

Interesting Images

Multimodal Characterization of a PSMA-Positive Thyroid Nodule Using 68 Ga-PSMA and 124 Iodine PET/US Fusion Imaging

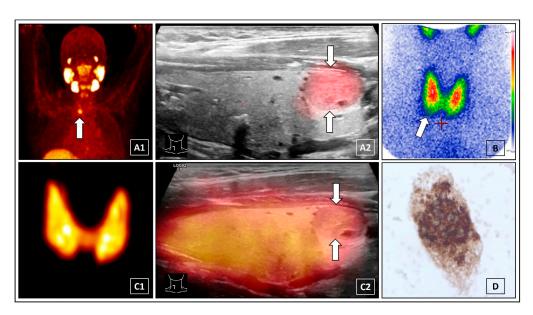
Martin Freesmeyer ^{1,*}, Falk Gühne ¹, Robert Drescher ¹, Thomas Winkens ¹, Nikolaus Gassler ² and Philipp Seifert ¹

- Clinic of Nuclear Medicine, Jena University Hospital, 07749 Jena, Germany; falk.guehne@med.uni-jena.de (F.G.); robert.drescher@med.uni-jena.de (R.D.); thomas.winkens@med.uni-jena.de (T.W.); philipp.seifert@med.uni-jena.de (P.S.)
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, 07749 Jena, Germany; nikolaus.gassler@med.uni-jena.de
- * Correspondence: martin.freesmeyer@med.uni-jena.de; Tel.: +49-(0)-3641-9329-0801

Abstract: A 54-year-old male diagnosed with prostate cancer was referred for ⁶⁸Gallium-PSMA-11 PET/CT. The scan revealed a solitary PSMA-positive thyroid lesion. On PET/ultrasound fusion imaging, a nodule with moderate risk of malignancy (TIRADS 4B) could be unambiguously correlated. Additional ¹²⁴Iodine PET/ultrasound fusion imaging revealed normal iodine uptake within the PSMA-positive thyroid nodule. Fine-needle aspiration cytology was performed using an ultrasound needle-guidance system. The cytopathological investigation confirmed a benign thyroid nodule and excluded a thyroid carcinoma as well as a prostate cancer metastasis. Immunohistochemistry was positive for thyroglobulin staining.

Keywords: PSMA; prostate cancer; thyroid nodule; PET/US fusion imaging; immunohistochemistry

Citation: Freesmeyer, M.; Gühne, F.; Drescher, R.; Winkens, T.; Gassler, N.; Seifert, P. Multimodal Characterization of a PSMA-Positive Thyroid Nodule Using ⁶⁸Ga-PSMA and ¹²⁴Iodine PET/US Fusion Imaging. *Diagnostics* **2022**, *12*, 472. https://doi.org/10.3390/ diagnostics12020472


Academic Editor: Alessio Imperiale

Received: 12 January 2022 Accepted: 11 February 2022 Published: 12 February 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Figure 1. Prostate-specific membrane antigen (PSMA) "theranostics" is gaining increasing importance in the treatment of prostate cancer [1]. A 54-year-old male diagnosed with prostate cancer presented to our clinic for ⁶⁸Gallium-PSMA-11 PET/CT. The PET-scan incidentally revealed a solitary PSMA-positive lesion of the thyroid gland (**A1**, white arrow). There was no history of thyroid pathologies and laboratory thyroidal values were normal. Subsequently, ⁶⁸Gallium-PSMA-11 PET/ultrasound (US) fusion imaging was performed and unambiguously depicted a solitary PSMA-positive thyroid

Diagnostics **2022**, 12, 472

nodule (15 \times 13 \times 8 mm) in the lower right lobe (A2, white arrows), classified as Kwak-TIRADS 4B [2]. PSMA-positive thyroid uptake can be related to several diagnoses, including thyroid cancer, metastases of prostate cancer or renal cell carcinoma, benign thyroid nodules, and de Quervain's thyroiditis [3-5]. 99mTc-scintigraphy did not clearly characterize the nodule (B, white arrow) and therefore cervical ¹²⁴Iodine PET/CT was performed. The ¹²⁴Iodine maximum intensitiy projection (MIP) PET imagiges did not reveal any hyper- or hypofunctional thyroidal lesions (C1). Additional PET/US fusion imaging clearified a normal iodine uptake of the PSMA-positive nodule (C2, white arrows). For real-time PET/US fusion imaging, the PET/CT images (biograph mCT 40; Siemens, Erlangen, Germany) were transferred to the LOGIQ E9 ultrasound device (GE Healthcare, Milwaukee, WI, USA). According to anatomical landmarks on CT, e.g., spine, larynx, trachea, the PET/CT images were manually superimposed and aligned to the ultrasound images using a magnetic field based navigation system and the VNAV software (GE Healthcare) [6]. For ¹²⁴ Iodine PET/US fusion imaging, a single bed position (10 min scan time) low-activity (1 MBq ¹²⁴Iodine) cervical PET/CT (low-dose CT scan) was performed. The effective whole body dose for the patient was ~6.8 mSv [7]. The "FUSION iENA" study (obtained by independend ratings of 106 nuclear medicine physicians) revealed that ¹²⁴Iodine PET/US fusion imaging significantly improves the accuracy and the confidence of the functional assessement of thyroid nodules as well as influences the suggested treatment for patients with ambiguous findings on conventional diagnostics [8]. Fine-needle cytology was performed using an magnet-based ultrasound needle-guidance system to ensure that the cells were acquired from the PSMA-positive thyroid nodule [9]. The cytopathological investigation showed a benign thyroid nodule according to Bethesda category II with positive thyroglobulin staining (D) [10]. Finally, thyroid cancer as well as an intra-thyroid prostate cancer metastasis could be ruled out. This interesting image demonstrates the first application of PET/US fusion imaging in a PSMA-positive thyroid nodule and demonstrates the diagnostic potential of combined modern multimodal methods in the field of nuclear medicine.

Author Contributions: Conceptualization, M.F. and P.S.; methodology, M.F., F.G. and P.S.; software, P.S.; validation, M.F., F.G., R.D. and N.G.; formal analysis, P.S.; investigation, P.S. and T.W.; resources, M.F. and N.G.; data curation, T.W.; writing—original draft preparation, P.S.; writing—review and editing, M.F., F.G., R.D., T.W. and N.G.; visualization, P.S.; supervision, M.F.; project administration, M.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The reported investigations were conducted in accordance with the Declaration of Helsinki. All examinations were clinically justified according to the local standard of care.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Plichta, K.A.; Graves, S.A.; Buatti, J.M. Prostate-Specific Membrane Antigen (PSMA) Theranostics for Treatment of Oligometastatic Prostate Cancer. *Int. J. Mol. Sci.* **2021**, 22, 12095. [CrossRef] [PubMed]

- Kwak, J.Y.; Han, K.H.; Yoon, J.H.; Moon, H.J.; Son, E.J.; Park, S.H.; Jung, H.K.; Choi, J.S.; Kim, B.M.; Kim, E.-K. Thyroid imaging reporting and data system for US features of nodules: A step in establishing better stratification of cancer risk. *Radiology* 2011, 260, 892–899. [CrossRef] [PubMed]
- 3. Piek, M.W.; de Vries, L.H.; Donswijk, M.; de Keizer, B.; de Boer, J.P.; Lodewijk, L.; van Leeuwaarde, R.S.; Vriens, M.R.; Hartemink, K.J.; van der Ploeg, I. Retrospective Analysis of PSMA PET/CT Thyroid Incidental Uptake in Adults: Incidence, Diagnosis and Treatment/outcome in a Tertiary Cancer Referral Center and an Academic Hospital. *Eur. J. Nucl. Med. Mol. Imaging* 2022. [CrossRef] [PubMed]
- 4. Leder, T.; Drescher, R.; Guhne, F.; Theis, B.; Freesmeyer, M. De Quervain Subacute Thyroiditis with Moderate PSMA Uptake Mimicking Thyroid Metastasis of Renal Cell Carcinoma. *Clin. Nucl. Med.* 2022, 47, 221–222. [CrossRef] [PubMed]

Diagnostics 2022, 12, 472 3 of 3

5. Keidar, Z.; Gill, R.; Goshen, E.; Israel, O.; Davidson, T.; Morgulis, M.; Pirmisashvili, N.; Ben-Haim, S. 68Ga-PSMA PET/CT in prostate cancer patients—Patterns of disease, benign findings and pitfalls. *Cancer Imaging* **2018**, *18*, 39. [CrossRef] [PubMed]

- Seifert, P.; Winkens, T.; Kuhnel, C.; Guhne, F.; Freesmeyer, M. I-124-PET/US Fusion Imaging in Comparison to Conventional Diagnostics and Tc-99m Pertechnetate SPECT/US Fusion Imaging for the Function Assessment of Thyroid Nodules. *Ultrasound Med. Biol.* 2019, 45, 2298–2308. [CrossRef] [PubMed]
- 7. Westphal, J.G.; Winkens, T.; Kuhnel, C.; Freesmeyer, M. Low-activity (124)I-PET/low-dose CT versus (131)I probe measurements in pretherapy assessment of radioiodine uptake in benign thyroid diseases. *J. Clin. Endocrinol. Metab.* **2014**, 99, 2138–2145. [CrossRef] [PubMed]
- 8. Winkens, T.; Seifert, P.; Hollenbach, C.; Kuhnel, C.; Guhne, F.; Freesmeyer, M. The FUSION iENA Study: Comparison of I-124-PET/US Fusion Imaging with Conventional Diagnostics for the Functional Assessment of Thyroid Nodules by Multiple Observers. *Nuklearmedizin* 2019, 58, 434–442. [CrossRef] [PubMed]
- 9. Freesmeyer, M.; Kuhnel, C.; Guhne, F.; Seifert, P. Standard Needle Magnetization for Ultrasound Needle Guidance: First Clinical Experiences in Fine-Needle Aspiration Cytology of Thyroid Nodules. *J. Ultrasound Med.* **2019**, *38*, 3311–3319. [CrossRef] [PubMed]
- 10. Cibas, E.S.; Ali, S.Z.; NCI Thyroid FNA State of the Science Conference. The Bethesda System For Reporting Thyroid Cytopathology. *Am. J. Clin. Pathol.* **2009**, 132, 658–665. [CrossRef] [PubMed]