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Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China, 3Key
Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs,
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Vibrio parahaemolyticus is a common pathogen usually controlled by antibiotics in

mariculture. Notably, traditional antibiotic therapy is becoming less effective

because of the emergence of bacterial resistance, hence new strategies need to

be found to overcome this challenge. Bacteriophages, a class of viruses that lyse

bacteria, can help us control drug-resistant bacteria. In this study, a novel Vibrio

parahaemolyticus phage phiTY18 isolated from the coastal water of Xiamen was

explored. Transmission electron microscopy showed that phiTY18 had an

icosahedral head of 130.0 ± 1.2 nm diameter and a contractile tail of length of

66.7 ± 0.6 nm. The phage titer could reach 7.2×1010 PFU/mL at the optimal MOI

(0.01). The phage phiTY18 had a degree of tolerance to heat and acid and base. At

the temperature of 50°C (pH7.0, 1h) the survival phages reached 1.28×106 PFU/mL,

and at pH 5-9 (30°C, 1h), the survival phages was greater than 6.37×107 PFU/mL

Analysis of the phage one-step growth curve revealed that it had a latent period of

10min, a rise period of 10min, and an average burst size of the phage was 48 PFU/

cell. Genome sequencing and analysis drew that phage phiTY18 had double-

stranded DNA (191,500 bp) with 34.90% G+C content and contained 117 open

reading frames (ORFs) and 24 tRNAs. Phylogenetic tree based on major capsid

protein (MCP) revealed that phage phiTY18 (MW451250) was highly related to two

Vibrio phages phiKT1024 (OM249648) and Va1 (MK387337). The NCBI alignment

results showed that the nucleotide sequence identity was 97% and 93%,

respectively. In addition, proteomic tree analysis indicated that phage phiTY18,

phiKT1024, and Va1 were belong to the same virus sub-cluster within Myoviridae.

This study provides a theoretical basis for understanding the genomic
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characteristics and the interaction between Vibrio parahaemolyticus phages and

their host.
KEYWORDS

Vibrio parahaemolyticus, bacteriophage, biological characteristics, whole
genome, myoviridae
Introduction

Vibrio parahaemolyticus is a common Gram-negative

bacterium in aquaculture environment. Vibrio parahaemolyticus

is short, rod-shaped, or arc-shaped, without spore and capsule

structure, and with single polar flagella (Broberg et al., 2011). It is

pathogenic to fish, shrimp and shellfish in the sea and can also

infect the human body, therefore, it is a kind of zoonotic bacterium.

Traditionally, farmers often used oxytetracycline, tetracycline, and

quinolone antibiotics against Vibrio parahaemolyticus (Elmahdi

et al., 2016). However, more resistant trains have developed

because of antibiotic abuse, which poses a great threat

to aquaculture.

In this study, we report a novel phage, phiTY18, isolated

from seawater in Xiamen, Fujian, China, using Vibrio

parahaemolyticus TY18 as the host. The study investigates the

basic morphological, physiological, and biochemical

characteristics and the whole genome of phiTY18 to provide a

theoretical basis for future research or application at the control

of Vibrio parahaemolyticus.
Materials and methods

Isolation and purification of the phage

The host strain, Vibrio parahaemolyticus TY18, was isolated

and collected in our laboratory. Phage phiTY18 was isolated

from seawater using the standard phage enrichment and double-

layer agar methods (Ul Haq et al., 2012). The seawater samples

were first mixed in a clean bucket, followed by the addition of the

host, which was cultured to the logarithmic phase, and

the subsequent overnight culturing of the mixture at 30°C.

The mixture was then centrifuged at 10000×g/min, and the

supernatant was filtered through a 0.22 mm filter membrane (Li

et al., 2016). Phage plaques were displayed and observed using

the double-layer agar methods (Vats et al., 1987; Zhang et al.,

2017). A single plaque was selected and purified thrice, followed

by placing the purified phages in SM buffer (100 mM NaCl, 8

mM MgSO4, 50 mM Tris-HCl (pH 7.5), 0.01% gelatin) for

routine experiments or storage at 4°C. (Gao et al., 2017; Liu

et al., 2017).
02
Transmission electron microscopy

TEM was used to investigate the morphology of the phage

particles. The purified phage solution (20 mL) with a titer of at least

1010 PFU/mL was first placed on a copper mesh to adsorb for

10 min. The sample was then negatively stained with 3% (w/v)

phosphotungstate for 5 min. The phage morphology was

subsequently observed by transmission electron microscope

(JEOL Co., Tokyo, Japan) after natural drying at room

temperature (Kwiatek et al., 2017).
Optimal multiplicity of infection

The multiplicity of infection (MOI) refers to the ratio of the

number of phages to that of hosts in the infection test. The phage

and its host were mixed at the MOI of 1000, 100, 10, 1, 0.1, 0.01,

0.001, 0.0001, and 0.00001 after measuring their concentration.

After incubation for 8 h at 30°C, the phage titer was determined

using the double-layer agar methods. The ratio that can

reproduce the highest titer of phage is the optimal MOI.

(Abedon, 2016).
One-step growth curve

The one-step growth curve was determined to measure the

incubation period and the burst size of the phage. Phage was

mixed with the host cultivated to exponential phase according to

the optimal MOI (0.01). After adsorption at 30°C for 10 min, the

supernatant was discarded after centrifugation at 10000×g for

2min. The residue was subsequently rinsed thrice using PBS

buffer and resuspended with a 50 mL LB medium containing 3%

NaCl. The resuspended residue was subsequently cultured in an

incubator shaker set at 30°C. A sample was taken at 10 min

intervals, up to 60 min, to detect the phage titer in real-time

using the double-layer plate method. Phage burst size was

calculated as the ratio of the phage titer at the end of burst

phase to the concentration of host at the beginning of infection.

The detections were done in three replicates, with the average

value of the final result used to develop the growth curve.
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Thermal and pH stability assay

The phage content was cultured to 1×1011 PFU/mL for the

experiment. The phage was incubated in a water bath set at 30°C,

40°C, 50°C, 60°C, 70°C, and 80°C for 60 min to determine its

thermal stability. For the pH stability assay, the pH of the LB

broth containing 3% NaCl was adjusted to 2, 4, 6, 7, 8, 10, and

12. The medium (900 mL) at different pH values and phage (100

mL) were mixed respectively, then incubated at 30 °C for 60 min.

The double-layer agar methods was used to determine the phage

titer (Wang et al., 2019).
Host range of phage

Nine different strains of Vibrio parahaemolyticus were

cultured to exponential stage, and LB plates were coated

with 200 ml of bacterial solution. After the bacterial solution

was air-dried, 20 mL phage phiTY18 was dropped on the

coated plate. The plates were observed after 12 hours of

incubation at 30 °C.
Genome sequencing and
bioinformatic analysis

The DNA of phage phiTY18 was extracted using the

TIANamp Virus DNA/RNA Kit (TIANGEN) and was

subjected to Illumina Hiseq second-generation map

sequencing. The sequence reads were assembled using Canu,

SPAdes, and HGAP. The assembled sequences with overlaps
Frontiers in Cellular and Infection Microbiology 03
were made into a loop, followed by truncation of one side of

the overlap sequence. The functions of the coding sequence

were predicted using Glimmer, GeneMarkS, and Prodigal

software. The sequences were compared and annotated

based on references made to NR, Swiss-Prot, Pfam,

EggNOG, GO, and KEGG databases. The genome was

mapped using DNAPlotter (Carver et al. , 2009; Liu

et al., 2019).
Comparative genomes and phylogenetic
tree analysis

Phylogenetic trees was constructed based on the amino

acid sequence of the major capsid protein (MCP) and the

terminase large subunit (TerL) by using MEGA 7.0 to analyze

the evolutionary relationship between phage phiTY18 and

other phages (Kumar et al., 2008). A proteomic tree was

drawn using the Viral Proteomic Tree server (https://www.

genome.jp/viptree) (YNishimura et al., 2017). The whole

genomes of phage phiTY18, phiKT1024 (OM249648), and

Va1 (MK387337) were subsequently analyzed using

Mauve software.
Results

Morphology of phage phiTY18

Plaques formed by phages on a plate (Figure 1A). TEM

micrographs show that phage phiTY18 has an icosahedral
FIGURE 1

Plaque appearance (A) and virion morphology (B) of phage phiTY18.
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structure, with a head diameter of 130.0 ± 1.2 nm and a

contractile tail length of 66.7 ± 0.6 nm (Figure 1B). Phage

phiTY18 could be classified into Myovirodae based on the

morphological characteristics, according to the classification

and nomenclature standards of the virus proposed by the

International Committee on Taxonomy of Viruses

(ICTV, 2020).
Optimal multiplicity of infection

The contents of phage were different under different MOI.

The infection efficiency of phage was the highest and the

maximum concentration of phage was 7.2×1010 PFU/mL at

the optimal MOI (0.01) (Table 1).
One-step growth curve

The one-step growth curve of phage phiTY18 showed that

the latent period was approximately 10 min and the rise period

was 10 min. The phage number gradually increased steadily and

entered the plateau period after 20 min (Figure 2), and the

average phage burst size was 48 PFU/cell.
Frontiers in Cellular and Infection Microbiology 04
Thermal and pH stability

The phage phiTY18 still remained a high titer with above

1.28×106 PFU/mL after incubating at 50°C for 1 h according to

the Figure 3A. However, the phage activity gradually weakened

with the increase in temperature and was completely lost at

70°C. The pH stability assay showed that the phage titer could be

maintained above 6.37×107 PFU/mL at pH 5 ~ 9 (Figure 3B).

However, the phage completely lost its activity when the pH was

3 and 12. These findings suggested that strongly acidic and

alkaline conditions affected the phage titer.
Host range of phage

The host range of phage showed that phage phiTY18 could lyse

three out of nine strains of Vibrio parahaemolyticus (Table 2).
Genome analysis of phage phiTY18

The genome sequencing results of phage phiTY18 revealed

that the genome consisted of 191,500 bp, with a G+C% of 34.9%

(Figure 4). Further analysis predicted that the phiTY18 genome
FIGURE 2

One-step growth curve of phage phiTY18. Each data point is the average of three independent experiments, and error bar represent standard deviations.
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contained 117 open reading frames (ORFs), including 60 (51%)

functional ORFs and 57 (49%) hypothetical proteins with

unknown functions (Supplementary Table 1). In addition, 24

tRNAs were predicted, but no rRNA was predicted. ORF1 was

predicted to encode the tail fibrin, which typically interacts with

bacteria as a receptor-binding protein (RBP) in bacteriophages

of the Myoviridae (Sun et al., 2021). The bacteriophage tail has

many protein structures which play a vital role in host cell

recognition, adsorption, digestion, and phage genome injection.
Frontiers in Cellular and Infection Microbiology 05
ORF91 encoded the head protein while ORF89 and ORF92

encoded the head portal protein and neck protein, respectively,

thus forming a channel to export the genome (Zhang et al., 2017;

Zhang et al., 2021). The proteins encoded by ORF18 and

ORF101 in the genome replication module were predicted to

be DNA helicases and thus could unlock the double helix

structure of DNA and promote DNA replication. ORF25 was

predicted to encode phage slide forceps, which assisted ORF22

and ORF23, which encoded two proteins with DNA polymerase
TABLE 2 The result of Phage host spectrum.

bacteria TY17 TY18 TY19 TY20 TY21 TY22 TY23 TY24 TY25

plaque + + – – – – – – +
frontier
‘+’ indicates that bacteria can be lysed by phage phiTY18 to form plaques, while ‘-’ indicates that they cannot be.
BA

FIGURE 3

Thermal stability (A) and pH stability (B) of phage phiTY18. Each data point is the average of three independent experiments, and error bar
represent standard deviations.
TABLE 1 Multiplicity of infection of phage phiTY18.

MOI Initial concentration Final concentration of phage(PFU/mL)

Phage(PFU/mL) Host(CFU/mL)

1000 1×108 105 2.7×109

100 1×108 106 2.4×1010

10 1×108 107 2.0×109

1 1×108 108 5.4×109

0.1 1×107 108 8.0×109

0.01 1×106 108 7.2×1010

0.001 1×105 108 3.2×109

0.0001 1×104 108 1.4×109

0.00001 1×103 108 2.2×108
The bold words mean that the phage can reach the highest culture content at MOI.
sin.org
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activity, to replicate DNA. The protein encoded by ORF96 was

predicted to be DNA ligase, which could catalyze the connection

of double-stranded DNA and assist in DNA replication and

recombination. In addition, ORF115 and ORF116 encoded

topoisomerase, which could catalyze the breaking and binding

of DNA strands. ORF104 encoded transcriptional regulators are

essential for regulating the modification of protein synthesis

during DNA replication. ORF71 encoded a phage tail lysozyme,

a class of enzymes encoded by bacteriophages that can cleave

bacteria. The tail lysozyme can attack the bacterial cell wall

peptide polysaccharide layer, leading to the degradation of the

cell wall layer and promoting the release of newly assembled

virions (Trudil, 2015).
Comparative genomes and phylogenetic
tree analysis

The genome of phage phiTY18 shared high homology with

two Vibrio phages, phiKT1024 (97%) and Va1 (93%), according

to the blastn in NCBI. Genomic collinearity analysis further

revealed their similarity (Figure 5). According to the

phylogenetic tree constructed by MCP (Figure 6A) and TerL
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(Figure 6B), phage phiTY18 was found to be in the same branch

with two similar Vibrio phages phiKT1024 and Val, and no other

Vibrio phage was highly related to phiTY18. The VipTree server

recorded 132 Vibrio phages, which were further divided into 9

different family (Supplementary Table 2). The results of

proteomic tree (Figure 7) analysis also showed that these three

phages were independent from a branch ofMyoviridae and were

distinguished from other phages in the database of VipTree,

indicating that they probably represented a novel sub-cluster

of Myoviridae.
Discussion

In this study, a novel phage phiTY18 was isolated from

seawater using Vibrio parahaemolyticus TY18 as a host.

Morphologically, phage phiTY18 was a regular icosahedron,

which had a head with a width of 130.0 ± 1.2 nm and a tail

with a length of 66.7 ± 0.6 nm according to transmission electron

microscopy. The phage burst size was 48 PFU/mL, and the phage

titer was up to 7.2×1010 PFU/mL at the optimal MOI. Moreover,

The one-step growth curve showed that compared with phage

B23 and PH1, phage phiTY18 had a shorter incubation period
FIGURE 4

The genome map of bacteriophage phiTY18. The first and second circles from the outside to the inside are the CDS on the positive and
negative strands. The different colors represent different gene functions. The third circle indicates the GC content. The inward and outward
parts denote a lower GC content and higher GC content in the region compared to the average GC content of the whole genome, respectively.
The fourth circle represents the GC-Skew value; GCskew>0 indicates the leading chain, while GCskew< 0 indicates the lag chain.
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(10min) and a faster lysis (10min) (Liu Z et al., 2017; Zhu et al.,

2018). The results of temperature analysis showed that phage

phiTY18 could maintain a titer above 1.28×106 PFU/mL at 30-

50 °C, and its activity decreased gradually with the increase in

temperature. The optimal pH adaptation of phage phiTY18 was

between 5 and 9 and was completely inactivated at pH ≦3 and

≧12 and the results are similar to the previous study. (Wang

et al., 2019).

Genome sequencing results suggested that phiTY18 was

dsDNA with a total length of 191,500bp. A comparison of the

whole genome of phiTY18 with other known phages in the

NCBI database revealed that it shared high homology with two

Vibrio bacteriophages phiKT1024 (OM249648) and Va1

(MK387337), sharing nucleotide sequence identities of 97%

and 93%, respectively. Among them, tail fibrin ORF1 and

ORF2 related to phage host interaction share only 52.83% and

31.75% homology with tail fibrin of phage phiKT1024, which

may be related to phage’s specific recognition of host through
Frontiers in Cellular and Infection Microbiology 07
RBP (Zampara et al., 2020). However, the homology of other

phage tail proteins, such as phage tail tubulin proteins (ORF84

and ORF85), can reach more than 98% (Supplementary Table 1).

ORF117 is predicted to be a tail-completing protein with an

important role in phage tail assembly (Pell et al., 2009). ORF80 is

the putative major capsid protein among the structural proteins

of phage phiTY18. The capsid protein acts as the shell of the

phage and tightly encloses the genetic material of the phage. It is

also commonly used in phage classification because its coding

sequence is highly conserved (Bamford et al., 2005). Most potent

phages have regions encoding replication-related enzymes in

their genetic material (Li et al., 2012). Phage phiTY18 also had

several ORFs related to DNA replication, regulation, and nucleic

acid metabolism among the known functional ORFs. The

replication-related proteins enable the genetic material of

phages to enter the host cell and use the host enzyme system

to replicate their genetic material and protein expression.

Proteins in these DNA replication modules (ORF22, ORF23,
BA

FIGURE 6

Phylogenetic tree based on major capsid protein (MCP) (A) and the terminase large subunit (B). Phylogenetic trees were constructed by the
neighbor-joining method with 1000 bootstrap replicates, following the ClustalW alignment of amino acid sequences using MEGA 7.0. The tree
is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The
evolutionary distances were computed using the Poisson correction method and are in the units of the number of amino acid substitutions per
site. The phage phiTY18 was labeled with a red diamond-shaped.
FIGURE 5

Collinear analysis of phage phiTY18 with Vibrio phage phiVa1 and phiKT1024. The collinearity analysis of three phages Va1, phiTY18 and
phiKT1024 are shown. The same color indicates that this part of the sequence is similar.
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ORF25, ORF101, ORF101, ORF109, ORF115) all had more than

90% homology compared wi th phage phiKT1024

(Supplementary Table 1). ORF58 (endodeoxyribonuclease)

hydrolyzes DNA in host cells to provide DNA for phage

synthesis (Kropinski et al., 2013).

Lysozyme can act on peptidoglycan on the bacterial cell wall

and increase its solubility, causing cell rupture from the inside

and the release of progeny phages (Fernandes and São-José ,
2017; Etobayeva et al., 2018; Zhang et al., 2021). The lytic system
Frontiers in Cellular and Infection Microbiology 08
of phage phiTY18 is encoded by gene of ORF71. The tail

lysozyme encoded by ORF71 has 70% homology with the

lysozyme of phage phiKT1024 (Supplementary Table 1), which

indicates that the two phages may have the same lysis mode.

Notably, phages have great limitations in practical application

because of their high host specificity. In contrast, lyase has little

host specificity. Numerous scholars have thus focused on phage

lyase studies and the cloning and expression of lyase (Briers

et al., 2014; Defraine et al., 2016).
FIGURE 7

Proteomic tree analysis of Vibrio phage. Phages phiTY18, Va1, and phiKT1024 were labeled with a red star respectively.
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Despite the numerous phage genome information in the

current NCBI database, there are still many unknown areas in

phage genome and functional annotation. This study details the

biological characteristics and whole genome of a novel Vibrio

parahaemolyticus phage phiTY18, providing an important

theoretical basis for exploring the less known field of phages

for use in practical applications.
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