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Abstract

Finite element (FE) analysis has become an increasingly popular technique in the study of human

joint biomechanics, as it allows for detailed analysis of the joint/tissue behavior under complex,

clinically relevant loading conditions. A wide variety of modeling techniques have been utilized to

model knee joint ligaments. However, the effect of a selected constitutive model to simulate the

ligaments on knee kinematics remains unclear. The purpose of the current study was to determine

the effect of two most common techniques utilized to model knee ligaments on joint kinematics

under functional loading conditions. We hypothesized that anatomic representations of the knee

ligaments with anisotropic hyperelastic properties will result in more realistic kinematics. A

previously developed, extensively validated anatomic FE model of the knee developed from a

healthy, young female athlete was used. FE models with 3D anatomic and simplified uniaxial

representations of main knee ligaments were used to simulate four functional loading conditions.

Model predictions of tibiofemoral joint kinematics were compared to experimental measures.

Results demonstrated the ability of the anatomic representation of the knee ligaments (3D

geometry along with anisotropic hyperelastic material) in more physiologic prediction of the

human knee motion with strong correlation (r ≥ 0.9 for all comparisons) and minimum deviation

(0.9º ≤ RMSE ≤ 2.29°) from experimental findings. In contrast, non-physiologic uniaxial elastic

representation of the ligaments resulted in lower correlations (r ≤ 0.6 for all comparisons) and

substantially higher deviation (2.6° ≤ RMSE ≤ 4.2°) from experimental results. Findings of the

current study support our hypothesis and highlight the critical role of soft tissue modeling

technique on the resultant FE predicted joint kinematics.
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1. Introduction

The knee is the largest and one of the most complex joints within the human body,

consisting of both patellofemoral and tibiofemoral articulations. Anatomical structures such

as ligaments, menisci and articular cartilage provide stability across the knee joint during

functional daily activities. However, abnormalities due to age, injury, disease and other

factors can affect biomechanical function of the knee joint. Mechanistic computational

models, if properly validated, can serve as effective tools in parametric analyses, as well as

population-based clinical studies. In particular, the use of finite element (FE) analysis has

became progressively popular in the study of joint biomechanics as it allows for detailed

analysis of the joint/tissue behavior under complex, clinically relevant loading conditions.

FE methods have provided considerable insight into knee joint biomechanics, including

ligament function, ligament reconstruction technique, and implant design. Due to inherent

challenges associated with experiments (in vivo and ex vivo) and the associated high cost

and time, FE analysis has long been recognized and trusted as a reliable alternative method

in the study of human joints. Primary advantage of this numerical approach lies in precise

control over boundary conditions, material properties and structural alterations in parametric

studies. Moreover, the ligament forces/strains, contact forces/areas, and stress/strain

distribution across soft and hard tissue structures are invaluable products of such a numerical

approach, which are challenging, if not impossible, to obtain experimentally. The reliability

of FE models strongly relies upon: a) appropriate representation of the geometry and

assigned material properties, b) realistic simulation of interactions, constraints and boundary

conditions, and finally c) thorough validation against experimental data.

Ligaments are soft connective tissues with a composite structure that connect bones

together. As the main contributor to the overall joint stability, the mechanical function of

these connective tissue structures is to guide normal joint motion and restrict abnormal joint

movement. This is assisted by the topology of the articulating surfaces, muscle forces and

other soft tissue constraints such as joint capsule. Physiologic characteristic of soft tissue

material composition has always challenged the accuracy of the simplified numerical models

of anatomical joints, specifically the knee joint which has been the scope of numerous

studies due to its critical role in stability of human body during various physiological

activities. A wide variety of modeling techniques have been utilized to model knee joint

ligaments [1–12]. In majority of earlier FE studies of the knee joint, uniaxial discrete line

elements (truss or spring) with simplified material properties were used to model ligaments

[1–4,7]. Such an assumption of soft tissue geometry is associated with short- comings such

as inability to predict non-uniform 3-dimensional (3D) stresses and strains across the tissue

[6, 8,11]. Using Image processing techniques, ligaments were modeled with a 3D

reconstructed geometry coupled with isotropic hyperelastic constitutive material models

[9,10,12]. More recently, transversely isotropic hyperelastic constitutive models were

developed and used to study knee ligaments [5,6,8,11].

Considering the critical role of ligaments in providing joint stability and associated

assumptions with each modeling techniques in the characterization of tissue material

properties, joint kinematics are expected to differ. However, the effect of selected

constitutive model to simulate the ligaments on knee kinematics remains unclear. Hence,

Kiapour et al. Page 2

Appl Math (Irvine). Author manuscript; available in PMC 2014 September 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



this study was designed to investigate alterations in knee joint kinematics under functional

loading resulting from two different ligament modeling techniques: 1) uniaxial

representation with isotropic non- linear elastic properties and 2) anatomic 3D representation

with anisotropic hyperelastic properties. We hypothesized that anatomic representations of

the knee ligaments with anisotropic hyperelastic material property will result in more

realistic kinematics.

2. Methods

2.1. Model Development

Following IRB approval, computerized tomography (CT) and magnetic resonance imaging

(MRI) scans of a young adult female athlete’s lower limb (Age: 25 years, Height: 170 cm,

Weight: 64.4 Kg) were used to capture bony and soft tissue geometry, respectively. Scans

were obtained while the subject was supine with the leg in an unloaded neutral position. CT

and MRI scans were co-registered for bony and soft tissue alignment. 3D geometry of the

pelvis, leg (upper and lower) and foot segments were reconstructed from high resolution CT

images in all three anatomical planes. Sagittal, coronal and axial MR images of the left knee

were used to generate the 3D geometry of the knee articular cartilage, menisci, and knee

cruciate and collateral ligaments. These geometries were then converted into solid 8-node

hexahedral elements and subsequently imported into the ABAQUS FE package v6.11

(SIMULIA, Providence, RI, USA) to generate the FE model (Figure 1). While cruciate and

collateral ligaments, articular cartilage and menisci were modeled as 3D structures, the rest

of the simulated knee ligaments, joint capsule and muscle tendons were modeled as uniaxial

truss elements (Figure 2).

To optimize computational expense, pelvis, proximal femur (from 10 cm above the joint

line), distal tibia (from 10 cm below the joint line), fibula and foot were modeled as rigid

bodies, while the remaining structures were considered deformable. Following assembly,

proper material properties taken from literature were assigned to each segment [1,2,5,13–

20]. Bones were modeled as linear elastic [21–25] with different moduli assigned to cortical

and trabecular regions consistent with earlier FE studies of the human knee joint [2,13].

Tibiofemoral and patellofemoral articular cartilage were modeled as isotropic linear elastic

[16]. Menisci were modeled as transversely isotropic linear elastic with different mechanical

properties in circumferential, axial and radial directions [14,15,26]. Horn-meniscus

attachment was simulated with multiple linear elastic truss elements [13].

Knee cruciate and collateral ligaments were modeled as incompressible anisotropic

hyperelastic structures using the Holzapfel-Gasser-Ogden (HGO) material model [27]. HGO

model is a hyperelastic, anisotropic material model that was developed to model the criss-

crossed fibrous soft tissues like the illiac adventitia [16]. Briefly, isotropic non-collagenous

ground matrix is modeled by the incompressible hyperelastic neo-Hookean component of

the strain energy density (SED) function, whereas the transversely isotropic fibrous

component is modeled by the following function developed by Gasser et al. [27]:
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where Ψ̄g and Ψ̄fi are the respective isotropic and anisotropic components of the SED, a0 is

the mean orientation of the fibers, H (a0,κ) is the structure tensor, and κ is the dispersion

parameter for the fiber family. A statistical distribution function allows for a spatial

distribution of the fiber orientation. Fibrous component of the SED supports tensile loads

only and is defined as:

where Ī1= tr C̄ is the first invariant of C̄ and H is a generalized structure tensor defined as:

The non-collagenous ground substance is modeled using the following incompressible

isotropic neo-Hookean model:

Cruciate ligaments were modeled using two fiber families each in order to simulate bundles

within ACL and posterior cruciate ligament (PCL) [17,18]. Both MCL (superficial bundle)

and LCL were modeled using one family of fibers. Given the microstructure of the MCL

and LCL, the HGO model was modified to account for a single family of fibers:

FE simulation of experimental uniaxial tensile tests along the longitudinal direction as per

Butler et al. [28] for the ACL and PCL, and Quapp and Weiss [29] for the MCL were used

to derive a series of coefficients for the constitutive model using a curve fitting technique

(Figure 3). Coefficients for the lateral collateral ligament (LCL) were assumed to be

identical to those of the MCL [5,11]. All other simulated knee ligaments were modeled as

non-linear elastic, tension-only materials using truss elements with theoretically defined

cross-sectional area. Further, 13 uniaxial truss-connector elements were used to simulate

trans-knee muscle forces (Figure 2).

All other simulated knee ligaments were modeled as non-linear elastic, tension-only

materials using truss elements with theoretically defined cross-sectional area. Further, 13

uniaxial truss-connector elements were used to simulate trans-knee muscle forces (Figure 2).
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A frictionless surface-to-surface tangential contact with non-linear finite sliding interaction

was used to simulate articular surfaces [3,11,13]. Since the current FE model was developed

to investigate phenomena associated with knee biomechanics and relevant injuries, key knee

joint soft tissue structures have been incorporated into the model. Both tibiofemoral and

patellofemoral joints were simulated as six degree-of-freedom (DOF) joints with their

motion defined by their surrounding soft tissue constraints and the topology of the articular

surfaces. The hip and ankle joints were simplified as virtual ball-and-socket joints controlled

by imported kinematic data, while optimizing for computational efficiency. The kinematics

of the hip, knee and ankle joints were defined using the local coordinate systems proposed

by Grood and Suntay [30]. Subsequently, the model was extensively validated against direct

experimental measures of tibiofemoral kinematics, ACL and MCL strains and ti-biofemoral

articular cartilage pressure distribution under a wide range of quasi-static and dynamic

loading conditions [31].

2.2. Loading Profile

Four quasi-static loading conditions were simulated in order to compare the predicted FE

kinematics with experimental measurements from an ex vivo study of 19 fresh frozen

cadaveric legs [32,33]:

1) 0 to 50 Nm of knee abduction (at 25° of flexion), 2) 0 to 50 Nm of knee abduction + 20

Nm of internal tibial rotation (at 25° of flexion), 3) baseline (no external load, 0° – 90° of

flexion), 4) 15 Nm of internal tibial rotation (0° – 90° of flexion), all under simulated muscle

loads (quadriceps: 400 N and hamstrings: 200 N).

In order to study the effects of soft tissue material models, 3D reconstructed cruciate and

collateral ligaments were substituted with multiple uniaxial representations (truss elements)

with isotropic non-linear elastic material properties [2], while maintaining the same origins,

insertions and initial orientation as the 3D model. Finally, the quasi-static simulations were

repeated using uniaxial ligaments.

3. Results

3.1. Frontal Plane Kinematics (Valgus Rotation)

Both FE models resulted in similar frontal plane quality of motion as the experimental

measurements under both single- and multi-axial loading conditions (Figure 4). Models also

replicated coupled motion as observed in cadaveric experiments shown by knee valgus

rotation under an additional internal tibial rotation moment of 20 Nm (Figure 4). The

anatomic 3D representation of ligaments resulted in strong correlations (Pure abduction: r =

0.97, Combined abduction and internal rotation: r = 0.91) with minimum deviation (Pure

abduction: RMSE = 0.9°, Combined abduction and internal rotation: RMSE = 1.2°) between

FE model predictions and experimental measures of tibiofemoral frontal plane kinematics.

Moreover, model predictions were within the range of 95% confidence intervals of average

experimental measurements. In contrast, the uniaxial assumption coupled with simplified

constitutive model of the knee ligaments resulted in substantially lower correlations (Pure

abduction: r = 0.6, Combined abduction and internal rotation: r = 0.52 ) and higher

deviation (Pure abduction: RMSE = 2.6°, Combined abduction and internal rotation: RMSE
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= 4.2 ) from the average experimentally quantified tibiofemoral kinematics. In addition to

lower correlation and higher deviation from average experimental data, model predictions of

joint kinematics were demonstrated to be outside the range of 95% confidence intervals of

average experimental measurements (Figure 4).

3.2. Axial Plane Kinematics (Internal Rotation)

Both FE models demonstrated similar trends as the experimental measurements under both

single-and multi-axial loading conditions (Figure 5). Models also replicated knee joint

screw-home mechanism [34] as observed in cadaveric experiments shown by internal tibial

rotation during the early phase of flexion (Figure 5). The anatomic 3D representation of

ligaments resulted in strong correlations (Baseline: r = 0.87, Internal rotation: r = 0.91) with

minimum deviation (Baseline: RMSE = 1.1°, Internal rotation: RMSE = 2.2°) between FE

model predictions and experimental measures of tibiofemoral axial plane kinematics.

Moreover, model predictions were within the range of 95% confidence intervals of average

experimental measurements. In contrast, the uniaxial assumption coupled with simplified

constitutive model of the knee ligaments resulted in substantially lower correlations

(Baseline: r = 0.58, Internal rotation: r = 0.47) and higher deviation (Baseline: RMSE =

3.2°, Internal rotation: RMSE = 3.7°) from the average experimentally quantified

tibiofemoral kinematics. In addition to lower correlation and higher deviation from average

experimental data, model predictions of joint kinematics were demonstrated to be outside

the range of 95% confidence intervals of average experimental data (Figure 5).

4. Discussion

FE analysis is a powerful numerical technique that makes it feasible to investigate the

biomechanical behavior of complex biological structures. During the past three decades, a

large number of knee FE models with varying degrees of complexity, accuracy and

functionality have been reported in the literature [1–12]. Simplified uniaxial representations

of ligaments coupled with non-physiologic constitutive material models have been

associated with the majority of these models [1–4,7]. More recent studies have used a 3D

representation of knee ligaments with various degrees of anatomical and constitutive model

complexity [5,6,8,9,11,12,28]. Song and colleagues developed a 3D FE model of the

tibiofemoral joint which included 3D representation of the femur, tibia and ACL (with

distinct AM and PL bundles) modeled as an isotropic hyperelastic material [9]. A similar

model was developed by Gardiner and Weiss in order to study MCL biomechanics under

functional loading [6]. They utilized a novel transversely isotropic, incompressible

hyperelastic material model in order to simulate the MCL (superficial bundle) as a

composite soft tissue structure [6]. Limbert et al. used a similar constitutive material model

to study ACL biomechanics under passive tibial translation and flexion in a 3D FE model of

an isolated ACL [8]. Others [5,11] have used similar constitutive modeling approaches with

3D simulations of key knee ligaments incorporated in 3D FE models of the knee joint.

Despite substantial research efforts to develop soft tissue constitutive material models, little

is known about the effects of such techniques on resultant joint function.

The purpose of the current study was to determine the effect of two most common

techniques utilized to model knee ligaments on joint kinematics under functional loading
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conditions. A previously developed, extensively validated anatomic FE model of the knee

developed from a healthy, young female athlete was used. FE models with 3D anatomic and

simplified uniaxial representations of main knee ligaments (ACL, PCL, MCL and LCL)

were recruited to simulate four quasi-static loading conditions as conducted in the cadaveric

experiments.

The 3D anisotropic hyperelastic model resulted in a more physiologic prediction of the

human knee motion under a range of single-and multi-planar functional loading conditions

with strong correlation and minimal deviation from experimental data. In contrast, lower

correlations in addition to notable deviations were observed using simplified uniaxial

modeling technique. The current findings support our hypothesis and highlight the critical

role of soft tissue modeling technique on resultant FE predicted joint kinematics.

Anatomically accurate 3D representation of such structures coupled with structurally

motivated constitutive models [27] facilitate implementation of realistic ligament

mechanical properties such as finite deformation, anisotropy and non-linear incompressible

fiber-reinforced structures. This approach also permits incorporation of realistic interactions

between adjacent structures such as ligament-bone interaction that may also result in a more

realistic simulation of lines of action as they vary with changes in joint orientation [8,11].

Moreover, anatomic representation of the ligament will also make it feasible to quantify

local stress-strain distribution across the tissue, which is critical in study of ligament injury

mechanisms.
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Figure.1.
FE model development steps.
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Figure 2.
Developed FE model of lower extremity. (ACL: anterior cruciate ligament; PCL: posterior

cruciate ligament; LCL: lateral collateral ligament; sMCL, dMCL and oMCL: superficial,

deep and oblique bundles of medial collateral ligament; CAPm, CAPl, CAPo and CAPa:

medial, lateral, oblique popliteal and arcuate popliteal bundles of posterior capsule; ALS:

anterolateral structure; PFL: popliteofibular ligament; MPFL: medial patellofemoral

ligament; LPFL: lateral patellofemoral ligament; PT: patellar tendon)
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Figure 3.
FE predictions vs. experimental data of the uniaxial tensile test for ACL, PCL (Top) and

MCL (Bottom).
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Figure 4.
FE predictions Vs. experimental data for tibiofemoral frontal plane kinematics (Shaded area

represent experimental 95% confidence intervals).
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Figure 5.
FE predictions Vs. experimental data for tibiofemoral axial plane kinematics (Shaded area

represent experimental 95% confidence intervals).
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