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Abstract

This paper proposes a machine-learning based reduced-order model that can provide fast and 

accurate prediction of the glottal flow during voice production. The model is based on the 

Bernoulli equation with a viscous loss term predicted by a deep neural network (DNN) model. The 

training data of the DNN model is a Navier-Stokes (N-S) equation-based three-dimensional 

simulation of glottal flows in various glottal shapes generated by a synthetic shape function, which 

can be obtained by superimposing the instantaneous modal displacements during vibration on the 

prephonatory geometry of the glottal shape. The input parameters of the DNN model are the 

geometric and flow parameters extracted from discretized cross sections of the glottal shapes and 

the output target is the corresponding flow resistance coefficient. With this trained DNN-Bernoulli 

model, the flow resistance coefficient as well as the flow rate and pressure distribution in any 

given glottal shape generated by the synthetic shape function can be predicted. The model is 

further coupled with a finite-element method based solid dynamics solver for simulating fluid-

structure interactions (FSI). The prediction performance of the model for both static shape and FSI 

simulations is evaluated by comparing the solutions to those obtained by the Bernoulli and N-S 

model. The model shows a good prediction performance in accuracy and efficiency, suggesting a 

promise for future clinical use.
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1. Introduction

Voiced sound production in the human larynx is a complex fluid-structure interaction 

process in which the forced air from the lungs interacts with vocal fold tissues to initiate 

sustained vibrations that modulate the glottal airflow. The waveform of the glottal flow sets 

the important acoustic parameters of the sound source. One of the important research goals 
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in voice production is to understand the interaction mechanism between glottal 

aerodynamics and vocal fold tissue mechanics. The fluid-structure interaction during normal 

vocal fold vibrations has been well understood with the myoelastic-aerodynamic theory [1]. 

During each vibration cycle, a mucosal wave travels from the inferior aspect to the superior 

of the vocal folds. The glottis, which refers to the space between the two vocal folds, forms a 

convergent shape during vocal fold opening and a divergent shape during vocal fold closing. 

This alternative convergent-divergent glottal shape generates a temporal pressure asymmetry 

inside the glottis, which ensures sustained energy transfer from airflow to vocal fold tissues 

to sustained vibrations. In voice disorders, however, this vibration pattern would be 

disrupted. Voice disorders are often associated with vocal fold pathologies, such as nodule, 

cyst, scar, paralysis, and so forth. These pathologies alter the geometry and material 

properties of vocal fold tissues, resulting in irregular mucosal waves. In these conditions, the 

glottis during vibrations often exhibits irregular shapes [2]. For example, the glottal channel 

is often curved from the inferior to superior due to left-right asymmetry. For another 

example, a multi-channel configuration is often generated due to partial contact of the two 

vocal folds, which are supposed to be in full contact at the end of the vibration cycle to fully 

close the glottis. How these irregular glottal shapes affect fluid-structure interactions and the 

final voice outcome is not well understood. Such understanding is important to elucidate the 

fundamental mechanism of irregular vocal fold vibrations associated with vocal fold 

pathologies. Computer models have been playing an important role in understanding the 

physics of voice production. The very first computer model of voice production was the two-

mass model, which modeled each vocal fold as a system of two coupled, spring-mass 

dampers [3]. The mathematical formulation of the two-mass model was revolutionary in that 

it provided a very simple and computationally effective manner for computing vocal fold 

dynamics. The model has been extensively used for studying the physics of voice production 

in both normal and pathological conditions [4–10]. A shortcoming of this type of model is 

the lack of physiological correlation between tissue properties and model system parameters 

[11,12]. Although some effort has been made to establish these relationships [13,14], direct 

clinical applications are still difficult because a realistic representation of laryngeal 

physiology is often required in clinics.

Continuum vocal fold models improved upon the lumped-mass model by being able to 

incorporate the realistic morphology and material properties of vocal folds, therefore having 

a great potential for clinical applications. While continuum vocal fold models have been 

greatly improved from simple 2D configurations and isotropic materials to highly complex 

3D subject-specific geometries and anisotropic materials [15–19], their use in simulating 

vocal pathologies is still very limited due to a lack of an accurate and rapid computation of 

flow pressures in highly irregular glottal shapes. The Bernoulli equation has been 

dominantly used for its simplicity but it relies on the assumption of symmetric, inviscid one-

dimensional (1D) flow and single-channel glottal shape [20–22]. While this assumption is 

reasonable for normal vocal fold vibrations, it becomes erroneous in many irregular glottal 

shapes in which the intraglottal flow can be severely curved and the glottis often presents a 

multiple channel configuration. The Navier-Stokes (N-S) equation can compute the correct 

flow pressures in these irregular shapes; however, this approach is computationally 

extremely expensive and as such, is not suitable for clinical use. A major clinical application 
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of a computational voice simulator would be simulation based surgery management, such as 

predicting the outcome of surgical interventions, optimizing the surgical adjustments, 

providing patient-specific solutions based on patient-specific anatomy and needs.

It has been shown that self-sustained oscillation of vocal folds is dominated by a few modes 

of vibration, even when the motion is abnormal [23–26]. This high predictability of the 

vibratory pattern of the vocal folds stimulated the use of a machine-learning approach to 

model glottal flow dynamics based on glottal shapes. In this paper, the model is based on the 

Bernoulli equation with a viscous loss term predicted by a deep neural network (DNN) 

model. The DNN model is used for two reasons. First, the viscous loss of glottal flow is 

mainly affected by its channel shape; yet, the relationship is highly complex and nonlinear. 

The DNN model is well known for its ability in learning complex relationships using a large 

amount of data [27], which makes it well suitable for learning the relationship in the current 

problem. Second, vocal fold vibration patterns are dominated by a few vibration modes; 

therefore, the shapes of the glottal flow channel are highly predictable. By generating flow 

solutions using a large amount of combinations of vibration modes, vast data can be 

provided for training the DNN model. The training data of the DNN model is the N-S 

equation based three-dimensional simulation of glottal flows in various glottal shapes 

generated by a synthetic shape function. The input parameters of the DNN model are the 

geometric and flow parameters extracted from discretized cross sections of the glottal shapes 

and the output target is the corresponding flow resistance coefficient which determines the 

viscous loss term of the modified Bernoulli equation. The target value of the flow resistance 

coefficient is calculated from the modified Bernoulli equation where the values of the flow 

rate and pressure distribution are obtained from the N-S solution. K-fold cross validation 

[27] is performed to fine tune the architecture and hyperparameters of the DNN. With this 

trained DNN-Bernoulli model, the flow resistance coefficient as well as the flow rate and 

pressure distribution in any given glottal shape generated by the synthetic shape function can 

be predicted. Furthermore, in order to assess the dynamical prediction performance of the 

DNN-Bernoulli model, a specific fluid-structure interaction (FSI) case of the glottal flow is 

studied. First, a continuum-mechanics based vocal fold model is coupled with the Bernoulli 

model to obtain various shapes extracted from one vibration cycle; then based on these 

shapes, the DNN model is trained in the same way as in the synthetic shape case. Finally, the 

Bernoulli model in the coupled FSI solver is replaced by the trained DNN-Bernoulli model 

to predict the glottal vibration dynamics. The prediction performance of the DNN-Bernoulli 

model in accuracy and efficiency is demonstrated by comparing with the results obtained by 

the Bernoulli and N-S model.

The outline of the paper is organized as follows: Formulation of the reduced-order model is 

elaborated in Section 2.1. Implementation of the DNN model for synthetic glottal shapes is 

discussed in Section 2.2. Implementation of the DNN-Bernoulli model for FSI simulation of 

a continuum-mechanics based vocal fold model is presented in Section 2.3. Performance of 

the DNN-Bernoulli model for synthetic shapes and FSI simulation is evaluated in Sections 

3.1 and 3.2, respectively. Finally, the conclusions are summarized in Section 4.
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2. Materials and Methods

2.1. Formulation of the Reduced-Order Model

2.1.1. Schematic of the Airway in the Larynx—The schematic of the airway in the 

larynx is illustrated in Figure 1. The view is in the direction of the length of vocal folds. The 

airway is composed of three parts, including a contraction part formed by the subglottal part 

of the vocal folds, the glottis formed by the medial surface of the vocal folds and an 

expansion part, which is the vocal tract [3]. The vocal folds are modelled discretely with 

uniformly distributed cross sections along the airflow direction. The definition of the 

notations in the figure are listed in Table 1.

2.1.2. Modified Bernoulli Equation—Ishizaka et al. [3] did an early work by adding 

viscous terms in the Bernoulli equation to predict the pressure pattern inside the glottis. 

Concretely, in the contraction part, based on the measurements of Van den Berg et al. [28], a 

loss factor of 0.37 was included to account for the abrupt contraction; in the glottis part, a 

viscous loss term was added to modify the pressure drop in the Bernoulli equation; in the 

expansion part, the pressure recovery was estimated with Newton’s law. Motivated by their 

work, we applied a viscous loss term to each section of the glottis and combine them with 

the Bernoulli equation to obtain the pressure pattern inside the glottis.

Refer to Figure 1, for the contraction and glottis parts, assuming that the vocal folds are 

discretized with n + 1 uniformly distributed cross sections along the airflow direction, then 

similar to the method in Reference [3], the modified Bernoulli equation which includes the 

viscous loss can be expressed in the following form:

Ps + ρ
2

Q
As

2
= Pn + ρ

2
Q
An

2
+ ρ

2Q2 ∑
i = 1

n fri
Ai

2 , (1)

where ρ is the air density, Ai is the glottal area at the ith cross section, fr is the flow 

resistance coefficient of each section of the glottis whose value is not known a priori and 

needs to be predicted by the DNN model. Details about the implementation of the DNN 

model will be discussed in Section 2.2.

For the expansion part, similar to the treatment in Reference [3], we have:

Pn − Pc = − ρ
2

Q
An

2
⋅ 2An

Ac
1 − An

Ac
. (2)

Therefore, the pressure at each cross section of the glottis can be written as follows:

Pi = Ps + ρ
2

Q
As

2
− ρ

2
Q
Ai

2
− ρQ2

2 ∑
j = 1

i frj
Aj

2 , (3)

where 1 ≤ i ≤ n.
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2.1.3. Calculation of the Flow Rate—In order to calculate the pressure distribution in 

the glottis from Equation (3), besides the prediction of the flow resistance coefficient fr, the 

value of the flow rate Q is also required. In previous reduced-order modeling of the vocal 

folds [20–22], the flow rate was obtained by assuming that the pressure at the minimum 

sectional area equals to zero and not including the viscous effects. In this subsection, we 

propose a more accurate way of predicting the flow rate based on the modified Bernoulli 

model.

Let the index i = n in Equation (3); we have:

Pn = Ps + ρ
2

Q
As

2
− ρ

2
Q
An

2
− ρQ2

2 ∑
j = 1

n frj
Aj

2 . (4)

By substituting Equation (4) into Equation (2), we can easily derive the expression of the 

flow rate Q as follows:

Q = 2 Ps − Pc

ρ − 1
As2

+
1 − 2

An
Ac

1 −
An
Ac

An2
+ ∑j = 1

n frj
Aj2

.
(5)

Once the value of fr on each section of the glottis has been predicted by the DNN model, the 

flow rate Q can be directly obtained from Equation (5).

2.2. Implementation of the DNN Model

As discussed in Section 2.1, an accurate prediction of the flow resistance coefficient fr is the 

key to the success of the proposed flow model. Assuming that the value of fr of each cross 

section of the glottis can be determined by the corresponding local geometrical and physical 

features, then a fully connected DNN model [27] can be used to establish the mapping 

relationship between the input features and corresponding output value of fr. In this work, 

the training data set is the Navier-Stokes equation based three-dimensional simulations of 

glottal flow in various glottal shapes generated by a synthetic shape function. Given a good 

selection of geometrical and physical input features and the corresponding target value of fr, 

the DNN model can be trained. With this trained model, the flow rate in Equation (5) and 

pressure distribution in Equation (3) in any given glottal shape generated by the synthetic 

shape function can be predicted in an efficient and accurate way. The workflow of the 

training and prediction process is illustrated in Figure 2.

2.2.1. Synthetic Shape Generation—The synthetic glottal shapes will be generated 

based on the surface-wave approach [4]. The shape of the medial surface of vocal fold g(y, 

z, t) at any time instant t during vibration can be obtained by superimposing the 

corresponding modal displacements ξ(y, z, t) on the prephonatory (initial) geometry ξ0(y, 

z), that is,
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g(y, z, t) = ξ0(y, z) + ξ(y, z, t), (6)

where y and z indicate the inferior-superior (airflow) and anterior-posterior directions, 

respectively. By specifying different parameter values in the expression of ξ0(y, z), one can 

generate convergent or divergent prephonatory shapes [2]. In the expression of modal 

displacements ξ(y, z, t), the modes of vibration are described with (m, n), where m and n 
correspond to the number of half-wavelengths in the anterior-posterior and inferior-superior 

directions, respectively. For details of the expression of ξ0(y, z), ξ(y, z, t) and the 

explanation of the corresponding parameters, please refer to Reference [2].

For the purpose of simulating normal vocal fold vibration, we select two different 

prephonatory shapes, that is, convergent and divergent, the two most dominant modes, that 

is, (m, n) = (1, 0), (1, 1) and 16 phases during one vibration cycle to generate 64 shapes in 

total. Note that the contact surface is calculated as an average of the left and right surface 

coordinates and the contraction and expansion parts are extruded based on the generated 

medial surface. The resolution of the uniform surface mesh is 0.01 cm. The representative 

convergent and divergent generated shapes at fully closed, fully open and in between fully 

closed and fully open phases are illustrated in Figures 3 and 4, respectively.

2.2.2. Feature Extraction and Target Value of fr—For each of the above 64 shapes, 

an in-house sharp-interface immersed-boundary N-S flow solver [18] is used to obtain the 

ground truth values of the flow rate and average pressure on each section along the inferior-

superior direction of the vocal folds, then the target value of fr on each section can be 

calculated with the following equation:

fri target =
P i − 1 NS − P i NS + ρ

2
QNS
Ai − 1

2
− QNS

Ai

2

ρ
2

QNS
Ai

2 , (7)

where the subscript NS represents the N-S solution.

For training the DNN model, the vocal folds are uniformly discretized into n = 128 cross 

sections along the inferior-superior (y) direction such that the spacing resolution between 

every two consecutive cross sections is 0.012 cm. As illustrated in Figure 5, a total of 8 local 

geometrical and physical features at each discretized cross section are defined and extracted, 

that is, position Y i* , area Ai* , hydraulic diameter Di* , upstream angle αi
+ , downstream 

angle αi− , shape change rate ΔSi* , pressure drop ΔPi*  and Reynolds number (Rei) of the i 

th cross section. The non-dimensional form of those input features are used and the 

corresponding expressions are listed in Table 2, where Di = 4Ai/Pei is the hydraulic diameter 

with Pei the wetted perimeter [29] of the ith cross section, ΔP = Ps − Pc the total pressure 

drop along the inferior-superior direction of the vocal folds, ν the kinematic viscosity 

coefficient. In this case, the inlet and outlet pressure are set to be Ps = 1.0 kPa and Pc = 0.0 

kPa, respectively and air density and kinematic viscosity are chosen as ρ = 1.145 × 10−3 

g/cm3 and ν = 1.655 × 10−1 cm2/s, respectively.
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The input features can be organized as a two-dimensional matrix:

x =

Y 1* A1* D1* α1
+ α1− ΔS1* ΔP1* Re1

Y 2* A2* D2* α2
+ α2− ΔS2* ΔP2* Re2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Y m* Am* Dm* αm+ αm− ΔSm* ΔPm* Rem m × 8

. (8)

Similarly, the output target can be written as a vector:

y =

fr1
fr2
⋮
⋮

frm m × 1

, (9)

where m is the number of cross sections over all generated shapes.

2.2.3. Implementation of the DNN—The mapping relationship between the input 

features x and output target y can be established by a fully connected DNN [27,30]. Neurons 

in the fully connected layer have connections to all neurons of the previous layer,

y = σ(wx + b), (10)

where w is the learnable weights, b is the additive bias and σ is the nonlinear activation 

function.

The loss function J of the DNN is

J = 1
N ∑

m
y − y

2

2
+ λ w

2
, (11)

where y is the predicted value and λ is the regularization coefficient to prevent the 

overfitting of the DNN model.

The whole data set (x, y) is randomly split into the training and test sets. Since the training 

set is relatively small, to avoid the overfitting of the model, we use k-fold cross validation 

[27] to fine tune the architecture and hyperparameters of the DNN, such as the number of 

hidden layers, the number of neurons on each hidden layer, the initialization of the weights, 

the activation function, the optimization method, the mini-batch size, the number of epochs 

and the dropout rate [27]. By convention, the value of k is chosen between 5 and 10, 

therefore the value herein is set to be k = 5. The final architecture and hyperparameters of 

the DNN are chosen from those that have the lowest errors on the validation set. The final 

DNN model is then trained on the full training set and the prediction performance of the 

trained model is evaluated on the test set.
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The final architecture of the DNN is illustrated in Figure 6. The input layer has 8 neurons 

which correspond to the input features in Table 2. To increase the training accuracy and 

efficiency, the input features have been normalized by the zero-mean normalization [27]. 

The output layer has a single neuron which corresponds to the ground truth value of the flow 

resistance coefficient fr. The linear activation function is used on the output layer. Besides 

the input layer and output layer, there are four hidden layers with 256, 64, 16 and 4 neurons 

on each of them, respectively. To prevent overfitting, each hidden layer is followed with a 

dropout layer with a 20% dropout rate [31]. All of the weights on each layer are initialized 

with a random normal distribution. The Rectified Linear Units (ReLU) activation function 

[32] is used on the hidden layers. The DNN model is optimized using a mean-squared loss 

function with an adaptive version of the stochastic gradient descent algorithm called Nadam 

(Nesterov Adam) [33]. To balance between the robustness of stochastic gradient descent and 

the efficiency of batch gradient descent, mini-batch gradient descent is used [33]. The DNN 

model is trained with 20000 epochs and the mini-batch size is 256 for each epoch. The DNN 

model is implemented on the open-source machine learning platform Keras [34] using 

TensorFlow [35] as the backend.

2.3. DNN-Bernoulli Model for FSI Simulation

In the previous subsection, the DNN-Bernoulli model has been implemented for various 

synthetic shapes generated by Equation (6). In this subsection, we aim to apply the DNN-

Bernoulli model in FSI simulation. To this end, FSI simulation is first performed by 

coupling the Bernoulli model with a finite-element method (FEM) based solid dynamics 

solver [36] to obtain the self-sustained vibrations. Then various glottal shapes at different 

time instants of one vibration cycle are extracted and simulated with the N-S solver. Similar 

to the procedures in Section 2.2, the input features x are extracted from these shapes, the 

corresponding output target y is obtained from the N-S solution, the data set (x, y) is fed into 

the neural network to train and evaluate the DNN model. The final FSI simulation is 

conducted by coupling the DNN-Bernoulli model with the FEM solver and the results are 

compared with those obtained by the Bernoulli and N-S solver to demonstrate the 

improvement of the present model. The abstract workflow is illustrated in Figure 7.

Prephonatory Geometry of the Vocal Folds—The prephonatory geometry of a vocal 

fold (left half) is shown in Figure 8. The length L along the anterior-posterior direction (z) 

and thickness T along the inferior-superior direction (y) are 1.5 cm and 0.3 cm, respectively. 

To simplify the model, only the lateral vibration is allowed, the vertical motion is fixed. An 

initial gap Δx = 0.002 cm along the lateral direction (x) exists between the left and right 

counterpart.

Each vocal fold is divided into three layers including the cover, ligament and body. Each 

layer is assumed to be invariant in the anterior-posterior direction. The vocal fold tissue is 

modeled as viscoelastic, transversely isotropic material. The material properties of each 

layer of the vocal fold [15,37] are listed in Table 3.
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3. Results and Discussion

3.1. Performance of the DNN-Bernoulli Model for Synthetic Shapes

The history of 5-fold cross validation results for synthetic shapes is plotted in Figure 9. The 

horizontal axis corresponds to the number of epochs and the vertical axis corresponds to the 

mean absolute error (MAE) between the predicted and target value of y. Since dropout is 

activated when training but deactivated when evaluating on the validation set, MAE on the 

validation set is smaller than on the training set. The scatter plot of the performance of the 

trained model on the test set is illustrated in Figure 10. The horizontal and vertical axes 

correspond to the true and predicted values of y on the test set, respectively. MAE on the 

training set, validation set and test set are 0.0769, 0.0705 and 0.0487, respectively. The 

relative MAE divided by the mean ground-truth value of y on the test set is around 6.5%.

To demonstrate the improvement of the present DNN-Bernoulli model over the original 

Bernoulli equation, we define the relative error of flow rate and pressure distribution on a 

certain shape as follows:

EQ = Q − Q
Q × 100% (12)

EP = 1
n

∑i = 1
n Pi − P i

Ps
× 100% (13)

where Q and Pi are the flow rate and pressure distribution obtained by the N-S solver, 

respectively, while Q and P i are the corresponding values obtained by the DNN-Bernoulli or 

Bernoulli model. The comparison of the error range between the DNN-Bernoulli and 

Bernoulli model on the test set is listed in Table 4. We can see that the error range of both 

flow rate and pressure distribution of the DNN-Bernoulli model is significantly lower than 

that of the original Bernoulli model.

Figures 11–14 show the contour of the surface pressure on the vocal folds in three 

representative glottal shapes predicted by the DNN-Bernoulli, N-S and Bernoulli models. A 

common phenomenon can be observed from all these figures, that is, the pressure 

distribution predicted by the DNN-Bernoulli model is much closer to that obtained by the N-

S solver, which shows the improvement of the present DNN-Bernoulli model. Note that 

compared with the Bernoulli model, the additional CPU time required for the present DNN-

Bernoulli model during prediction is almost negligible. For the prediction of a newly 

generated synthetic glottal shape, the average CPU time required for the DNN-Bernoulli 

model is just around 1 second on a single CPU, while that required for the N-S model is 

around 2 h per CPU on a parallel computer with 32 CPUs.

3.2. Performance of the DNN-Bernoulli Model for FSI Simulation

Various glottal shapes are extracted from the converged Bernoulli-FEM FSI results within 

one vibration cycle. The number of extracted shapes is 92 in this case. The input features x 
listed in Table 2 are extracted from these shapes. The corresponding output target y, that is, 
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the target value of fr is obtained from the N-S solution by Equation (7). The whole data set 

(x, y) is fed into the same neural network as described in Section 2.2.3 to train and evaluate 

the DNN model.

The history of 5-fold cross validation results is plotted in Figure 15. The scatter plot of the 

performance of the trained model on the test set is illustrated in Figure 16. MAE on the 

training set, validation set and test set are 0.0620, 0.0551 and 0.0393, respectively. The 

relative MAE divided by the mean ground-truth value of y on the test set is around 4.0%.

With the trained model, the DNN-Bernoulli model is coupled with the FEM solver to 

conduct FSI simulation of the vocal fold vibration. Time history of the flow rate predicted by 

the DNN-Bernoulli model is compared with that obtained by the Bernoulli model in Figure 

17. It can be observed that the maximum value of flow rate is reduced from around 235 

mL/s to 135 mL/s with the present model due to the inclusion of the viscous loss. To 

evaluate if the DNN-Bernoulli model provides a more accurate prediction on the pressure 

pattern inside the glottis, we extracted the pressure patterns in two representative convergent 

and divergent glottal shapes from the DNN-Bernoulli results and compared that to those 

obtained by the Bernoulli and N-S models using the same glottal shapes. The results are 

illustrated in Figures 18 and 19, respectively. From these figures, we can see that the 

pressure distribution along the inferior-superior direction of the vocal folds can be well 

predicted by the present model. Compared with the Bernoulli model, the additional CPU 

time required for the present DNN-Bernoulli model during prediction is almost negligible.

4. Conclusions

A machine-learning based reduced-order model that can provide fast and accurate prediction 

of the dynamics of the glottal flow is proposed in this paper. The model is based on the 

Bernoulli equation with a viscous loss term predicted by a DNN model. The training data for 

the DNN model is collected by generating various glottal shapes using the synthetic shape 

function. The input features are extracted from discretized cross sections of the generated 

glottal shapes and the output target is the corresponding flow resistance coefficient that can 

be obtained from the N-S solution. 5-fold cross validation is performed to fine tune the 

architecture and hyperparameters of the DNN. With this trained DNN-Bernoulli model, the 

flow resistance coefficient as well as the flow rate and pressure distribution in any given 

glottal shape generated by the synthetic shape function can be predicted. Furthermore, a 

specific FSI case of the glottal flow is studied in order to assess the dynamical prediction 

performance of the DNN-Bernoulli model. First, a continuum-mechanics based vocal fold 

model is coupled with the Bernoulli model to obtain various shapes extracted from one 

converged vibration cycle; then based on these shapes, the DNN model is trained in the same 

way as in the synthetic shape case. Finally, the Bernoulli model in the coupled FSI solver is 

replaced by the trained DNN-Bernoulli model to predict the glottal vibration dynamics.

The prediction errors of the DNN model for synthetic shape and FSI cases are around 6.5% 

and 4.0%, respectively. In terms of the CPU time, compared with the Bernoulli model, the 

additional CPU time required for the DNN-Bernoulli model is almost negligible once the 

DNN model is trained. The predicted DNN-Bernoulli results such as the flow rate and 
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pressure distribution for both cases are compared with those obtained by the Bernoulli 

model and N-S model. The good prediction performance of the present DNN-Bernoulli 

model in accuracy and efficiency for both cases shows a great promise for future clinical 

use.
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Figure 1. 
Schematic of the vocal folds model.
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Figure 2. 
Workflow of training and prediction.
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Figure 3. 
Representative convergent shape (For each representative shape, three planar surfaces in the 

x − y plane are extracted along the anterior-posterior (z) direction to give a detailed view of 

the glottis shape and the number of each planar surface is denoted as 1, 2, 3 from the 

anterior to the posterior direction, respectively).
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Figure 4. 
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Representative divergent shape (For each representative shape, three planar surfaces in the x 
− y plane are extracted along the anterior-posterior (z) direction to give a detailed view of 

the glottis shape and the number of each planar surface is denoted as 1, 2, 3 from the 

anterior to the posterior direction, respectively).
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Figure 5. 
Schematic of discretized cross sections.
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Figure 6. 
Architecture of the deep neural network (DNN).
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Figure 7. 
Workflow of the DNN-Bernoulli model for fluid structure interaction (FSI) simulation.

Zhang et al. Page 20

Appl Sci (Basel). Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Prephonatory geometry of the vocal fold (left half).
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Figure 9. 
Five-fold cross validation results (synthetic shape).
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Figure 10. 
Performance of the trained model on the test set (synthetic shape).
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Figure 11. 
Surface pressure contour and distribution (convergent).
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Figure 12. 
Surface pressure contour and distribution (divergent).
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Figure 13. 
Surface pressure contour and distribution (convergent-divergent).
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Figure 14. 
Surface pressure contour and distribution (divergent-convergent).
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Figure 15. 
Five-fold cross validation results (FSI shape).
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Figure 16. 
Performance of the trained model on the test set (FSI shape).
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Figure 17. 
Comparison of the flow rate obtained by the DNN-Bernoulli and Bernoulli model.
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Figure 18. 
Convergent shape.
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Figure 19. 
Divergent shape.
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Table 1.

Definition of the notations in Figure 1.

Notation Definition

Q flow rate

Ps prescribed pressure at the entry of the contraction part

P1 pressure at the exit of the contraction part

P2 pressure at one of the sections of the glottis part

Pn pressure at the exit of the glottis part

Pc prescribed pressure at the expansion part

Lc, Lg, Le length of the contraction, glottis and expansion parts, respectively

L1, L2 distance between consecutive sections of the glottis part
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Table 2.

Extracted input features.

Input Features Non-Dimensional Expression

Position Y i* =
Yi − Y0

Yn − 1 − Y0

Area Ai* =
Ai
A0

Hydraulic diameter Di* =
Di
D0

Upstream angle αi
+ =

Di − Di − 1
Li

Downstream angle αi− =
Di + 1 − Di

Li + 1

Shape change rate ΔSi* =
L0ΔAi
LiA0

Pressure drop
ΔPi* = ΔP

ρ
2

Q
Ai

2

Re Rei =
Q
Ai

Di
v
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Table 3.

Material properties of each layer of the vocal fold.

ρ (g/cm3) Ep (kPa) vp Epz (kPa) vpz Gpz (kPa)

Cover 1.043 2.01 0.9 40 0.0 10

Ligament 1.043 3.31 0.9 66 0.0 40

Body 1.043 3.99 0.9 80 0.0 20

ρ is the tissue density; Ep and Epz are the transversal and longitudinal Young’s Modulus, respectively; νp and νpz are the in-plane transversal and 

longitudinal Poisson ratio, respectively; Gpz is the longitudinal shear modulus. [15,37].
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Table 4.

Comparison of error range between Bernoulli and DNN-Bernoulli prediction.

EQ EP

Bernoulli 0.27–48.7 0.2–19.16

DNN-Bernoulli 0.01–8.94 0.01–8.53
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