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Switching the rate and pattern of cell division for neural tube closure
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ABSTRACT
The morphogenetic movement associated with neural tube closure (NTC) requires both positive and
negative regulations of cell proliferation. The dual requirement of cell division control during NTC
underscores the importance of the developmental control of cell division. In the chordate ascidian,
midline fusions of the neural ectoderm and surface ectoderm (SE) proceed in the posterior-to-
anterior direction, followed by a single wave of asynchronous and patterned cell division in SE.
Before NTC, SE exhibits synchronous mitoses; disruption of the synchrony causes a failure of NTC.
Therefore, NTC is the crucial turning point at which SE switches from synchronous to patterned
mitosis. Our recent work discovered that the first sign of patterned cell division in SE appears was
an asynchronous S-phase length along the anterior-posterior axis before NTC: the asynchrony of S-
phase is offset by the compensatory G2-phase length, thus maintaining the apparent synchrony of
cell division. By the loss of compensatory G2 phase, the synchronized cell division harmoniously
switches to a patterned cell division at the onset of NTC. Here we review the developmental
regulation of rate and pattern of cell division during NTC with emphasis on the switching
mechanism identified in our study.
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Introduction

The dorsal hollow neural tube is a shared characteristic
of chordates and formed in large part by the formation,
shaping and folding of neural plate followed by midline
fusion of neural folds.1-4 Studies performed mainly in
mice and chicks have indicated that the multistep mor-
phogenetic events of neural tube closure (NTC) require
the tight spatiotemporal regulation of cell division.1,2

The importance of the spatiotemporal regulation of cell
division for NTC can be partly explained by the dual
effects of cell division on the morphogenetic movement;
cell division can facilitate or inhibit morphogenetic
movement in a context-depending manner. In both
cases, the spatiotemporal regulation of cell division is the
key factor for the proper progression and completion of
NTC as we briefly review in the following sections.

Cell proliferations that facilitate neural tube
morphogenesis

The neural plate of vertebrates is a neuroepithelium
that undergoes symmetrical proliferative cell divisions

(progenitor expansion) during NTC; only after the
completion of NTC, the neural plate undergoes asym-
metric cell divisions and differentiation (neurogene-
sis).1 If the switch from symmetric to asymmetric
divisions (i.e., the balance of cell division and differen-
tiation) in the neural plate is accelerated or delayed,
defects in NTC arise.5-7 In addition, proliferation of
the tissues that have physical contact with the cranial
and spinal regions of neural plate, namely mesen-
chyme and hindgut endoderm, respectively, are
important for the proper NTC in each region. These
notions are suggested by the defects of NTC in mouse
mutants for Twist and Grainyhead-3 transcription
factors, which are required for the proliferation of
mesenchyme and hindgut endoderm, respectively.8,9

Moreover, requirement of surface ectoderm for NTC
has been suggested by the NTC defects in the mouse
mutant for transcription factor AP-2a, whose epider-
mal expression is thought to be crucial for NTC.10,11

Although the AP-2a-regulated cellular process
required for NTC remains unclear,12 cell proliferation
is one possible target.13,14 On a related note, a study in
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chicks has suggested that the orientation of cell divi-
sion in surface ectoderm is important for the bending
of neural plate.2,15 Overall, proper NTC requires the
coordinated proliferation of multiple tissues. Under-
standing how the deregulation of proliferation in tis-
sues other than the neural plate leads to the defects of
NTC, probably through an imbalance in the mechani-
cal forces acting between tissues,8,9 is an important
future challenge.

Morphogenetic cell shape changes that require a
temporal cell division arrest

An important effect of cell division on the morphoge-
netic movement has been suggested from the studies
of Drosophilamesoderm invagination (Fig. 1, left).16-18

In this process, mesodermal cells constrict their apical
surface in an actomyosin-dependent manner. Since
this important cell shape change (called ‘apical con-
striction’) depends on the actomyosin, which is differ-
ently organized with the actomyosin required for
cytokinesis, apical constriction is incompatible with
cell division. Therefore, the cell division of the meso-
derm is transiently arrested during the invagination in
order to avoid the competition between the apical con-
striction and cell division against the reorganization of

actomyosin. The cell cycle phase responsible for this
temporal cell division arrest is the G2 phase, since the
genetic screening for genes that compromise the coor-
dination of cell division and invagination of meso-
dermal cells identified the putative serine/threonine
kinase Tribbles,16-18 whose major target is the activator
of G2/M transition, Cdc25.

The incompatibility of morphogenetic cell shape
change and cell division has not been extensively stud-
ied during NTC compared to the mesodermal invagi-
nation in Drosophila. Nonetheless, stepwise process of
NTC in vertebrate embryos, which involves various
cell shape changes that are dependent on actomyosin,
may also be incompatible with cell division as we
explain below. During NTC, the neural plate is nar-
rowed along the medio-lateral axis and concomitantly
elongated along the anterior-posterior (A-P) axis by
the convergent extension of neural plate.1-4 This pro-
cess can be cooperatively promoted by apical junction
rearrangement under the control of planar cell polar-
ity (PCP) signaling.19,20 At the molecular level, the
PCP-related cadherin Celsr1 causes an apical junction
rearrangement through the DAAM1/PDZ-RhoGEF/
Rho-kinase pathway to activate the actomyosin-
dependent contraction of cell junction.20 Whether or
not cell division control is important for the apical

Figure 1. The temporal cell division arrest is important for 2 types of apical constriction, the mesoderm invagination in Drosophila and
the medial hinge point formation in chicks. In the upper column, the regions of apical constriction are indicated by the dotted boxes. In
the bottom column, the molecular events regulating the apical constriction are shown schematically.
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junction rearrangement remains unknown. Interest-
ingly, however, the convergent extension of the para-
xial mesoderm in Xenopus gastrula, which also
depends on the PCP signaling and actomyosin,
requires a reduction of cell division.21,22 These studies
point to the possibility that the PCP-dependent con-
vergent extension during NTC may also be incompati-
ble with cell division.

At the second step of NTC, neural plate is folded at
the medial hinge point (MHP).1-4 This process
depends on both PCP signaling20 and the actin-bind-
ing protein Shroom, which activates the contractility
of actomyosin bundles at adherens junction,23,24 lead-
ing to shrinkage of the apical area in the MHP cells.
Nevertheless, the formation of MHP could not be
blocked even if the actin filament is disrupted by cyto-
chalasin D treatment during NTC in both mice and
chicks, suggesting that the bending is promoted by
another mechanism that is independent of actin fila-
ment organization.25,26 The neural plates of mice and
chicks are pseudostratified neuroepithelia in which
the bipolar neural progenitors perform cell division at
the apical side.27 A lengthening of the cell cycle is
observed in MHP. Based on this observation, it was
proposed that the cell cycle lengthening is responsible
for facilitating the basal positioning of the nucleus and
concomitant apical constriction of MHP cells.27

Indeed, recent studies in chicks revealed interesting
links between cell cycle lengthening, apical constric-
tion and BMP signaling in MHP (Fig. 1, right).28-30

According to these studies, the cell cycle lengthening
is intimately coupled with low BMP signaling at
MHP. The low BMP-signaling state also facilitates
endocytosis of PAR3-PAR6-aPKC complex, thereby
causing the apical constriction of MHP cells.28-30 The
upstream mechanism regulating the variation of cell
cycle length along the dorsoventral axis including the
cell cycle lengthening at MHP is not well understood;
however, one gene responsible for the defects in NTC
in mice encodes Phactr4 protein phosphatase 1. The
mutants of this gene exhibit increased proliferation in
the ventral side of neural tube.31 The NTC defects in
this mouse can be rescued by the mutation of E2F,
which promotes cell cycle progression. This study sug-
gests the importance of dorsoventrally regulated pro-
liferation for proper NTC. Although the bending of
neural plate at MHP is promoted by multiple mecha-
nisms and more complex than the mesoderm invagi-
nation in Drosophila, temporal cell division arrest by

cell cycle lengthening is important for both types of
apical constriction (Fig. 1).

Relatively little is known about the final step of
NTC, fusion of the neural folds, because genetic analy-
ses have been complicated by the secondary defects in
the earlier steps.1 The neural fold is made up of the
borders of neural and surface ectoderms. The left and
right neural folds form a new contact at the dorsal
midline, thereby making a seamless neural tube and
the overlying epidermal layer.1-4 It has been postulated
that the cell membrane protrusions at the leading edge
of the surface ectoderm are important for the fusion
of neural folds.1,3 A recent study used conditional
knockout of the Rho family small GTPases to demon-
strate the essential role of the regulation of actomyosin
in the surface ectoderm for forming the cell protru-
sions required for the fusion of neural folds.32

Although the regulation of cell division during the
fusion of neural folds has not been well studied in ver-
tebrates, our studies in the chordate ascidian revealed
the crucial role of spatiotemporally regulated cell divi-
sion for the proper cell shape changes during neural
fold fusion as we describe in the following
sections.33,34

Ascidian as a simple model of cell cycle regulation
during NTC

A prominent feature of NTC is its directional progres-
sion along the A-P axis,1-4 which is most apparent
during the fusion of neural folds. The central nervous
system of urochordate ascidian consists of fewer than
400 neural cells, and the cell lineages of neural cells
and neighboring surface ectodermal cells have been
well described.4,35,36 These characteristics are advanta-
geous for the analysis of neural cell behaviors, and
thus the cellular mechanism of neural fold fusion was
recently revealed in the ascidian Ciona intestinalis.37

Actomyosin-driven rearrangement of the apical cell
junction is a well-established mechanism of cell shape
change that can promote morphogenesis (Fig. 2A).38

In Ciona, fusion of the neural ectoderm (NE) and sur-
face ectoderm (SE) occurs simultaneously at the dorsal
midline. Live analysis of the apical cell junction during
this process revealed that the junction between NE
and SE shrinks by the actomyosin contractility that is
activated by RhoA/Rho-kinase signaling. As a result,
cells of NE and SE are rearranged so that the NEs and
SEs on the left and right neural folds form new
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contacts and cell junctions (Fig. 2B).37 These apical
junction rearrangement events between NE and SE
occur repeatedly, thereby zipping-up the neural plate
into a tube. Although this mechanism is primarily
important for the directional progression of the zip-
pering in Ciona, filopodia is also observed, which may
support the progression of the process of zippering.33

Before the initiation of zippering, the epidermal
cells in the surface ectoderm (SE) of ascidian embryos
perform rapid and synchronous cell divisions, which
may function as proliferative cell divisions required
for expansion of the epidermis. Our study in 2011
revealed that the epidermal cell cycle is prolonged at
the G2 phase during the zippering, and this prolonga-
tion is attributable to down-regulation of the G2/M
regulator cdc25.33 The other key finding of this study
was that the timings of the zippering and cell division
along the A-P axis are tightly coordinated. Before the

zippering, the epidermal cells perform synchronous
cell division. After the zippering, however, the epider-
mal cells show a cell division wave in the posterior-to-
anterior direction, which chases the progression of the
zippering. More concretely, posterior epidermal cells
tend to divide earlier than anterior cells. In this paper,
we refer to the cell division wave characterized by
asynchronous cell division timing in a single round of
cell cycle as ‘patterned cell division’. The two changes
occurring at the onset of zippering (1) lengthening of
the G2 phase and (2) the switch from synchronous to
patterned cell division were suggested to be important
for postponing the occurrence of patterned cell divi-
sion until the completion of zippering.33 Indeed,
shortening of the G2 phase specifically in the epider-
mis by cdc25 overexpression resulted in a disruption
of the zippering, because mitoses interrupted the mor-
phogenetic movement (Fig. 2C),33 demonstrating the

Figure 2. (A) Basic process of apical junction rearrangement. The cells are labeled with NE, left SE or right SE to show that apical cell
rearrangement similar to the one shown in A can be seen during the zippering shown in B. The shrinkage of NE/SE junction (inward
double-arrowheads colored magenta) enables the subsequent formation of a new elongating junction between the left and right SEs
(outward double-arrowheads colored yellow). (B) The rearrangement of apical junction during zippering in the Ciona embryo is shown
in the same manner as in (A). (C) The cell shape change accompanying unscheduled cell division interrupts the shrinkage of apical
junction.
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incompatibility of the zippering with the epidermal
cell division. In contrast, the cell cycle phase and its
regulator that were responsible for the switch from
synchronous to patterned cell division at the onset of
NTC remained unclear.33 Therefore, our study in
2016 elucidated the respective contribution of the S
and G2 phases to the synchronous-to-patterned
switch of the cell division pattern (Fig. 3).34

Distinct roles of the S and G2 phases in regulation of
the cell division pattern

To distinguish the S and G2 phases in live embryos,
we employed a live cell cycle marker composed of a
proliferating cell nuclear antigen and fluorescent pro-
tein (PCNA-GFP fusion),39 which has been applied to
cell-cycle analysis of the neuroepithelium in zebra-
fish.40 This method allowed us to quantify the lengths
of S and G2 phases, and plot them as functions of the

distance from the posterior end of the embryos (Fig. 3,
bottom row). We found that the first sign of patterned
epidermal cell division exists in the synchronous cell
cycle that is one cell cycle earlier than the patterned
cell division as an asynchronous S-phase length along
the A-P axis that is offset by a compensatory G2-phase
length (Fig. 3, left column).34 This compensation of S-
phase asynchrony by G2 phase maintains the apparent
synchrony of the epidermal cell division before the
zippering. At the onset of zippering, loss of the com-
pensatory G2 phase occurs, thereby converting the
synchronized cell division into a patterned cell divi-
sion corresponding to the S-phase length (Fig. 3, right
column). The compensatory G2-phase length showed
a correspondence with the asymmetric expression of
the G2/M regulator cdc25 along the A-P axis, which is
the key regulator of the timing of epidermal cell divi-
sion in Ciona. Moreover, analyses of the cis-regulatory
element of cdc25 revealed that the asymmetric

Figure 3. Difference in cell cycle length at the 10th cell cycle (before the zippering) and at the 11th cell cycle (after the zippering) in
Ciona. In the upper row, the spatiotemporal variation of cell division is shown schematically. The epidermis and the neural plate uncov-
ered by the epidermis are colored orange and blue, respectively. The epidermal cells undergoing cell division are colored with the gray
scale according to the timing of mitosis. In the left side of the dotted line, zippering is completed and the epidermis overlaid the neural
tissue. Note that the cell division wave does not cross the dotted line because 11th mitosis occurs after the zippering. In the bottom
row, the dependencies of the S- and G2-phase length on the relative position of cells along the A-P axis are shown schematically. In the
10th cell cycle, the graded S phase length and compensatory G2 phase length summed up to the constant interphase length. In con-
trast, in the 11th cell cycle, the graded S phase length and constant G2 phase length summed up to the graded interphase length.
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expression of cdc25 requires the transcriptional activa-
tion by AP-2 and GATA, both of which show asym-
metric gene expressions along the A-P axis by
themselves.34 In vertebrates, transcription of AP-2 can
be modulated by retinoic acid,41,42 which is the key
morphogen regulating formation of the A-P axis. The
asymmetric expression of GATA along the A-P axis
has also been reported in vertebrates.43,44 These stud-
ies provide interesting parallels between the expres-
sion of these genes in ascidians and vertebrates. In
ascidians, the disruption of AP-2 and GATA causes
the loss of asymmetric cdc25 expression and the com-
pensatory G2 phase, which in turn causes the prema-
ture patterned cell division before NTC. Premature
loss of the compensatory G2 phase also resulted in the
unscheduled cell division in the cell undergoing the
shrinkage of apical junction at the NE/SE junction
thereby interrupting the apical junction rearrange-
ment and zippering (Fig. 2C).34 This result suggests
that the switch from synchronous to patterned epider-
mal cell division must be tightly regulated for the nor-
mal progression of the zippering. In summary, this
study demonstrated the distinct contributions of S
and G2 phase for the switch in epidermal cell division
pattern during NTC: S-phase asynchrony provides a
trigger of the patterned cell division, and the develop-
mentally regulated compensatory G2 phase deter-
mines the timing of the switch for patterned cell
division. Interestingly, a similar compensatory rela-
tionship between the S and G2 phase was also
observed in the neural plate, the analysis of which is a
key future challenge.34

Cell cycle compensation as a coordinator of the
timing of cell division with growth and
morphogenesis

The phenomenon of cell cycle compensation that
maintains the rate of cell division in spite of the
changes in the length of each cell cycle phase has
been recognized from the early days of the genetic
analysis of the basic cell cycle control. For example, a
temperature-sensitive fission-yeast mutant of the cell
cycle-regulator gene wee1 shows the shortening of
the G2 phase, but this is offset by the lengthening of
the G1 phase at the permissive temperature,45 and
therefore the yeast does not show any apparent
change in the total cell cycle length at the permissive
temperature. Likewise, shortening of the G1 phase by

the overexpression of cyclins in certain mammalian
cells causes lengthening of the G2 phase, thereby
maintaining the total cell cycle length.46,47 More
recently, a study on the Drosophila wing imaginal
disc has shown that such cell cycle compensation can
also be observed in a growing tissue of the multicellu-
lar organism.48 The study in Drosophila revealed that
the cell cycle compensation depends on the negative
feedback regulations of E2F activity. E2F promotes
the activation of G1/S- and M-Cdks, both of which
in turn inhibit the activity of E2F. These negative
feedback regulations can compensate for the shorten-
ing of the G1 phase by the lengthening of G2 phase
and vice versa, providing the first mechanistic insight
into the phenomenon of cell cycle compensation. In
the absence of E2F, cell cycle compensation fails, and
the frequency of apoptosis is increased when the cells
are forced to shorten or lengthen their G1 or G2
phases.48 Therefore, the authors of this study postu-
lated that the cell cycle compensation is a homeo-
static mechanism that insulates the regulation of the
cell division rate from the effects elicited by growth
factors that can shorten or lengthen a particular
phase of the cell cycle. The compensation between
the lengths of the S and G2 phases in the epidermis
of ascidians is reminiscent of the concept of cell cycle
compensations seen in other organisms, but the fun-
damental difference is that the compensatory G2
phase in the ascidian is developmentally regulated,
since we showed that the transcription of cdc25 is
regulated by tissue-specific transcription factors
rather than a ubiquitous factor such as E2F.34,49 Our
understanding of the mechanism of cell cycle com-
pensation during the NTC of ascidians is still incom-
plete. Indeed, there are at least 2 key remaining
questions in this system. First, what is the mechanism
regulating the S-phase asynchrony of epidermal cells,
which should also be regulated by the developmental
mechanism relevant to the patterning along the A-P
axis? And second, how generalizable is the develop-
mentally regulated cell cycle compensation during
NTC to other tissues or species? The latter question
can be addressed by elucidating the cell cycle com-
pensation in the neural plate of Ciona. It would also
be important in the future to examine whether the 2
types of cell cycle compensation identified in the
invertebrate model organisms namely Drosophila and
Ciona, are also relevant to the coordination of growth
and morphogenesis during the NTC of vertebrates.
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