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Abstract: Background: Urothelial bladder cancer (UBC) is one of the cancers with the highest mortality
rate and prevalence worldwide; however, the clinical management of the disease remains challenging.
Metabolomics has emerged as a powerful tool with beneficial applications in cancer biology and
thus can provide new insights on the underlying mechanisms of UBC progression and/or reveal
novel diagnostic and therapeutic schemes. Methods: A collection of four human UBC cell lines that
critically reflect the different malignancy grades of UBC was employed; RT4 (grade I), RT112 (grade
II), T24 (grade III), and TCCSUP (grade IV). They were examined using Nuclear Magnetic Resonance,
Mass Spectrometry, and advanced statistical approaches, with the goal of creating new metabolic
profiles that are mechanistically associated with UBC progression toward metastasis. Results: Distinct
metabolic profiles were observed for each cell line group, with T24 (grade III) cells exhibiting the
most abundant metabolite contents. AMP and creatine phosphate were highly increased in the T24
cell line compared to the RT4 (grade I) cell line, indicating the major energetic transformation to
which UBC cells are being subjected during metastasis. Thymosin β4 and β10 were also profiled
with grade-specific patterns of expression, strongly suggesting the importance of actin-cytoskeleton
dynamics for UBC advancement to metastatic and drug-tolerant forms. Conclusions: The present
study unveils a novel and putatively druggable metabolic signature that holds strong promise for
early diagnosis and the successful chemotherapy of UBC disease.
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1. Introduction

Urothelial bladder cancer (UBC) exhibits the highest mortality rate worldwide, being categorized
as the second most common genitourinary disease in the USA [1]. UBC still remains a major clinical
challenge and its treatment mainly depends on early diagnosis [2]. It can be generally classified as a
low-grade (I and II) non-muscle-invasive and a high-grade (III and IV) muscle-invasive disease that is
prone to metastasis, based on histological differentiations from normal bladder cells [3]. One third of
non-muscle-invasive UBCs progress to high(er) grades or stages of malignancy [4], which, along with
the symptom-to-treatment delay for affected patients [5], compromise the therapeutic effectiveness
and success of clinically applied regimens. UBC is characterized by high recurrence rates, with the
continuous monitoring of patients being a medical practice of great importance [6]. Notably, despite
their initial chemosensitivity, UBC patients will eventually develop chemoresistance due to tumors’
mutational heterogeneity, leading to a median survival expectancy of 13–19 months [7,8]. Thereby,
novel, early diagnosis, and druggable biomarkers for UBC need to be promptly discovered.

Metabolomics, according to Professor J. Nicolson’s definition, is “the quantitative measurement of
the dynamic and multi-parametric metabolic response of living systems to pathophysiological stimuli
or genetic modifications” [9], with its great potential and promise in cancer research being continuously
proved. The reprogramming of cellular metabolism seems to act as a strong force in tumorigenesis [10].
Malignant hallmarks, such as cell survival under stress conditions, as well as tumors’ ability to utilize
nutrients and successfully encounter high-energy demands, are tightly correlated with metabolic
alterations, thus indicating the major roles of metabolic landscapes in Cancer Biology [11–14]. Metabolic
activities may significantly differ among distinct subtypes or malignancy grades/stages of the same type
of cancer, leading to different metabolic networks and metabolomes [15,16]. Metabolomics has gained
great value, power, and importance for cancer research, not only as a multifaceted tool in early diagnosis,
but also as a valuable platform for the discovery of novel mechanisms controlling tumorigenesis, thus
paving the way to new treatment strategies and therapies. Research on several cancers has significantly
profited from the engagement of metabolomics technology. However, its application to early detection,
progression, and the chemotherapeutic management of human malignancies and especially UBC
remains still limited, and it needs to be further expanded [15–20].

Most metabolomics studies in UBC cell lines have focused on differentiating between normal
bladder and UBC cells, and they have shown the importance of several metabolites involved in
pathways related to energy production, such as fatty acids, amino acids, and organic acids. [21,22].
The effect of the oncometabolome on progression of the disease has recently emerged as a new field in
UBC research [23–26]. Few studies used two cell lines, for low and high-grade UBC, in order to find
distinct metabolic profiles between the two grades [27,28]. They observed that pyruvate consumption,
as well as alanine and lactate levels, might be related to UBC aggressiveness, and they also suggested
the role of fatty acid biosynthesis and amino acid metabolism in disease progression.

To further expand these studies, we herein engaged a collection of four human UBC cell lines that
critically reflect the distinct de-differentiation stage, malignancy grade (I, II, III, and IV), mutational
signature, genetic heterogeneity, metastatic capacity, and chemotherapeutic tolerance of UBC to
thoroughly investigate the metabolic alterations to which UBC cells are being subjected during disease
progression. Our findings are expected to shed light into mechanisms regulating the transition of
normal to the oncogenic and, finally, metastatic cell phase. Employment of the two state-of-the-art
analytical platforms, Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS), which are
complementary, allows the more comprehensive metabolic profiling of UBC, with the grade-specific
metabolic signatures revealed essentially contributing to the significant advancement in the success,
efficacy, and safety of conducted research. High-scale UBC cell culturing enabled the high-resolution
metabolic landscaping, while the high density of cells upon harvesting portrayed tumor architectural
organization in vivo.
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2. Results

In this study, a comparative NMR and LC-MS-mediated metabolic profiling was performed in
four UBC human cell lines in order to thoroughly examine the effects of oncometabolome composition
on progression of the disease.

2.1. NMR Analysis

The 1H 1D NMR spectra of the four UBC cell lines with the respective standard deviations obtained
from each group are shown in Figure 1. The observed within-group variability has proved to be very
low, thus confirming the precision and high-technical value of the procedure being followed for sample
preparation and the subsequent instrumental analysis. In total, 42 metabolites have been identified
(Supplementary Table S1), with the annotated and grade-dependent metabolites being described in
Figure 2 as boxplot-type graphs.
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Figure 1. Average 1H NMR spectra of the four groups and their standard deviation, where very low
within-group variability is observed. Annotation is shown on the most abundant spectrum of the
grade III group. (I. Grade I, II. Grade II, III. Grade III, IV. Grade IV). Red Line: Average + standard
deviation, Blue Line: Average–standard deviation. (A) Aliphatic region: 1. UDPs, 2. Threonine, 3.
Choline phosphate, 4. Lactate, 5. Myo-inositol, 6. Creatine phosphate, 7. Creatine, 8. Aspartate, 9.
Glutamate, 10. Glycine, 11. Taurine, 12. Choline, 13. β-Alanine, 14. Glutathione, 15. Malate, 16.
Succinate, 17. N-Acetylglutamine, 18. Proline, 19. Acetate, 20. Leucine, 21. Alanine, 22. Propylene
glycol, 23. Valine, 24. Isoleucine. (B) Aromatic region: 1. NAD+, 2. AMP, 3. ATP, 4. ADP, 5. NADH, 6.
Formate, 7. Adenine, 8. Hypoxanthine, 9. Oxypurinol, 10. GTP, 11. UMP, 12. UDPs, 13. Histidine, 14.
Tryptophan, 15. Uracil, 16. Phenylalanine, 17. Tyrosine, 18. Fumarate, 19. UDP-GlcNAc.
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Figure 2. Boxplots of the 42 most significant metabolites, using ANOVA for the four-group urothelial
bladder cancer (UBC) member comparisons. Myo-inositol, creatine phosphate, amino acids (e.g.,
histidine), organic acids (e.g., malate, succinate, and acetate), AXPs (AMP, ADP, and ATP), GTP, UMP,
and oxypurinol follow the pattern of “metabolic inversion” that is being typified by their highly
elevated contents in grade III (T24) group but reduced (restored) to the cell line-reference-like ones (RT4;
grade I) in the grade IV (TCCSUP) UBC cell group. However, some metabolites are not subjected to the
same pattern of grade-dependent deregulation (e.g., tryptophan, formate, uracil, adenine, propylene
glycol, and choline). Remarkably, uracil and propylene glycol are presented with significant decreases
during cellular transition from low to high grades (III and IV) of UBC malignancy.
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For the multivariate analysis, Principal Component Analysis (PCA) was first conducted to search
for outliers and trends of discrimination. No outliers were detected (Hotteling eclipse, 95% confidence
level), and a clear separation of the four UBC groups was observed (Supplementary Figure S1).
Partial Least Square-Discriminant Analysis (PLS-DA) confirmed the clear separation of the examined
groups, with good quality parameters and prediction power [R2X(cum) = 0.982 and Q2(cum) =

0.977]. Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA) pairwise comparisons
were also performed to search for discriminatory variables for each grade-specific UBC cell line.
The S-plot between grade I (RT4) and grade III (T24) UBC cells revealed that the T24 cell line exhibits
notably upregulated levels of most metabolites, including, among others, amino acids (glutamate,
alanine, threonine), organic acids (acetate, lactate), myo-inositol, creatine, and choline phosphate,
while decreased contents of few metabolites (uracil, histidine, and propylene glycol) were observed
(Figure 3A). The S-plot between grade III (T24) and grade IV (TCCSUP) UBC cells unveiled that the
grade IV-specific levels of most metabolites were significantly reduced and restored almost to the grade
I (RT4) respective levels, indicating a “metabolic inversion” effect during the advanced (late stage)
UBC development (Figure 3B). This is observed in the PLS-DA scores plot of UBC groups, with RT4
and TCCSUP showing an inability to be discriminated on the first PC, while grade III (T24) was being
proved as the most distant UBC group on the same component (Figure 3C). Validation of the PLS-DA
model using permutation testing is shown in Figure 3D. Table 1 summarizes the results of univariate
analysis of the identified metabolites, considering grade I (RT4) as the UBC cell line of reference
(control) in order to explore malignancy grade-specific metabolic changes occurring during disease
progression. Grade-dependent metabolites were detected and shown to be implicated in diverse
metabolic pathways, such as amino acid metabolism, the tricarboxylic acid (TCA) cycle, and energy
metabolism, as well as purine and pyrimidine metabolism. In accordance to the multivariate analysis,
elevated contents of most metabolites are observed in grade III (T24), whereas they are restored
(reduced) to their respective levels of the reference grade I group (RT4) [Fold Change (x) close to 1],
or even lower, in the grade IV (TCCSUP) cells. Since the majority of metabolites (40 out of 42) exhibited
significant increase in the grade III (T24) group, further investigation was performed in order to take
into account dilution effects and metabolic dependencies. For the identified metabolites, all pairwise
ratios were examined, and the fold change (x) of each metabolic trait was calculated. A heat map of the
fold change (x) values of metabolic ratios between grade III (T24) and grade I (RT4) UBC cell groups is
presented in Supplementary Figure S2. Among the 42 metabolites that were found to be significant,
the pairwise ratios analysis highlighted the importance of a sub-collection containing 14 of them.
Remarkably, uracil, hypoxanthine, adenine, tryptophan, propylene glycol, formate, UDPs, and choline
ratios exhibited the highest decrease in grade III (T24) compared to grade I (RT4), whereas ADP, AMP,
GTP, oxypurinol, creatine phosphate, and myo-inositol ratios showed the most significant increase in
grade III (T24) [compared to grade I (RT4) reference group] cells. Importantly, the reduced metabolite
contents, except for the uracil and propylene glycol ones, were found to be elevated in the analysis
of metabolite concentrations only (expressed as signals). On the contrary, most of these metabolite
ratios were shown to be decreased, which suggests that the analysis of metabolite concentrations only
may lead to erroneous results when such enormous biological differences between compared groups
are observed.
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Figure 3. Multivariate analysis of 1H NMR spectra of the four UBC cell lines. (A) S-plot of Orthogonal
Partial Least Square-Discriminant Analysis (OPLS-DA) model of grade I (RT4) versus grade III (T24)
cell line and the respective loadings. Red dots: increased in grade III (T24), Blue dots: increased in
grade I (RT4). (B) S-plot of OPLS-DA model of grade III (T24) versus grade IV (TCCSUP) cell line
and the respective loadings. Red dots: increased in grade III (T24). (C) Scores plot of Partial Least
Square-Discriminant Analysis (PLS-DA) model of the four UBC cell lines. Grade I (RT4) and grade IV
(TCCSUP) groups seem unable to be discriminated, among each other, on the first principal component,
while the grade III (T24) group is the most distant from the initial conditions on the same component.
(D) Permutation test of the PLS-DA model of the four UBC cell lines. Gr: (malignancy) grade.

In order to systemically map and integrate the metabolic hits into their related biological pathways,
the statistically significant metabolites were imported into CytoScape 3.7.0, using MetScape for
metabolomics data visualization. Extracted pathway and metabolic course analyses are illustrated in
Figure 4A. Among others, it seems that purine and pyrimidine metabolism (including the one of uracil)
can critically control (positively or negatively) UBC progression to late-malignancy stages (Figure 4B).
Importantly, propylene glycol (Kyoto Encyclopedia of Genes and Genomes (KEGG): 1, 2 propanediol),
which is implicated in lactaldehyde metabolism, as shown in the constructed network (Figure 4A),
may also be notably downregulated during UBC advancement toward metastasis (e.g., T24; grade III).
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Figure 4C describes the enzymatic reaction of aldo-keto reductase family 1 member B (AKR1B1), which
is the enzyme that catalyzes the NADP-dependent conversion of propylene glycol to lactaldehyde in
human (KEGG Reaction R02577, EC 1.1.1.21).

Table 1. The identified metabolites and the calculated fold change (×) during UBC progression, taking
grade I (RT4) as the cell group of reference. A three-color gradient is applied, depending on the fold
change (×) value. Red denotes the highest value(s). Gr: (malignancy) grade.

Metabolites Gr II/Gr I Gr III/Gr I Gr IV/Gr I
Alanine 1.66 6.99 0.81

Aspartate 1.18 3.33 0.78
Glutamate 1.41 6.44 0.88

Glutathione 1.65 7.18 0.87
Glycine 1.33 5.71 0.32

Histidine 1.41 2.91 0.74
Isoleucine 1.96 5.62 0.86
Leucine 1.61 3.51 0.77

N-Acetylglutamine 1.14 10.17 0.99
Phenylalanine 1.82 5.92 0.86

Proline 1.5 4.77 0.75
Taurine 1.55 5.5 0.67

Threonine 1.42 5.38 0.74
Tryptophan 1.01 1.6 0.37

Tyrosine 1.77 6.25 0.88
Valine 1.79 4.81 0.74

β-Alanine 1.68 4.54 0.82
Acetate 1.56 4.17 2.78
Formate 1.13 1.28 0.68

Fumarate 1.65 3.34 0.92
Lactate 1.39 3.22 0.39
Malate 1.95 6.5 1.12

Succinate 1.79 4.65 0.51
Adenine 0.68 1.33 0.12

ADP 1.76 20.76 1.49
AMP 1.45 34.33 0.79
ATP 1.6 6.1 0.88
GTP 1.29 11.31 0.88

Hypoxanthine 2.41 1.81 0.24
NAD+ 2.86 3.76 0.86
NADH 1.36 4.62 0.83

Oxypurinol 1.46 10.16 0.45
Uracil 1.36 0.72 0.23
UDPs 1.71 2.66 0.83

UDP-GlcNAc 2.43 3.25 0.75
UMP 1.82 7.77 0.82

Choline 2.96 2.44 0.19
Choline phosphate 1.27 6.26 0.37

Creatine 1.35 5.73 0.45
Creatine phosphate 1.51 22.99 0.66

Myo-inositol 2.89 12.06 0.37
Propylene glycol 1.34 0.38 0.29
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Figure 4. UBC metabolic network construction. (A) Hits (red) of the 1H NMR metabolomic analysis
inserted into Cytoscape and the related pathways assembled. Purine/pyrimidine metabolism seems to
play a crucial role in UBC progression. (B) Hits of the purine/pyrimidine metabolism in grade III (T24)
versus grade I (RT4) cell group comparison. Red: increased in grade III (T24), Yellow: decreased in
grade III (T24). (C) Propylene glycol (or propane-1, 2-diol) has emerged as a novel, putative biomarker,
with the EC 1.1.1.21 enzyme reaction for propylene glycol having been taken from KEGG.

2.2. MS Analysis

Representative LC-MS chromatograms of each one of the four UBC cell lines are shown in
Supplementary Figure S3. PCA scores plots, before and after filtering of the features based on the
% Relative Standard Deviation in Quality Control samples (QCs) and QC-based Signal-correction
Method (QC-RLSC) correction (Supplementary Figure S4A,B, respectively), for instrument drift and
signal attenuation, remarkably lead to more consistent clustering of QCs after normalization, therefore
improving the repeatability and accuracy of the study.
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In order to more deeply investigate for grade-specific variables among the four UBC cell groups
that are able to uniquely reflect urothelial bladder-tumor pathologies (e.g., grade, stage, metastatic
capacity, mutational load, and genetic heterogeneity), different multivariate approaches were employed,
including the PLS-DA (SIMCA-P), KODAMA (R package), and Breiman’s Random-Forest (BR-F)
(StatTarget) tools. The results obtained from multivariate analyses were evaluated based on their
multi-ROC (Receiver Operating Characteristic) values (calculated for every MS feature) and are
summarized in Table 2, wherein the features with an Area Under Curve (AUC) > 0.9 and their respective
ranking after employing the different methodologies are shown. Loadings and Kruskal–Wallis ranking
are the different platforms used by the Knowledge Discovery by Accuracy Maximization Analysis
(KODAMA) algorithm for variable selection. The results described in Table 2 strongly suggest that
KODAMA loadings and BF-R classification exhibit better performance for the four-group UBC-member
comparisons than the classical PLS-DA model. Figure 5 presents the scores plot constructed using the
three models. It is observed that the obtained results are in accordance with the ones derived from NMR
analysis, with the grade III (T24) UBC cell group showing the highest separation on the first principal
component in all three methods used. Detailed results for testing each variable’s importance using
the different methodologies KODAMA, PLS-DA, and multi-ROC AUC are shown in Supplementary
Table S2, while the first 50 ranked variables using BF-R are summarized in Supplementary Table S3.

Table 2. MS features with multi-ROC AUC > 0.9 and their ranking, based on different multivariate
approaches. Knowledge Discovery by Accuracy Maximization Analysis (KODAMA) loadings
and Breiman’s Random-Forest (BF-R) classification exhibit better performance for the four-group
UBC-member comparisons than the classical PLS-DA model.

Feature Multi-ROC
AUC

Variable Importance
in Projection (VIP)

(PLS-DA)

Loadings
Ranking

Kruskal
Ranking

Random Forest
(RF) (p-Value)

993.7033_3.7 0.995 56 11 54 2
828.2532_3.71 0.982 77 6 58 5
129.1015_3.71 0.98 79 4 61 2
993.3025_3.7 0.973 66 5 53 6
348.7831_0.69 0.972 22 3 1 7
993.5029_3.7 0.972 58 13 66 11
828.0866_3.71 0.96 69 9 57 20
136.0611_3.3 0.955 1 66 11 8
827.9193_3.71 0.952 71 14 65 12
828.4207_3.71 0.95 74 7 33 9
696.5591_0.69 0.942 49 52 17 41
823.9269_3.79 0.938 55 12 24 16
824.0938_3.8 0.938 52 32 70 13
120.08_2.03 0.935 99 57 4 15

823.4258_3.79 0.932 51 2 3 16
823.5929_3.8 0.932 41 15 31 5
823.7596_3.8 0.928 53 23 25 18
380.7729_0.69 0.925 86 49 28 38
118.0643_2.01 0.922 39 37 16 28
988.1106_3.8 0.917 54 20 12 1
828.7551_3.7 0.913 67 10 69 18
622.646_0.68 0.912 65 16 8 34
350.7812_0.69 0.91 47 26 20 31
212.8509_0.69 0.908 19 38 36 30
828.5893_3.79 0.908 112 30 55 14
988.7121_3.78 0.907 62 17 47 26
330.7728_0.66 0.902 36 33 13 45
486.713_0.66 0.902 34 28 6 >50
827.7527_3.7 0.9 84 21 79 22
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Figure 5. Comparison of the PLS-DA modeling of MS analysis, with KODAMA and Random Forest
methods for the four UBC cell lines herein examined. All methods presented the greatest separation
for the grade III (T24) group, highlighting T24 as the most suitable cell line to study the metabolic
signature of highly malignant and strongly metastatic UBC disease. Black: grade I (RT4), Red: grade II
(RT112), Green: grade III (T24), and Blue: grade IV (TCCSUP). (A) Principal Component (PC) scores
plot from PLS-DA model. (B) PC scores plot from the KODAMA-PLS model. Figure is cut on the x-axis
(dashed line), as grade III (T24) is far removed from the initial conditions. (C) Multidimensional Scaling
(MDS) plot from the Random Forest model. Gr: (malignancy) grade.

Among the top ranked variables, peaks corresponding to two peptides have been herein identified,
after deconvolution of multiple charged peaks and isotope clusters. Accordingly, for the first peptide,
penta- (m/z 993.5027), exa- (m/z 828.0855), and epta- (m/z 709.9307) charged ions of N-Acetyl Thymosin
β4 (Tβ4) were recognized, while the monoisotopic mass M + H = 4961.4792 was also obtained after
deconvolution of the Electro-Spray Ionization (ESI) spectra. For the second peptide, Thymosin β10
(Tβ10), penta- (m/z 988.2166), exa- (m/z 823.5936), and epta- (m/z 705.7941) charged ions were identified,
with the deconvoluted mass of 4934.5153 corresponding again to the N-Acetyl form of Tβ10 peptide.
The previous identification of thymosin-type peptides [29] has revealed that the fragmentation of Tβ4
generates mainly fragments of the b series, while that of Tβ10 generates mainly fragments of the y
series. The respective ions were searched in the MS/MS spectra of the penta- and exa-charged ions,
using the peptide-fragmentation tool of mMass after noise filtering. The matched ions for Tβ4 and
Tβ10 are described in Table 3.
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Table 3. Matched ions of b series, with the MS/MS fragmentation profile of the penta- (m/z 993.5027) and
exa- (m/z 828.0855) charged (acetylated) thymosin β4 (Tβ4), and matched ions of the y series, with the
MS/MS fragmentation profile of the penta- (m/z 988.2166) and exa- (m/z 823.5936) charged (acetylated)
thymosin β10 (Tβ10).

Ions of b Series, (Acetylated) Thymosin β4 (Tβ4)

m/z Ion z Sequence Error (Da) Deconvoluted
Mass

774.9006 b13 2 .SDKPDMAEIEKFD.k [1xAcetyl] 0.053 1547.696
946.616 b16 2 .SDKPDMAEIEKFDKSK.l [1xAcetyl] 0.157 1890.9178

1067.2304 b18 2 .SDKPDMAEIEKFDKSKLK.k [1xAcetyl] 0.182 2132.097
831.2934 b21 3 .SDKPDMAEIEKFDKSKLKKTE.t [1xAcetyl] 0.197 2490.2895
355.2822 b27 9 .SDKPDMAEIEKFDKSKLKKTETQEKNP.l [1xAcetyl] 0.096 3187.6722
850.3742 b29 4 .SDKPDMAEIEKFDKSKLKKTETQEKNPLP.s [1xAcetyl] −0.069 3397.7732
936.3339 b32 4 .SDKPDMAEIEKFDKSKLKKTETQEKNPLPSKE.t [1xAcetyl] −0.152 3741.9428

869.5772 b37 5 .SDKPDMAEIEKFDKSKLKKTETQEKNPLPSKETIEQE.k
[1xAcetyl] 0.132 4342.2255

1086.6825 b37 4 .SDKPDMAEIEKFDKSKLKKTETQEKNPLPSKETIEQE.k
[1xAcetyl] 0.128 4342.218

1164.2402 b40-NH3 4 .SDKPDMAEIEKFDKSKLKKTETQEKNPLPSKETIEQEKQA.g
[1xAcetyl] 0.145 4669.4134

788.6117 b41 6 .SDKPDMAEIEKFDKSKLKKTETQEKNPLPSKETIEQEKQAG.e
[1xAcetyl] −0.129 4726.4448

1182.801 b41 4 .SDKPDMAEIEKFDKSKLKKTETQEKNPLPSKETIEQEKQAG.e
[1xAcetyl] 0.194 4726.4304

971.9887 b42 5 .SDKPDMAEIEKFDKSKLKKTETQEKNPLPSKETIEQEKQAGE.s
[1xAcetyl] −0.107 4855.48

Ions of y Series, (Acetylated) Thymosin β10 (Tβ10)

m/z Ion z Sequence Error (Da) Deconvoluted
Mass

839.5505 y14 2 p.TKETIEQEKRSEIS. 0.1142 1676.8726
592.5017 y15 3 l.PTKETIEwebQEKRSEIS. 0.1909 1773.9327

1775.0578 y15 1 l.PTKETIEQEKRSEIS. 0.1397 1790.9491
944.3809 y16 2 t.LPTKETIEQEKRSEIS. −0.1239 1887.0094
663.8185 y17 3 n.TLPTKETIEQEKRSEIS. 0.1304 1988.0643
994.9422 y17 2 n.TLPTKETIEQEKRSEIS. −0.0864 1988.0572

1052.2492 y18 2 k.NTLPTKETIEQEKRSEIS. 0.1992 2119.131
1244.6476 y21 2 t.QEKNTLPTKETIEQEKRSEIS. −0.0005 2504.3272
863.8784 y22 3 e.TQEKNTLPTKETIEQEKRSEIS. 0.0947 2605.3821

1295.2735 y22 2 e.TQEKNTLPTKETIEQEKRSEIS. 0.1016 2605.3748
983.2832 y25 3 k.KTETQEKNTLPTKETIEQEKRSEIS. 0.1044 2946.5364

1130.0686 y29 3 k.AKLKKTETQEKNTLPTKETIEQEKRSEIS. 0.1194 3403.8786
1172.5977 y30 3 d.KAKLKKTETQEKNTLPTKETIEQEKRSEIS. −0.0498 3531.9735
630.6308 y32 6 s.FDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. 0.1209 3777.0594
756.3638 y32 5 s.FDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. −0.0466 3777.0525
945.1581 y32 4 s.FDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. −0.1031 3777.0452
810.8174 y35 5 e.IASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. 0.1763 4048.2055
807.212 y35-NH3 5 e.IASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. −0.0238 4048.21

1059.3714 y37 4 m.GEIASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. −0.1943 4251.2934
744.6523 y39-H2O 6 p.DMGEIASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. −0.07 4480.3443

1116.7269 y39-H2O 4 p.DMGEIASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. 0.1471 4479.3502
916.6534 y40 5 k.PDMGEIASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. 0.1754 4594.421
965.1255 y42 5 a.DKPDMGEIASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. 0.0231 4837.5425

1206.0731 y42 4 a.DKPDMGEIASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. −0.053 4837.5354
801.7036 y42-NH3 6 a.DKPDMGEIASFDKAKLKKTETQEKNTLPTKETIEQEKRSEIS. 0.1215 4820.5236

Pairwise comparisons, using OPLS-DA models and univariate analysis, have also been performed.
Hence, T24 (grade III) were compared to RT4 (grade I) that serve as reference cells. Figure 6 presents
the pairwise comparison between the lower (I) and higher (III) UBC grade, using both multivariate
and univariate approaches.

OPLS-DA analysis of these two UBC cell lines (RT4 and T24) was carried out to unveil important
variables for their grade-specific and metabolic signature-dependent discrimination. In the OPLS-DA
derived S-plot, features with the highest variation and reliability were selected. Tβ4 and Tβ10 were
found to be strikingly elevated in the grade III (T24) UBC cell group. In the univariate analysis of the
grade I (RT4) versus grade III (T24) UBC group, comparably similar results were obtained. Tβ10 peaks
exhibit a log2 (FC) < −5, indicating a ca. 40-fold (x) increase in the grade III (T24) UBC cell group, while
Tβ4 shows a log2 (FC) = −3, corresponding to a ca. 10-fold (x) increase for T24 cells, again.
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Figure 6. Comparison of the grade I (RT4) versus grade III (T24) cell groups and the significant
MS analysis features. Tβ4 and Tβ10 charged peaks, and their respective isotopes, were found to be
elevated in the grade III (T24) UBC cell group, using both univariate and multivariate approaches.
Blue: increased in grade III (T24), Red: increased in grade I (RT4). (A) S-plot from OPLS-DA modeling
multivariate approach. (B) Volcano plot of log2 [fold change (FC) (x)] versus p-values, and the selected
variables with p < 0.05 and FC > 2, or < 0.5 (univariate approach). Gr: (malignancy) grade.

3. Discussion

Cancer research has considerably benefited from cultured-cell metabolomics, which offers a
number of advantages, such as minor ethical issues, cost-efficiency merit, and low biological variation,
as compared to human biofluids [30,31]. In vitro metabolomics approaches facilitate the more integrated,
systemic, and reliable experimental design, and, most importantly, the successful investigation of
metabolic alterations that are directly and/or mechanistically linked to the tumorigenic process, and
these may not be captured by blood and/or urine classical biochemical examination. However,
there are still some challenges to cope with, such as the fast quenching of metabolism and data
normalization [32,33]. To successfully encounter these challenges, we have chosen a grade-specific
unique collection of UBC human cell lines that are able to largely maintain and thus mimic the
pathology of the disease, including both its clinical features and molecular subtypes. Immediate
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freezing of UBC cultured cells ensured metabolism’s fast quenching equally for all the four cell lines
examined, with RT4 (grade I) serving as the line of reference (control), due to its lowest malignancy
grade among all. Data statistical processing, via the engagement of advanced algorithmic platforms,
unearthed the major biological importance of our results to UBC progression toward tissue metastasis
and refractory responses to chemotherapies.

To our knowledge, this is the first time all major UBC malignancy-grade cell types, I, II, III, and IV,
with different mutational loads and metastatic proficiencies, are being metabolically fingerprinted,
combining both NMR and LC-MS state-of-the-art technologies. Powerful and multifaceted statistical
processing of the metabolic data ensures their biological validity and highlights the role of metabolomics
pathways in UBC progression toward metastasis in vivo. Remarkably, each grade-specific UBC cell
line has proved to carry its own unique metabolic signature that diagnostically, mechanistically, and
therapeutically typifies each distinct tumorigenic phenotype examined. The question is whether
the grade-dependent metabolome governs UBC pathology and aggressiveness, or, vice versa, the
advancement to metastatic state(s) compels the acquisition of metabolic aberrations and the generation
of derailed UBC metabolomes. It must be the grade-specific molecular signature of each UBC cell type
that defines its unique metabolic landscape. However, the four cell lines herein examined carry different
mutational profiles, with some mutations being likely unrelated (due to their generation stochasticity)
to UBC aggressiveness. Hence, the possibility that these (non-causative for tumor features) mutations
could be linked to some of the observed metabolic alterations cannot be excluded. Nevertheless, the
major mutation contents of the cell lines used are indeed grade dependent, and they can be classified
according to the UBC grade, metastatic capacity, and general disease pathology. In any case, the
high grade-specific oncometabolomes (e.g., of T24) seem to contain a number of critical metabolites
that can serve as novel and powerful biomarkers for both the diagnosis and drug-mediated clinical
management of UBC disease.

In this study, a four-cell-line group of a human UBC model has been in vitro engaged to thoroughly
investigate the metabolic alterations that tumor cells likely undergo during UBC advancement, thus
highlighting the importance of a malignancy grade, mutational signature, de-differentiation state and
metastatic activity to “diagnostic biomarkering” and “targeted therapeutic drugging” of the disease.
The four human UBC cell lines that have been analyzed critically reflect the distinct de-differentiation
state and malignancy grade (I–IV) of UBC in vivo. Our results clearly indicate that T24 (grade III) can
serve as a powerful, informative, and versatile cell-line system that can be successfully exploited to
illuminate the role of metabolic reprogramming in UBC progression toward metastasis. It seems that
the elevated contents of most metabolites specifically identified in T24 are tightly associated with the
highly oncogenic character of the cells. Notably, PCA analysis showed that the grade III-specific T24-cell
group exhibits the clearest separation on the first principal component, both in NMR and MS analysis,
thus explaining the maximal amount of variation for its discrimination among the four cell groups.
These results are strongly supported by biological data interpretations, since T24 cells bear a heavy
mutational load and strong tumorigenic capacity. They are characterized by the mutant, oncogenic, form
H-RASG12V and the disruption of stress-induced activation of mutant p53 (∆Υ126) protein [34]. Hence,
the aberrant signaling activity of H-RASG12V, in a cellular environment that lacks the genome-protecting
properties of p53, may render T24 cells susceptible to severe metabolic reprogramming, with grade
III-specific metabolites fostering and promoting highly tumorigenic features and pathologies, including
genetic instability, clonal heterogeneity, chemoresistance, immune escape, and organ metastasis (tissue
invasion). Interestingly, a role of H-RASG12V oncogene (RAS) in metabolic reprogramming during early
mammary carcinogenesis has been previously reported, with the MCF10A-RAS transfected human
breast epithelial cells exhibiting enhanced glycolytic activity and lactate production [35], consistently
with the cancer hallmark of the classic “Warburg effect” [36,37]. Comparative genomics evidence that
indicates that the T24 cell line (https://depmap.org/portal/cell_line/ACH-000018?tab=mutation) reliably
reflects the mutational profile of muscle-invasive bladder cancer patients (https://www.cbioportal.org;
Bladder Cancer, TCGA Cell 2017, 413 Total Samples) supports and increases the utilization of T24 as a

https://depmap.org/portal/cell_line/ACH-000018?tab=mutation
https://www.cbioportal.org
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valid, pre-clinical, cell-model system for advanced bladder cancer research in diagnosis and therapy.
Remarkably, besides the H-RAS and TP53 (encodes p53) mutated oncogenes, T24 cells share with
muscle-invasive UBC patients multiple genes carrying molecular alterations, including (among others)
the KDM6A, MAGEF1, DIDO1, and EP300 ones, with 37%, 31%, 30% and 30% of detection frequency,
respectively, in the UBC patient cohort studied (Supplementary Table S4).

Among all UBC–cell pairs, embracing different grades being compared [e.g., II versus I, III versus
I, and IV versus I; I (RT4) herein serves as the cell line of reference], only the grade III (T24) versus
grade I (RT4) proved to significantly differ in the majority of metabolite contents examined, thus
indicating the major role of the T24-specific mutational signature (including H-RASG12V and p53∆Y126)
in metabolome composition and its oncogenic proficiency. The surprising resemblance between grade
I (RT4) and grade IV (TCCSUP) metabolic profiles strongly suggests the engagement of a “metabolic
inversion” process that likely favors late-metastasis cells to successfully encounter energetic challenges,
nutritional demands, and oxygen deprivations. It is possible that a pre-metastatic UBC cell, after it
becomes metastatic and invades other (proximal or/and distal) tissues/organs, will undergo a dramatic
metabolic reprogramming to suppress its ability for a second metastasis event. If so, it may always be
the primary tumor mass that feeds metastasis, with a metastatic-cell clonal population likely colonizing
tissues outside the urinary bladder only once. In accordance, cell dissemination seems to occur during
the early stages of tumor evolution, with cells from early and low-density lesions displaying more
“stemness” features, migrating more and founding more metastases than cells derived from dense and
advanced tumors [38–40].

The majority of previous UBC metabolomics reports have underlined the importance of amino
acids to urothelium oncometabolome, with most amino acid levels being upregulated compared to
controls; similar differential patterns were described for advanced UBC stage(s) compared to early
stage(s). Interestingly, increased contents of glutathione were found in UBC cell lines, while glycine
was elevated in the tumorigenic cells as well [21,22]. Alanine was also increased in the TCCSUP
(high-grade) cell line compared to the RT4 (low grade) one [28]. An abundance of amino acids is
important for the proliferative cancer cells, not only as substrates of protein synthesis, but also for energy
generation, cellular redox homeostasis, and nucleotide biosynthesis [41]. Pyruvate consumption and
alterations in glycolytic profile have also been related to UBC aggressiveness, as anaerobic conditions
in high(er) grade UBC favor the conversion of pyruvate to lactate, or alanine [28]. In our study, and in
accordance with previous results, T24 (grade III) exhibited elevated contents of totally 17 amino acids
and derivatives, with the highest increase being detected for N-acetylglutamine, glutathione, alanine,
and glutamate, together with a 3x increase of lactate. Nucleotides are also involved in biomass build-up
observed in cancer cells and in the changes of ATP concentrations that indicate the energetic status
(usually crisis) of tumors [42]. In serum samples of UBC patients, the raised levels of hypoxanthine and
reduced levels of uracil indicated a perturbed breakdown of purine nucleotides, favoring the purine
synthesis pathway (reviewed in ref. [17]). Notably, herein, purine metabolism has emerged as one of
the most important networks in our in silico analysis (Figure 4), thus highlighting its major contribution
to UBC aggressiveness and progression toward metastasis. Increased contents of hypoxanthine and
adenosine nucleotides (AMP/ADP/ATP), with up to a 34x striking increase for AMP, were observed in
T24 (grade III), but they were surprisingly restored (again) to the initial (RT4-like) levels in TCCSUP
(grade IV) cells. In a study of urine samples derived from UBC patients, it has been suggested that the
high(er) levels of choline phosphate may reflect increased lipid membrane remodeling, which has also
been reported for other cancers [24,42]. Choline phosphate and, to lower extent, choline contents were
also increased in our T24 (grade III) cell-line group, with a 6x and 2x rise, respectively. As expected,
the elevated contents of these metabolites were reduced in TCCSUP (grade IV) cells, indicating
the activation of a “metabolic inversion” effect. Regarding the two major metabolites involved in
osmoregulation and volume regulation, taurine and myo-inositol, contradictory results were previously
reported, with either upregulated or downregulated levels detected (reviewed in ref. [17,42]), likely
implicating the role of cellular micro-environments in metabolome compositions. Interestingly, herein,
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significantly elevated contents of myo-inositol (12x) and taurine (5x) were observed in T24 (grade
III), indicating the high grade-dependent ability of UBC to regulate osmosis and volume, in favor of
promoting cell motility and tumor metastasis.

Taking into account that the majority of the identified metabolites (40 out of 42) were increased in
the grade III (T24) group, multivariate analysis and the use of pairwise ratios were employed in order
to highlight metabolites with major alterations. Notably, multivariate analysis of the obtained NMR
data indicated the importance of, among others, glutamate and myo-inositol level deregulations to
UBC pathology, while AXPs (AMP, ADP and ATP), GTP, oxypurinol, and creatine phosphate content
increases were presented with the strongest statistical significance in the grade III/I cell pair (III/I).
The use of pairwise ratios allowed us to account for dilution and signal instability effects and to
unveil alterations that are masked by the “metabolic inversion” phenomenon. Increased ratios were
found in III/I for metabolites that were also profiled with a “metabolic inversion” effect in IV/I (e.g.,
AMP, oxypurinol, myo-inositol, and creatine phosphate); thus, they might critically contribute to UBC
advancement. On the other hand, decreased ratios were observed in III/I for several metabolites that
were also presented with downregulated proportions in IV/I (e.g., uracil and propylene glycol) and,
as such, they could presumably function as UBC-specific “oncosuppressing” modulators/inducers.
Further discussion will focus on those metabolites that were herein identified as the most important by
both (NMR and LC-MS) applied technologies, and especially the ones with the highest fold change (x)
in metabolite levels and the highest alterations in all pairwise metabolic ratios.

Regarding the top two metabolites with the highest elevation contents in grade III (T24) versus
grade I (RT4) UBC cells, creatine phosphate and AMP, they were remarkably presented with 23x
and 34x positive change (upregulation), respectively (Table 1). Strikingly, by taking uracil as the
metabolite of reference (since it was downregulated both in III/I and IV/I cell pairs), their respective
fold changes (x) were further increased up to 32x and 50x values (Supplementary Table S5). Since
colon cancer-derived liver metastases carry higher creatine kinase brain type (CKB) levels compared to
primary tumors [43,44], UBC metastatic populations, in order to overcome hypoxia and other metabolic
stresses, may also upregulate CKB expression or/and activity. This allows (after CKB secretion) energy
to be likely captured from the extracellular ATP-mediated generation of creatine phosphate and its
subsequent SLC6A8-dependent import into metastatic cells to regenerate ATP. Similarly to colon
cancer cells [45], hypoxic UBC cells, in the absence of functional Hypoxia-Inducible Factor 1-alpha
(HIF1α) (a key regulator of hypoxia response) pathway, could adapt their energy metabolism via the
upregulation of creatine metabolism (and synthesis), thus opening a new chemotherapeutic window
for metastatic UBC targeting and management in the clinic. Most importantly, T24 (grade III) cells
contain a mutant version of the EP300 (KAT3B/p300) transcriptional co-activator (Supplementary
Table S4) (https://depmap.org/portal/cell_line/ACH-000018?tab=mutation), which, in its wild-type form,
is required for the transcriptional activation of HIF1α-target genes [46]. This indicates their competence
to survive and grow in adverse hypoxic environments through the engagement of HIF1α-independent,
but likely creatine-dependent, metabolic pathways. Given that the calculated fold change (x) in the
III/I pair for ADP is 20.76x, which is a value close to the 22.99x of creatine phosphate (Table 1) (an
approximately 1:1 molecular stoichiometry), T24 (grade III) cells may utilize intracellular creatine
phosphate as a phosphate donor to the available ADP to finally produce ATP.

The remarkably elevated content of AMP in T24 (grade III) versus RT4 (grade I) cells indicates
its major value for UBC progression toward chemoresistance and metastasis. High levels of ADP
and AMP in a cell undergoing energetic stress/crisis cause significant increase in the AMPK kinase
activity [47]. Activated AMPK phosphorylates a number of target substrates to regulate cell growth,
metabolism, and autophagy [48]. Interestingly, activated H-RAS (G12V) requires autophagy for the
maintenance of tumorigenesis [49]. Therefore, it seems that the major AMP/ADP/ATP (AXPs) metabolic
reprogramming specifically observed in grade III (T24) cells may be tightly related to the aberrant
signaling of the H-RASG12V mutant oncoprotein. If so, H-RASG12V–AMP/ADP–AMPK–autophagy
must operate as an indispensable axis for UBC cell survival and growth in unfavorable and adverse

https://depmap.org/portal/cell_line/ACH-000018?tab=mutation
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(e.g., hypoxic or nutritionally deprived) environments. Since we have previously shown that T24 cells
are characterized by constitutively activated basal autophagy [34], the H-RASG12V-induced intracellular
energetic stress, in the form of AMP (and ADP) highly upregulated levels (this study), serves as a
valuable and powerful metabolic biomarker, with its implicated enzymes/regulators likely opening a
new therapeutic window for UBC metastasis and drug tolerance.

Intriguingly, propylene glycol and uracil herein emerged as metabolites that were downregulated
in both III/I and IV/I grade cell pairs. Especially for propylene glycol, a prominent reduction in its
intracellular contents was observed for both T24 (grade III) and TCCSUP (grade IV) compared to
RT4 (grade I) cells of reference. Propylene glycol is produced by the conversion of pyruvaldehyde
to lactaldehyde, which is then converted to propylene glycol via the aldehyde reductase mediation.
Aldo-keto reductases family 1 members A1 and B1 (AKR1A1 and AKR1B1) are part of the Aldo-keto
reductase superfamily and catalyze the reduction of several aldehydes. Data derived from the TCGA
(The Cancer Genome Atlas) platform (https://www.cbioportal.org) strengthen our interpretation for
perturbed (compromised) aldehyde reductase activities in advanced metastatic UBC disease, with 16%
and 7% of the examined muscle-invasive UBC patients (Bladder Cancer, Cell 2017, z: 1.5) exhibiting
deregulated expression/activity of the AKR1A1 and AKR1B1 enzymes, respectively, and 2.67% of them
bearing low mRNA levels of the AKR1A1 gene (https://www.cbioportal.org). Thereby, it seems that
T24 may have originated from a patient with a molecular signature of downregulated AKR1A1 gene
expression in the tumor cells.

A major advantage (and novelty) of the present study is the employment of two complementary,
state-of-the-art, analytical platforms: Nuclear Magnetic Resonance (NMR) and Mass Spectrometry
(MS). Their successful combination offers a comprehensive metabolic characterization that covers a
variety of chemical structures and concentrations of profiled metabolites. Strikingly, application of
the MS-based metabolomics technology led to the detection and identification of novel molecules
that could significantly contribute to UBC progression toward metastasis. Two peptides, Tβ4 and
Tβ10, were identified with a high confidence level, and proved to be statistically significant both in the
discrimination of the four (I, II, III, and IV) groups and of the low(er) or high(er) malignancy grade
pairwise comparisons. Members of the β thymosin family form a (1:1) complex with the monomeric
G-Actin protein, acting as its sequestration peptides, thus critically controlling actin cytoskeleton
dynamics [50]. Furthermore, in contrast to Tβ4, Tβ10 can also directly bind to RAS, inhibiting its
signaling activity, in an endothelial cell environment [51]. Nevertheless, in a T24-specific cellular
setting, Tβ10 could no longer interact with the mutant H-RASG12V form, thus presumably releasing
its aberrant signaling function(s) to drive the oncogenic and metastatic phenotypes of grade III UBC
cells. Hence, the strikingly elevated contents of Tβ4 (10x) and Tβ10 (40x) in T24 (grade III) compared
to RT4 (grade I; reference) cell line strongly suggest their actin cytoskeleton remodeling-dependent
role in UBC advancement to metastasis, with oncogenic H-RASG12V (after its presumable release
from Tβ10) also orchestrating UBC aggressiveness and drug/radiation resistance. Accordingly, Tβ10
overexpression correlates with the poor prognosis and progression of UBC disease [52], while Tβ4
expression is associated with clinical outcomes and clinicopathological parameters of UBC patients (it
is significantly increased in UBC patients versus normal (control) volunteers) [53]. Most importantly,
TCGA-derived data unveiled 6% of muscle-invasive UBC cases (bladder cancer, “amplification”
and “mRNA high”, Cell 2017, z: 1.5) to be carrying upregulated levels of TMSB10 gene (encodes
Tβ10) expression (https://www.cbioportal.org), thus indicating the in vivo importance of Tβ10 (and
Tβ4) to UBC progression toward high-malignancy grades and aggressive metastatic stages that are
characterized by resistance to (chemo/radio)therapy, shorter survival of patients, and, generally,
poor prognosis.

https://www.cbioportal.org
https://www.cbioportal.org
https://www.cbioportal.org
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4. Materials and Methods

4.1. Chemicals and Reagents

The detailed information for chemicals and reagents is listed in Supplementary Materials.

4.2. Cell Lines and Culture Conditions

The UBC human cell lines RT4, RT112, T24, and TCCSUP were used in the present study. RT4 was
obtained from ECACC-Sigma-Aldrich (Munich, Germany). RT112 was kindly provided by Professor
J.R. Masters (London, England, UK). T24 and TCCSUP were purchased from ATCC-LGC Standards
GmbH (Wesel, Germany). All cell lines were derived from urothelial cell carcinomas of human
urinary bladder, with RT4 being classified as malignancy grade I, RT112 as grade I–II (II), T24 as
grade III, and TCCSUP as grade IV. All four UBC cell lines were authenticated mainly using in-house
established technologies. Cell authentication was based on several combinational criteria, such as the
cell-specific morphology, growth rate, nutritional requirement, mitotic index, immunofluorescence
pattern (e.g., Epithelial–Mesenchymal Transition (EMT) phenotype), mutational load (e.g., H-RAS
and TP53), signaling activity (e.g., Akt and p44/42 MAPK {ERK1/2}), protein content, gene-expression
profiling, drug response, motility (e.g., wound-healing assay) and tumorigenicity (e.g., xenograft in
Severe Combined ImmunoDeficient (SCID) mouse). All four UBC human cell lines were being tested
periodically, but, most importantly, they were thoroughly examined just before the commencement
of their large-scale growth for the herein implemented metabolomics analysis. The detailed culture
conditions are described in the Supplementary Materials.

4.3. Cell Collection and Storage

The analytical protocols of cell collection and storage are described in the Supplementary Materials.

4.4. Metabolomics Experiments

The detailed protocols of metabolomics experiments (e.g., metabolite extraction, sample
preparation, NMR, and MS analysis) are described in the Supplementary Materials.

4.5. Data Preprocessing

The binning of NMR spectra was conducted (0.001/0.02 ppm) using the AMIX software. Regions
of water and contaminations being observed at the blank solutions were removed from the analysis.
Pairwise ratios of the metabolites identified in NMR analysis were also calculated (42 × 42 = 1.764
metabolic traits). In MS analysis, data preprocessing was performed using the XCMS online. Peak-based
normalization was applied in order to correct data within the batch experiment. Specifically, a QC-based
signal-correction method (QC-RLSC), engaging the non-linear local polynomial regression (LOESS),
was performed using the MetaX R package [54]. KNN (K-Nearest Neighbor) imputation for missing
values and filtering of features based on the % Relative Standard Deviation (RSD) in QCs were applied.

4.6. Metabolite/Pathway Identification

The Chenomx NMR suite (Chenomx Inc., Alberta, Canada) was utilized for the NMR-mediated
metabolite identification. For the recognition of peptides, the mMass peptide tool v. 5.5.0 was suitably
employed [55]. The Cytoscape platform was engaged for visualizing molecular networks of significant
metabolites derived from the NMR analysis [56,57].

4.7. Statistical Analysis

Principal Component Analysis (PCA), Partial Least Square-Discriminant Analysis (PLS-DA), and
Orthogonal Partial Least Square-Discriminant Analysis (OPLS-DA), using SIMCA-P 14.0 (Umetrics,
Umea, Sweden), were suitably applied. The quality of obtained models was assessed via R2X (variance
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explained by X Matrix) and Q2 (Goodness of prediction) obtained by 7x cross-validation, parameters,
and permutation test results (100 random permutations for the PLS-DA and OPLS-DA models).
The Knowledge Discovery by Accuracy Maximization Analysis (KODAMA) R package [58] was
performed for the unsupervised extraction of variables in the MS analysis. The selected classifier
was PLS-DA, and the procedure was repeated 100 times. Two methods implemented in the same
package were used for the ranking of variables’ importance; Kruskal–Wallis test and the model’s
loadings. Breiman’s Random-Forest (BR-F) algorithm was also evaluated using the StatTarget tool [59].
A number of 500 grown trees and 20 permutations were imported as model parameters. Multi-ROC
AUC was used for the evaluation of methods performance using the multi-ROC R package [60].

5. Conclusions

In the present study, the metabolic landscapes of grade I, II, III, and IV UBC human cell lines
were extensively mapped. Obtained results indicated a prominently perturbed amino acid and
purine/pyrimidine metabolism with a remarkable increase of most metabolites being identified in
grade III (T24) UBC cells, using RT4 (grade I) as the line of reference. Surprisingly, insignificant changes
were observed for grade IV (TCCSUP) cells, thus implying the activation of a “metabolic inversion”
process. T24 (grade III) has proved the most powerful and versatile cell line, which is able to accurately
and reliably unveil the metabolic signature of highly malignant and strongly metastatic UBC pathology.
“Metabolic inversion” has to be mechanistically investigated, in order to open new chemotherapeutic
windows for UBC advancement to drug-resistant metastasis. Analysis of NMR-derived metabolite
contents and ratios showed significant perturbations in purine and pyrimidine metabolism, while
MS analysis demonstrated the importance of Tβ4 and Tβ10 peptides to UBC progression toward
metastasis. AMP (and ADP) highly upregulated levels indicate the H-RASG12V-induced intracellular
energetic stress/crisis, and they can serve as valuable metabolic biomarkers, while the remarkably
elevated contents of Tβ4 and Tβ10 in the T24 (grade III) compared to RT4 (grade I) cell line strongly
suggest their actin cytoskeleton remodeling-dependent role in UBC advancement to metastasis and
drug tolerance. Furthermore, decreased levels of propylene glycol are indicative of dysregulated
AKR1A1 gene expression in the tumor cells of urinary bladder, thus rendering it (propylene glycol) as
a potentially significant biomarker.

Our work also made use of novel statistical approaches for metabolomics data analysis. Metabolic
ratios are strongly suggested to account for the size effect present in the data and to highlight novel
metabolic pathways. Hence, their combined employment and biological interpretation are crucial in
order to avoid erroneous results. A common bottleneck in the untargeted MS analysis is the selection
of important variables. We herein compared the typical PLS-DA method used in metabolomics
analyses with other statistical tools carrying different merits and drawbacks (e.g., KODAMA and
BF-R). Our results underline the importance of either pairwise comparisons or the implementation of
more sophisticated multivariate approaches, such as the Random Forest models, which may exhibit
better performances.

Most importantly, the integration of high-resolution metabolic maps with high-scale proteomic
profiles containing enzymes/regulators that are able to control the homeostasis of grade-dependent
UBC intracellular metabolites will shed light on mechanisms of urothelial bladder tumorigenesis, and
they will benefit our tools in terms of the safe, efficient, and generally successful (including reduced
medical costs) diagnostic and therapeutic management of the advanced UBC disease in the clinic.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/5/1892/
s1. References [61,62] are cited in the Supplementary Materials.
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