
−0.18, p= 0.99.

On the basis of these arguments we decided to focus the
following steps on a 2× 2 design with the actions being mopping
vs. sweeping, and the moods being happy vs. angry (n = 83
remaining clips).

Homogenizing for Recognition Rates
This particular selection was intended for a functional
neuroimaging study where task difficulty across conditions
was ideally balanced between both tasks (Geiger et al., 2019). We
therefore conducted an online survey using the remaining 83
clips to receive an additional annotation for these animations. In
this survey we showed each animation to volunteers to compute
recognition rates for actions and moods. Taking recognition
rates as estimate of task difficulty, we further selected clips to
homogenize for this high-level feature (see Figure 1D). This is
especially important in cognitive neuroscience studies to avoid
confounding effects of task difficulty on observed brain activity.

Participants (Observers)

We recruited 112 volunteers (73 females, mean age= 31.66, SD=

11.71) independently from the group of performers (see section
Performers) via (a) mailing lists of the study programs Biology,
Neuroscience, Philosophy and Psychology of the University of
Cologne, (b) word of mouth or (c) a designated mailing list of
volunteers of the Research Center Jülich.

Three participants who’s answering behavior differed
significantly (deviations > 2 × SD) from the rest of volunteers
were excluded. Additionally, six participants were excluded
because they were presented with too many incomplete
animations (> 2 × SD). The number of incomplete animation
playbacks was dependent on the computer hardware and internet
connection of each participant. To ensure that the majority of
ratings are based on the viewing of complete animations, we
excluded participants’ ratings with many incomplete animation
playbacks. Four participants were excluded, because of technical
difficulties, resulting in a total remaining sample of n = 99 (64
females, mean age= 31.52, SD= 12.03).

Procedure

At the beginning of the survey, all participants received
structured instructions. It was pointed out that all data were
collected and analyzed anonymously. It was further emphasized
that the task was either to focus on (a) the action or (b) the mood

displayed. Tasks were always indicated before the start of the
video and were additionally displayed above the video during its
presentation. After the presentation, participants were prompted
with an explicit forced-choice format [for the activity: (a)
mopping or (b) sweeping; for the mood: (a) happy or (b) angry].
The animations were divided into four subgroups, containing
either 20 or 21 clips with approximately equal amounts of clips
per mood and activity. Each volunteer was randomly assigned
to one of four subgroups and rated each animation of that
subgroup for activity and mood. The order of the clips was
randomized within the subgroups. After completing the video
ratings, basic information (age, gender, handedness, sportiness,
years of education) was assessed. The experiment was finished
with a short debriefing that informed the participants about
the general purpose of the survey and the overarching project.
The recognition rates were computed by dividing the amount
of correct answers by the total amount of given answers for
each animation (for both activities and moods). The survey was
conducted via Unipark (Questback GmbH, EFS Survey, Version
10.9, http://www.unipark.com). Results were analyzed in SPSS
(Version 24). For the purpose of data cleansing, z-scores were
computed for (a) responses, (b) the amount of incomplete clips
(see section Participants (Observers) for details).

Results

The majority of animations were rated above chance level within
a range from 55 to 100% correctness in at least one condition (see
Figure 10 and Supplementary Data Sheet 3). Thirty-six clips
were rated both for action as well as mood at a rate of ≥55%,
with a maximum accuracy difference of 30 percentage points
between the two scores. For the selection of the fMRI stimulus
set, we controlled for two parameters: (a) difference between the
two recognition rates (<30 percentage points), (b) equal amount
of combinations between activities and moods [angry mopping
(n = 8), angry sweeping (n = 8), happy mopping (n = 8), happy
sweeping (n = 8); see Supplementary Data Sheet 4].

DISCUSSION AND FUTURE PROSPECTS

We herewith present the ACASS database including 792
animations with their respective annotations about basic motion
features and emotional expressions inscribed therein. The
outstanding features of this newly generated database are (a) the
uniform presentation across actors after transferring all human
movements onto the same avatar and (b) the motion feature
annotation of all animations. The low-level physical feature
annotation allows to define various subsets, for instance selecting
maximum heterogeneous or homogenous subsets. Furthermore,
additional annotations, for instance regarding psychological
evaluations as provided by neutral observers can enrich the
database and extend its usefulness even beyond the possible
applications sketched here.

As a show case, we have demonstrated here as one example
how to extract a homogeneous stimulus subset with respect
to perceived difficulty of action and mood recognition for the
purpose of a particular functional neuroimaging study in the
field of social cognitive neuroscience that aimed at identifying
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FIGURE 10 | Distribution of animation clips (n = 83) across recognition rates for activities and moods. The majority of animations were recognized above chance level

within a range from 55–100% correctness in at least one condition.

the neural correlates of action recognition and mood recognition
(Geiger et al., 2019).

For this subset of the database, different types of application
within social neuroscience come to mind: it would be very
interesting and timely to investigate the temporal relations of
the involved brain systems with more suitable technology like
magnetoencephalography. Another obvious question is that of
functional connectivity of the involved brain regions. This leads
to questions about changes in psychopathological conditions.
Abnormalities have been reported for mentalizing abilities in
conditions such as schizophrenia and autism spectrum disorders
(Frith, 2004). Functional connectivity has been shown to be
altered between and within thementalizing system and the action
observation network in autism spectrum disorders (Fishman
et al., 2014). With our novel stimulus subset the neural correlates
of the involved systems can be investigated in more detail.

Aside from possible applications in the field of social cognitive
neuroscience, the stimulus subset, as well as other individually
chosen subsets from the database can serve in behavioral studies
that use the annotational information to systematically vary e.g.,
task difficulty (recognition rates). For instance, this could be
interesting to contrast ambiguous animations with recognition
rates close to guessing rate with other animations that are mostly
correctly recognized according to the observer annotation. A
further interesting study could be to examine animations that
are easily recognized for only one category (e.g., action but

not mood). A free viewing task could be conducted to see
what the spontaneous attributions of observers are, when no
specific instructions and answering options are given. The stimuli
could be further enhanced to use in studies about perspective
taking and embodiment, e.g., by use in virtual reality or
systematically varying the camera angle. Another interesting line
of investigation could be to ask participants to rate animations
for valence and arousal.

The ACASS database, including the subsets, as well as
the source code of the algorithm are hosted at FigShare
(doi.org/10.6084/m9.figshare.c.4443014) (preview during
review-process). Annotational information are provided in
designated CSV-files to enable the selection of individual sets
of animations.

LIMITATIONS

The ACASS database contains recordings of six different
household activities that we expect the vast majority of viewers
to recognize. All activities were performed stand-alone. Thus,
the recordings do not cover interactive situations like dyadic
activities or those that address the viewer as an interaction
partner. Our main field of application is aimed to be person
perception as a well-established domain in social psychology,
which includes the processing of social information derived from
mere observation beyond true interactions.
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