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ABSTRACT
By jointly analyzing multiple variants within a gene, instead of one at a time, gene-based multiple regres-

sion can improve power, robustness, and interpretation in genetic association analysis. We investigate mul-

tiple linear combination (MLC) test statistics for analysis of common variants under realistic trait mod-

els with linkage disequilibrium (LD) based on HapMap Asian haplotypes. MLC is a directional test that

exploits LD structure in a gene to construct clusters of closely correlated variants recoded such that the

majority of pairwise correlations are positive. It combines variant effects within the same cluster linearly,

and aggregates cluster-specific effects in a quadratic sum of squares and cross-products, producing a test

statistic with reduced degrees of freedom (df) equal to the number of clusters. By simulation studies of 1000

genes from across the genome, we demonstrate that MLC is a well-powered and robust choice among exist-

ing methods across a broad range of gene structures. Compared to minimum P-value, variance-component,

and principal-component methods, the mean power of MLC is never much lower than that of other meth-

ods, and can be higher, particularly with multiple causal variants. Moreover, the variation in gene-specific

MLC test size and power across 1000 genes is less than that of other methods, suggesting it is a com-

plementary approach for discovery in genome-wide analysis. The cluster construction of the MLC test

statistics helps reveal within-gene LD structure, allowing interpretation of clustered variants as haplotypic

effects, while multiple regression helps to distinguish direct and indirect associations.

K E Y W O R D S

common variants, linkage disequilibrium, multibin linear combination test, multivariant test, quantitative

trait

1 INTRODUCTION

In genome-wide association studies (GWAS) and large-scale

candidate gene studies, researchers typically scan a large

number of single nucleotide polymorphism (SNP) markers,

one by one, to detect SNP-trait association signals. This

single-SNP analysis strategy has been preferred as a sim-

ple and effective approach assuming the design and scale

of the studies are sufficient to capture the marginal direct

or indirect association of a SNP with complex disease traits
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(Kraft & Cox, 2008; Risch & Merikangas, 1996). As an

alternative to single SNP test statistics, combined analy-

sis of multiple SNPs within a gene (or a specified region)

is a natural and interpretable analytic strategy at the gene

level, and various methods have been advocated. A gene-

based approach offers other analytical merits—reduction

of multiple testing burden, robustness to population dif-

ferences regarding LD and allele frequency, and improved

ability to replicate associations (Luo et al., 2010; Neale &

Sham, 2004).
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An established class of gene-based methods applies

multiple regression analysis in which each SNP is coded as a

covariate (Chapman & Whittaker, 2008; Clayton, Chapman,

& Cooper, 2004; Moskvina et al., 2012; Wason & Dud-

bridge, 2012). A multi-SNP global statistic is constructed to

represent a gene and test the global null hypothesis where the

degrees of freedom (df) correspond to the number of SNPs.

Alternatively, SNP genotypes can be represented by one

or more principal components that explain their variability

(Gauderman, Murcray, Gilliland, & Conti, 2007). Other

reduced df global statistics have been constructed from single

or multiple SNP analysis: the weighted sum method uses a

linear combination of regression coefficients or their corre-

sponding test statistics, but performance depends on the direc-

tion of the per-SNP association, and how minor and major

alleles are coded (Han & Pan, 2010; Madsen & Browning,

2009; Schaid, McDonnell, Hebbring, Cunningham, &

Thibodeau, 2005; Wang & Elston, 2007). A weighted

squared sum test of per-SNP marginal effects avoids this

problem, and is powerful for certain alternatives (Pan, 2009).

Similar gene-based tests include kernel regression and related

variance component methods (Goeman, van de Geer, & van

Houwelingen, 2005; Kwee, Liu, Lin, Ghosh, & Epstein,

2008; Schaid et al., 2005; Wu et al., 2010).

To improve power and robustness of genetic association

analysis to gene structure and trait architecture, we proposed

multiple linear combination (MLC) regression for regional

testing (Bull, Yoo, & Sun, 2009; Yoo, Sun, & Bull, 2013).

The MLC test adapts to the LD structure of SNPs in a gene by

partitioning and recoding SNPs into bins of positively corre-

lated SNPs, using only the pairwise SNP correlations. From a

regression analysis of multiple SNPs in a gene, the individual

SNP coefficients are combined linearly within each bin and

then bin-specific terms are combined in a weighted sum of

squared and cross-product (i.e., quadratic) terms. Trait asso-

ciation with the gene region is then represented by an overall

global statistic with df equal to the number of bins. In this way,

we improve robustness to the problem of opposing direction

of effects and achieve some reduction in df while retaining

the parsimony of a linear combination of multiple SNP effects

within a bin.

In Yoo et al. (2013) and Yoo, Sun, Poirier, and Bull (2014),

we constructed bins using LDSelect, an established method

for tagSNP selection that lends itself to bin construction (Carl-

son et al., 2004). Initially, we examined trait model sce-

narios with one or two low frequency causal SNPs, ana-

lyzing only noncausal low-frequency and/or common SNPs,

and observed that reduced df MLC tests often showed bet-

ter power than the full df Wald test. In further developments,

we evaluated an alternative clustering method to construct

bins for the MLC test by modeling SNPs as graphs and find-

ing a substructure of the graph (Yoo, Kim, & Bull, 2015).

Compared to LDSelect, this clustering algorithm tends to pro-

duce smaller clusters with stronger positive correlation, so the

MLC test is less likely to be affected by the occurrence of

opposing signs in the individual SNP effect coefficients.

The purpose of this report is to characterize conditions in

which the clustering-based MLC test performs better or worse

than other gene-based tests, limiting attention to non trait-

adaptive methods. Because MLC tests are based on multiple

regression analysis, they are well-designed for common vari-

ants. Their strength comes from incorporating the linkage dis-

equilibrium (LD) structure among causal and neutral SNPs,

which is expected to be more extensive for common SNPs. We

illustrate application and interpretation of gene-based analysis

in candidate gene analysis of HDL cholesterol in participants

of the Diabetes Control and Complications Trial. We inves-

tigate MLC test power in comparison with other gene-based

statistics for scenarios with multiple common causal variants

(minor allele frequency (MAF) > 0.05) and conduct simula-

tion studies under various genetic models where multi-SNP

regressions include all typed SNPs or exclude untyped causal

SNPs. We consider realistic LD structure among causal and

neutral SNPs based on SNP distributions and LD structures in

HapMap Asian population data for 1,000 genes sampled from

across the genome.

We propose two main applications of the MLC approach:

(1) computationally efficient genome-wide gene-based gene

discovery, as a complement to conventional single-SNP anal-

ysis, and (2) large-scale candidate gene studies or regional fine

mapping of candidate regions; in both settings, we avoid the

multiple testing cost associated with adaptive use of trait data

in test construction. Although all gene-based methods reduce

the level of genome-wide multiplicity by treating the gene

as the unit of analysis, advantages of common-variant mul-

tiple regression include computationally inexpensive use of

asymptotic test distributions, variant prioritization and local-

ization within a gene, ability to capture haplotype information

at least approximately, and biological interpretability.

2 STATISTICAL METHODS

2.1 Estimation and hypothesis testing in multi-SNP
regression models

Denote the genotypes of 𝐾 SNPs as 𝑋 = (𝑋1, 𝑋2,⋯ , 𝑋𝐾 )
and the trait variable as 𝑌. Initially, we code the genotype val-

ues of 0, 1, and 2 as a count of the minor allele. Inference con-

cerning overall association between the trait and the SNPs is

obtained via a multi-SNP regression model:

𝑔−1{𝐸(𝑌 |𝑋)} = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯ + 𝛽𝐾𝑋𝐾, (1)

where𝐸(𝑌 |𝑋)is the expected value of 𝑌𝑖 given 𝑋 and 𝑔−1(⋅)
is the link function. In this report, we focus on a quantita-

tive trait, using the identity function for 𝑔−1(⋅), but analogous

approaches can be applied to categorical traits, as typical in

case-control studies, or time-to-event traits in cohort studies.
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Hypothesis tests for association in the joint multi-

SNP regression model are constructed using the parame-

ter estimates 𝛽 = (𝛽1,⋯ , 𝛽𝐾 )𝑇 and the corresponding esti-

mated variance-covariance matrix Σ𝐵 , obtained by least

squares/maximum-likelihood methods under large sample

assumptions. In large samples, it is sufficient to assume

that the regression coefficients 𝛽 follow a multivariate nor-

mal distribution with variance-covariance matrix of rank

𝐾 . In linear regression, Σ = 𝜎2

𝑛
(𝑆𝑋)−1depends on a con-

sistent error variance estimate and on SNP genotype vari-

ances/covariances in 𝑆𝑋 = 𝑋𝑇𝑋. A generalized, that is,

multi-df Wald test of the global null hypothesis of no asso-

ciation (𝛽𝑗 = 0 for all 𝑗) against the alternative that at least

one 𝛽𝑗 ≠ 0 is defined as 𝐺𝑊 = 𝛽𝑇Σ−1
𝐵
𝛽 which has a quadratic

form. The asymptotic null distribution of this statistic is chi-

squared with K df, assuming the SNP design matrix is of

full rank, that is, no linear dependency among SNPs. Single-

df tests of 𝛽𝑗 = 0 against the alternative that 𝛽𝑗 ≠ 0, tak-

ing into account other SNPs in the regression, correspond to

𝑍𝑗 = 𝛽𝑗∕
√

Var(𝛽𝑗) = 𝛽𝑗∕
√

(Σ𝐵)𝑗𝑗with large sample covari-

ance Σ𝑍 , which can be derived from Σ𝐵 as the correlation

matrix of 𝛽 = (𝛽1,⋯ , 𝛽𝐾 )𝑇 .

2.2 Multibin linear combination L df tests

Two versions of a multibin linear combination test 𝐺𝑀 =
(𝐶𝛽)𝑇 (𝐶𝑇

∑
𝐶)−1(𝐶𝛽) can be constructed using 𝛽 estimates

from the multi-SNP regression model, and C, a K by L matrix

of linear contrasts. One MLC test version combines param-

eter estimates (MLC-B: 𝛽 = (𝛽1,… , 𝛽𝐾 )𝑇 ) and the other

combines the corresponding test statistics (MLC-Z: 𝑍 =
(𝑍1,… , 𝑍𝐾 )𝑇 ). In our evaluations, they give similar results.

Both versions incorporate predetermined bins into the con-

struction of the test statistics; we discuss bin construction and

allele coding in the following subsection. For now, suppose

that L bins are formed from K SNPs (L≤K). Let J be a K by L
matrix where the jth column represents assignment to jth bin,

that is, 𝐽𝑖𝑖 = 1 if the ith SNP belongs to the jth bin and 𝐽𝑖𝑖 = 0
if not. We assume that the bins consist of mutually exclusive

sets of SNPs. MLC tests of multiple bins are then defined as:

MLC-B = (𝛽𝑇𝑊𝐵)(𝑊 𝑇
𝐵
Σ𝐵𝑊𝐵)−1(𝑊 𝑇

𝐵
𝛽),

MLC-Z = (𝛽𝑇𝑊𝑍 )(𝑊 𝑇
𝑍
Σ𝑍𝑊𝑍 )−1(𝑊𝑍

𝑇 𝛽)

with 𝑊𝐵=(Σ−1
𝐵
𝐽 )(𝐽𝑇Σ−1

𝐵
𝐽 )−1 and 𝑊𝑍 =(Σ−1

𝑍
𝐽 )(𝐽𝑇Σ−1

𝑍
𝐽 )−1,

respectively. Assuming a fixed design matrix X and a prespec-

ified bin definition algorithm, the matrix J is fixed and does

not depend on the trait data;Σ𝐵 estimation is carried out under

the unrestricted linear regression model. The null distribution

of MLC-B (MLC-Z) is approximately L df chi-squared under

the null hypothesis 𝜷 = 0. MLC is a directional test with power

oriented toward a restricted alternative specified by the matrix

C (see Supplementary Methods B. for details). In the absence

of knowledge about underlying genetic architecture, the added

value of the proposed method is its ability to adapt to complex

LD structure in constructing a reduced df test statistic, without

incurring the price paid for examination of trait data.

The global regression Wald test is a special case in which

each bin consists of one SNP, that is, J = diag(1, 1, …, 1),

L = K. In this case, the test is fully quadratic with each regres-

sion coefficient entering the test statistic in squared and cross-

product terms. At the other extreme, 1 df linear combina-

tion tests (LC-B, LC-Z) can be constructed as special cases

of MLC tests where J = (1, 1, ..., 1)T, that is, all SNPs are

in the same bin. LC-B is a fully linear statistic in which the

regression coefficients enter with sign corresponding to the

direction of association with the trait. The gene-based MLC

test statistic with L df based on bins that reflect LD structure

is a linear-quadratic hybrid constructed from L bin-specific

linear combinations. The bin-specific terms are aggregated

in a sum of squared and cross-product terms (Supplementary

Methods B).

As we demonstrate in the application below, a bin-specific

statistic extracted from this sum can provide a refined local-

ization compared to gene-level and single SNP level analysis

in that the global gene-level test will usually represent a

region too large for localization, while localization at the

single-SNP level can be misleading. Bin-specific statistics

can reveal association with a multilocus causal haplotype

or multiple causal haplotypes for which single-SNP signals

would be weak.

The LC tests follow from early consideration of multi-

ple outcomes in clinical trial data analysis (O’Brien, 1984;

Pocock, Geller, & Tsiatis, 1987). We note that LC-B is equiv-

alent to the Wald-type test statistic described by Stram, Wei,

and Ware (1988) and the score test statistic proposed by

Schaid et al. (2005). The LC test statistics asymptotically

follow chi-square distributions with 1 df, and therefore may

be more powerful than the K df Wald test or the L df MLC

test in certain conditions. However, such linear combinations

are sensitive to the direction of alternatives in the parameter

space. In particular, LC statistics are attenuated when mul-

tiple causal variants in a gene are coded such that the trait

is affected both positively and negatively. This results in the

occurrence of opposite signs among 𝛽1,… , 𝛽𝐾 and possible

cancellation of the effects in the linear combination, produc-

ing substantial loss of power. To reduce this problem, without

introducing bias into the MLC test statistic from trait associa-

tion evidence in 𝛽1,… , 𝛽𝐾 we take an allele recoding and bin

construction strategy that is independent of trait information.

2.3 Construction of SNP bins and allele coding

Our objective in bin construction is to cluster SNPs into sub-

sets using within-gene LD information such that correlation

between additively coded SNPs within a bin is high and pos-

itive, while correlation between SNPs in different bins is low.
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To this end, we conduct bin selection based on a clique-based

clustering algorithm called CLQ developed in a previous

study (Yoo et al., 2015). As a clustering criterion, CLQ uses

the LD measure r, which is calculated as the Pearson corre-

lation of a pair of additively coded SNPs, and can be positive

or negative in sign. In this algorithm, we first model SNPs as

a graph 𝐺 = (𝑉 ,𝐸) with a vertex set V of SNPs and an edge

set E of which each edge denotes a pair of adjacent SNPs

with |r| > c, a given threshold value. The CLQ algorithm

partitions the graph G into cliques that are subsets such that

all pairs of vertices of each clique are adjacent (see Yoo et al.,

2015 for details). The size and number of clusters depends

on the choice of the threshold value c. Based on simulations

presented below, we recommend c = 0.5 for general use,

and find that type 1 error and power are not sensitive to

modest changes in this threshold value. When threshold

choice is based only on LD structure, and not on results

of genotype-phenotype analysis using multiple threshold

values, uncertainty in bin assignment does not need to be

taken into account in the analysis.

In the multi-SNP regression (1), the sign of the regression

coefficients is determined by SNP coding of the minor

and major alleles (usually coded as 1 and 0, respectively).

Assuming an additive genotype score for an allele, switch-

ing the minor and major alleles changes the sign of the

corresponding 𝛽𝑖 estimate and its covariance with other 𝛽

estimates. This affects the linear combination test statistics,

but has no effect on the quadratic Wald statistic. A widely

used allele coding method designates the minor allele as the

“deleterious” allele under the presumption that this will be

the case for most of the SNPs. If, however, the SNPs being

tested are merely tagging a causal SNP or some of the causal

effects are actually protective, the signs of the regression

coefficients of these SNPs may be reversed.

To address potential inconsistencies in effect direction in

the context of linear combination tests, we apply a coding cor-

rection method proposed by Wang and Elston (2007). Accord-

ingly, the allele coding decision based on the genotype data

is applied within each bin of the MLC test (or to the entire

gene in the LC test) so that the number of positively corre-

lated SNPs is maximized within a bin (or within a gene for

the LC test). This approach first catalogues SNPs using the

number of negative pairwise correlations with other SNPs for

a given initial coding scheme (usually minor alleles coded as

1). Starting from the SNP with the largest number of negative

pairwise correlations with others, the 1/0 coding is reversed.

The correlation status between SNPs after recoding one SNP

is reexamined and the procedure is repeated iteratively until

the number of SNPs negatively correlated with one SNP is

less than half of the number of SNPs. After applying this cod-

ing correction, the resulting matrix of pairwise LD measures

r will have a minimized number of negative pairwise corre-

lations between SNPs. However, we recognize that complete

resolution can be difficult with linear combinations consisting

of more than a few SNPs. Uncertainty in clique-based clus-

tering and recoding does not affect the validity of the asymp-

totic distribution of the MLC test, because the clustering and

recoding that determine the direction of the test are based only

on the genotype data, and variance estimation is carried out

under the unrestricted linear regression model. Because this

adaptive coding procedure ignores the direction of the trait

association, it does not inflate the type I error of MLC and

LC tests. We apply the recoding procedure in construction of

the MLC and LC statistics throughout the subsequent appli-

cation and evaluations.

2.4 Other gene-based tests

We compare the performance of MLC tests against several

popular gene-based analysis methods (for details see Supple-

mentary Methods A). One class of methods for gene-based

analysis derives a test of global association from multiple

single-SNP results, that is, from multiple marginal analy-

ses (Pan, 2009). The sum of squared marginal beta coef-

ficients (SSB) and sum of squared marginal beta coeffi-

cients with inverse variance weights (SSBw) statistics (Pan,

2009) are quadratic statistics obtained from the sum of

squared beta coefficients with weights W = (1, 1, …, 1)T

and𝑊 = (Var(𝛽𝑀1 )−1,… ,Var(𝛽𝑀
𝐾
)−1)𝑇 , respectively, where

𝛽𝑀 = (𝛽𝑀1 ,… , 𝛽𝑀
𝐾
)𝑇 is the marginal regression coefficients

vector. GWAS investigators performing single-SNP-based

analysis effectively apply an intrinsic region-based approach

by using a maximum statistic (MinP-M), which selects one

SNP with the strongest association within a region (WTCCC,

2007). This practice implies that the biggest test score (or

smallest P-value) has been chosen as a global statistic for

the region, but this approach can be insensitive when multi-

ple independent moderate associations occur within a region.

We consider a similar minimum P-value test obtained from

multi-SNP regression (MinP-J). The sequence kernel asso-

ciation test (SKAT) is derived from a variance-component

model in which beta parameters follow a random effects dis-

tribution (Ballard, Cho, & Zhao, 2010; Kwee et al., 2008).

The SKAT-O statistic is a combination of the quadratic SKAT

statistic with a linear combination test statistic that aggregates

minor allele variant counts (Lee et al., 2012; Wu et al., 2011).

Finally, our comparisons include a gene-based multi-df statis-

tic from multiple regression of principal components of mul-

tiple SNP genotypes (PC80) proposed by Gauderman et al.

(2007) that performs well overall when there is more than

one causal variant in the gene (Ballard et al., 2010; Petersen,

Alvarez, DeClaire, & Tintle, 2013).

3 APPLICATION IN THE DCCT/EDIC
CANDIDATE GENE STUDY

The Diabetes Control and Complications Trial/Epidemiology

of Diabetes Interventions and Complications (DCCT/EDIC)
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study is a long-term follow-up study of randomized trial par-

ticipants with type 1 diabetes (T1D; DCCT, 1993; EDIC,

1999). The DCCT/EDIC Genetics Study was designed to

investigate the association of SNPs in a large set of candi-

date genes with complications of T1D. As detailed in the

methods of Al-Kateb et al. (2008), tagging SNPs within 5

kb flanking either side of each of 201 candidate genes were

selected not to be in strong LD and to have MAF greater

than 5% based on data from the HapMap Project. Study par-

ticipants were genotyped by a custom Illumina GoldenGate

Beadarray assay, and data were subjected to standard QC

procedures. This set of candidate genes includes several

recently reported by Teslovich et al. (2010) to be asso-

ciated with high-density lipoprotein (HDL) cholesterol in

the general population: CETP, APOB, IRS1, LPL, ABCA1,
APOA1, LIPC, LCAT, MC4R. It is of interest to assess these

and other candidate genes for association in a population

with T1D.

The dataset we analyzed for genetic associations with HDL

consists of 1,362 white probands with genotyping data for

1,213 SNPs (MAF > 5%) in 183 candidate genes (with ≥2

SNPs per gene). The number of SNPs genotyped per gene

ranges from 2 to 47, with a median value of 4. We applied the

MLC tests and other gene-based tests to the logged and cen-

tered HDL measures obtained at the DCCT baseline assess-

ment. For each gene, we constructed clusters for the MLC

tests using the threshold values in the range c = 0.1 ∼ 0.9

(see supplementary Table S1 with results for all 183 genes).

At c = 0.5, the recommended value from simulations, we

obtained 1 to 30 clusters (median = 3) per gene. Out of 183

genes, 21 have at least one test that meets a liberal signifi-

cance criterion of P-value < 0.03, with 12 of these detected

by the MLC method with c = 0.5 compared to 9 by the global

Wald test, and 10 by MinP-M (supplementary Table S2). As

expected, there is strong concordance between MLC-B and

MLC-Z, and between LC-B and LC-Z. With the exception

of LC tests, which detected few genes, the various tests give

similar signals for six of the genes, but otherwise there is lit-

tle concordance among the tests. In this application, the Wald

and MinP-J tests perform relatively better than in the simula-

tion studies below because the genotyped SNPs were selected

to be in low LD.

The P values for the established HDL-related gene CETP
are genome-wide significant for all the methods except MinP-

J, but for the remaining 182 genes, none of the methods reach

a Bonferroni adjusted P-value criterion of 3 × 10−4. For

CETP, the PC80 test P-value (4 df) is the smallest, although

the MLC-B (5 df) and SSBw tests yield similar small P val-

ues. The 10 SNPs in the CETP region cluster into five bins

(Table 1 and Fig. 1). Two of the SNPs with strong marginal

signals (SNP4, SNP5) are highly correlated (r = 0.68) and

consequently the SNP5 signal disappears in joint regression

of all 10 SNPs. SNP4 (rs12720922), with the strongest sig-

nal in the joint multi-SNP regression, has been reported pre-

viously as associated with HDL (Asselbergs et al., 2012;

Enquobahrie et al., 2008; Wu et al., 2013). SNP2, and SNP7

and SNP9 also have attenuated signals in the joint regres-

sion; the former possibly due to LD with SNP3 or SNP5,

and the latter likely due to LD with SNP10 in the first clus-

ter (see Fig. 1). Cluster-specific statistics, constructed using

SNP-specific beta coefficients and the covariance matrix esti-

mate from the joint regression analysis, also suggest haplo-

types carrying the minor allele of SNP4 be given priority

for further attention. In contrast, from the marginal analysis

alone, the signals from SNP2, SNP5, SNP7, and SNP9 are

difficult to differentiate from the SNP4 association without

further analysis.

4 ANALYTIC POWER COMPARISONS

To gain insight into the relative performance of MinP and

Wald, MLC-B, and LC-B tests, we analytically derived

asymptotic distributions under simplified genetic models and

LD structure (see supplementary Methods B). MinP-M shows

good performance for one causal SNP, but for two or more

causal SNPs, the power depends on correlation between SNPs

and can be low relative to the other statistics (see supplemen-

tary Methods and Figs. S1 and S2). Although less sensitive

than LC-B to the direction of the causal effects, the power of

MLC-B depends on within-gene correlation and the underly-

ing trait model.

The K-df Wald test statistic can be partitioned into the sum

of an L-df MLC test statistic and an independent K-L df statis-

tic (Li & Lagakos, 2006). When the direction of the MLC test

is well chosen, it will capture most of the information in the

Wald test, but with fewer df and hence higher power. How-

ever, MLC test power will be affected adversely if the deter-

mined direction is not well chosen. The worst case for MLC

occurs when opposing regression coefficients occur among

correlated SNPs within a cluster. MLC performs best when

high within-cluster SNP correlation is combined with low

variation in the within-cluster variance-standardized regres-

sion coefficients, such as would occur with multiple causal

and/or indirect effects within a cluster. Thus in principle,

the proposed MLC clustering approach can show substantial

improved power compared to the Wald test, based on stan-

dard computationally efficient linear regression estimation,

and requiring only straightforward preanalysis to cluster the

SNP genotypes.

5 SIMULATION STUDIES

5.1 Design and methods

To better understand the data and model characteristics that

influence the performance of the methods, we conducted a

series of simulation studies based on observed human geno-
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F I G U R E 1 Clustering of SNPs in DCCT/EDIC CETP gene data by applying CLQ algorithm to linkage disequilibrium (r) pattern. Edges with |r| < 0.5 are

removed. SNPs in the same cluster have the same color. The cluster construction threshold value for CLQ algorithm was set at c = 0.5

types. As described below, trait data were simulated under

null and various alternative models using genotype data

derived from the HapMap Phase III Asian population (JPT

and CHB). We selected 1,000 genes to compare the per-

formance of gene-based tests under various realistic gene

structures.

A list of genes across 22 autosomes was obtained from

the UCSC genome annotation database for NCBI hg18 Build

36.1 (http://hgdownload.soe.ucsc.edu/goldenPath/hg18/data

base/). Among 16,514 genes with at least one SNP present in

the HapMap Asian data, there were 8883 genes consisting of

4 to 30 SNPs after excluding rare and low frequency SNPs

(MAF < 0.05) and pruning SNPs in complete LD. From

these, 1,000 genes were randomly selected for inclusion in

the simulation studies (see supplementary Table S3 for a

complete list).

For each gene, 1,000 replicated datasets, each consisting

of genotypes and trait values for 1,000 individuals, were gen-

erated under each trait model scenario. To maintain the gene

structure observed in the HapMap data, we generated geno-

type data for the 1,000 individuals using the method of ran-

domly pairing haplotypes from the haplotype pool (for each

gene) obtained from phased genotype data. The LD structure

among the SNPs within a gene therefore arises entirely from

the inherent structure in the HapMap haplotypes. Based on

the genotypes for each individual, a quantitative trait Y was

generated under an additive genetic model for a gene with C
causal SNPs such that

𝑌 =
𝐶∑
𝑗=1

𝑏𝑗𝐺𝑗 + 𝜀,

where 𝜀 ∼ 𝑁(0, 𝜎2), bj is the effect of jth causal SNP, and Gj
is the number of minor alleles at the jth causal SNP, that is,

Gj can be 0, 1, or 2.

We first considered five different quantitative trait mod-

els for each gene, including 0, 1, or 2 causal SNPs per gene

(Table 2). In each of Models 1–5, causal SNPs were randomly

selected from the set of SNPs for each gene, subject to the

cluster structure. According to the analytic evaluations, Mod-

els 1–3, in which the signs of the effects are all positive for the

causal SNPs, would be relatively favorable for LC compared

to the Wald test, whereas Models 4 and 5 with opposite signs

for the two causal SNP effects would be least favorable. Model

4 is expected to be least favorable to MLC and most favorable

to MinP-M when two positively correlated causal SNPs with

opposite signs are in the same cluster, because there would

be no recoding. On the other hand, MLC would be favored

under Models 3 and 5 when causal SNPs are in different clus-

ters, that is, are uncorrelated. In addition, we evaluated Model

6 in which each gene was assigned a random number of one

to min(ns, 10) causal SNPs, where ns is the number of SNPs

per gene, with each SNP equally likely to have a deleterious

or protective allele regardless of the LD cluster structure.

To estimate empirical type I error under the null hypoth-

esis of no gene effect (Model 0), all bj were specified to

be equal to 0, and for each gene all SNPs were included

in the regression analysis. Under alternatives with genetic

association (Models 1–6), the causal SNP effect sizes (|bj|)

were randomly selected from a uniform distribution 𝑈 (0.01 ×
SD, 0.05 × SD). Here, SD is the expected standard deviation

of Y using the method for effect size estimation presented in

Willer et al. (2013). The error variance 𝜎2 was adjusted sepa-

rately for each gene and each trait model to obtain 60% Wald

test power in a sample size n = 1,000, assuming the regres-

sion analysis includes causal SNPs. We estimated empirical

power for each gene-trait model combination under regres-

sion analyses that (1) included all SNPs, assuming the causal

SNP(s) were typed and analyzed, and then (2) excluded the

causal SNP(s), assuming they were untyped.
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T A B L E 2 Trait models for simulation study

Model Description for Causal SNP Selection
No. of
SNP Effect Sizea Correlationb Error (𝝈)b

Allele
Frequency

0 No SNP association 4∼30 All zero HapMap 5 HapMap

1 One causal SNP within a gene 4∼30 b1 > 0, randomc HapMap Adjusted HapMap

2 Two causal SNPs in the same cluster, both

deleterious

4∼30 b1 > 0, b2 > 0, random HapMap Adjusted HapMap

3 Two causal SNPs in different clusters, both

deleterious

4∼30 b1 > 0, b2 > 0, random HapMap Adjusted HapMap

4 Two causal SNPs in the same cluster, one

deleterious, and one protective

4∼30 b1 > 0, b2 < 0, random HapMap Adjusted HapMap

5 Two causal SNPs in different clusters, one

deleterious, and one protective

4∼30 b1 > 0, b2 < 0, random HapMap Adjusted HapMap

6 Up to ten deleterious or protective causal SNPs,

randomly assigned within a gene

4∼30 bj sign and magnitude,

random

HapMap Adjusted HapMap

aThe trait model is 𝑌 =
∑𝐶

𝑗=1 𝑏𝑗𝐺𝑗 + 𝜀, where 𝜀 ∼ 𝑁(0, 𝜎2), C is the number of causal SNPs, bj is the effect of jth causal SNP, and Gj is the number of causal

alleles for the jth causal SNP. The jth SNP with j > C means neutral SNP.
bHapMap: Based on the distribution and patterns of HapMap Asian gene panels.

Adjusted: The error variance is adjusted to make the power of Wald test 60% for each gene.
c |𝑏𝑗 | ∼ 𝑈 (0.01 × SD, 0.05 × SD).

5.2 Comparison of threshold values for MLC cluster
construction

In previous evaluations, we found a threshold value c of 0.4

or 0.5 for SNP clustering yielded generally better power for

regression models including causal SNPs (Yoo et al., 2015).

To re-evaluate and extend these findings, we estimated MLC

test size and power by simulation using threshold values from

0.1 to 0.9 with increments of 0.1. Under the null Model 0,

type 1 error rates were robust to threshold value choice (sup-

plementary Tables S4 and S5). For Models 1, 3, and 5 that

specified only one causal SNP per cluster, average power was

highest with threshold values of 0.4 or 0.5 including causal

SNPs, but shifted to 0.5 or 0.6 excluding causal SNPs (Fig. 2,

supplementary Tables S6 and S7). For Model 2 favoring the

LC test, the best c value shifted toward few clusters, whereas

in Model 4 the best c value shifted toward more clusters and

greater similarly to global Wald test.

As a general rule for broad practical application, we con-

clude that a threshold value of c = 0.5 is a reasonable compro-

mise because we found modest power differences at neigh-

boring c values, particularly in analyses of SNP clusters not

including the causal SNPs. Because clusters are constructed

prior to regression analysis, it is valid to modify the threshold

F I G U R E 2 Simulation study results (Models 1–5): Average empirical power of MLC test statistics and other gene-based statistics for 1,000 genes at nominal

level 𝛼 = 0.05 (N = 1,000 simulation replicates used to estimate power for each gene)
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according to the LD structure of a specific gene, but post-

analysis choice would need to account for multiple testing.

5.3 Type I error evaluation

The validity of MLC tests and other gene-based tests was

assessed for each of 1,000 genes at two nominal significance

levels (𝛼 = 0.05 and 0.01). For the majority of the 1,000 genes,

the estimated type I error rate (test size) of the MLC tests for

a threshold c = {0.1, 0.2,..., 0.9} is within the nominal signif-

icance level range expected in 1,000 replicates (supplemen-

tary Tables S4 and S5); at c = 0.5, we observe 95% of 1,000

genes within 0.037∼0.064 and 0.005∼0.017 for 𝛼 = 0.05 and

0.01, respectively. Under the null hypothesis, MLC test size

SDs vary little across the threshold values suggesting that

clustering and recoding do not affect standard error estimates.

The average of the estimated Type I error rates over 1,000

genes is closest to nominal for the MLC (c = 0.5), LC, SKAT,

and PC80 tests, while the average size of the generalized

Wald, SSB, SSBw, and SKAT-O tests tends to be inflated,

MinP-J is conservative, and the distribution for MinP-M is

skewed toward elevated values with higher variance. In par-

ticular, because MinP-M gene-specific type I error is elevated

for many genes, we assessed average power differences both

unadjusted and adjusted for Type I error differences (see sup-

plementary Fig. S3 for details).

5.4 Power comparison between MLC tests and other
gene-based tests

For each of 1,000 genes, the power of each gene-based test

was estimated under nominal critical values for 𝛼 = 0.05

from the asymptotic null distribution for the corresponding

statistic. For Models 1–5, we calculate the average and SD of

empirical power estimates across all 1,000 genes under each

trait model (Fig. 2 and supplementary Tables S6 and S7); to

directly compare test statistics at the gene level, we also plot-

ted gene-specific power differences (supplementary Figs. S4–

S6). For Model 6, we constructed box plots of gene-specific

power stratified by the number of causal SNPs (Fig. 3).

Average MLC test power (both MLC-B and MLC-Z) is

higher than global Wald test power whether or not the regres-

sion includes causal SNPs, with the exception of Model 4 in

which the causal SNP effects have opposite directions and are

located in the same cluster (Fig. 2). Under Model 4, average

MLC test power is lower than average Wald test power for

most cluster threshold values when causal SNPs are included

in the regression, but is slightly higher than Wald when causal

SNPs are excluded. For the vast majority of genes, MLC has

higher power than the Wald test, except under the unfavor-

able Model 4 (supplementary Fig. S6). This suggests overall

advantages of a reduced df MLC-B statistic compared to the

Wald statistic, while the low power exceptions may be due to

difficulties in effective recoding within a particular gene clus-

ter when positively correlated SNPs have opposing effects.

On average, power of MinP-J tests is quite low, and average

LC power is lower than MLC for most CLQ cluster thresh-

old values except under Model 2 with two deleterious causal

SNPs in the same cluster, both typed. For a proportion of the

genes, MLC exhibits a large power advantage over the LC test

(i.e., when there are opposing effects); it is however worth not-

ing that LC can be modestly more powerful than MLC (up to

0.20) for more than 50% of genes (supplementary Fig. S6).

For Models 1, 2, and 4, average MinP-M power is 0.057–

0.079 higher than average MLC-B(c = 0.5) test power for

regression including causal SNPs, but only 0.019–0.024

higher excluding causal SNPs (supplementary Table S8). For

Models 3 and 5, average power differences are even less:

0.003–0.018 higher for MinP-M compared to MLC-B(0.5).

Because type I error for MinP-M tends to be elevated and

overdispersed across genes, we also calculated adjusted power

differences by regressing the gene-specific power differences

on the corresponding type I error differences in the 1,000

genes for each of the models. Although average differences

are essentially unchanged by adjustment (supplementary

Table S8), it is evident that gene-specific power differences

can be as large as ±0.4 and that MLC-B power is higher than

MinP-M power for a substantial number of genes (supplemen-

tary Fig. S3). Although the MinP-M test performs well overall

under trait models with one or two causal variants, previous

studies and our analytic results suggest that this may not be the

case for trait models with multiple causal variants. In simula-

tion studies under trait models with up to 10 causal variants

(Model 6), we confirmed that MinP-M becomes increasingly

less competitive as the number of causal variants increases

beyond 5 (Fig. 3, supplementary Table S9).

The MLC-B, SSBw, SKAT, and PC80 tests perform well

overall (Fig. 2). For all trait models, SSB has lower aver-

age power than SSBw, and SKAT usually has higher aver-

age power than SKAT-O (except for Models 2 and 3 with

typed causal SNPs that are favorable to a linear statistic).

Average power of the MLC, PC80, SSBw, and SKAT gene-

based tests is remarkably similar for trait models with one or

two causal SNPs (Models 1–5). For Models 2 and 4, aver-

age SSBw power is 0.059–0.115 higher than average MLC-B

(c = 0.5) power for regressions including causal SNPs, but

only 0.011–0.021 higher for Models 1, 3, and 5 (supplemen-

tary Table S8). For regressions excluding causal SNPs, aver-

age power differences are even less: 0.004–0.021 higher for

SSBw compared to MLC-B(0.5) (supplementary Table S8).

Moreover, the SD of MLC-B gene-specific empirical power

among the 1,000 genes is generally smaller than those of the

existing methods (supplementary Tables S7 and S8). Gene-

level comparisons between MLC-B and the other tests also

indicate that MLC-B can be more powerful than SSBw, PC80,

SKAT, or SKAT-O tests, depending on the trait models, the

gene structures, and whether the causal variant is typed (sup-

plementary Figs. S4 and S5).
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F I G U R E 3 Simulation study results (Model 6): Distribution of gene-specific empirical power of MLC-B(c = 0.5 and 0.7) and other gene-based statistics

obtained for 1,000 genes at nominal level 𝛼 = 0.05 stratified by the number of causal SNPs. The box plot shows five points: median, first, and third quartiles

computed using Tukey’s “hinges” and end points of whiskers. The whiskers extend to the most extreme values no more than 1.5 times the interquartile range.

Outliers are shown in sand color. Note that the simulation error variance was adjusted separately for each gene to obtain 60% Wald test power in a sample size

of n = 1,000 assuming the regression analysis includes causal SNPs. Upper panel (a) causal SNPs included in the regression analysis; lower panel (b) causal

SNPs excluded from the regression analysis

In contrast to MinP-M, as the number of causal vari-

ants increases MLC-B, SSBw and SKAT become more com-

petitive (Fig. 3). This is particularly evident for MLC-B in

regressions excluding causal variants, which rely on indirect

effects through LD to detect gene association. Quite remark-

ably MLC-B has the narrowest interquartile range (IQR) of

all the gene-based tests regardless of the number of causal

SNPs and whether they are included or excluded in the

regression.

6 DISCUSSION

The MLC regression method differs from other gene-based

approaches designed to produce test statistics with fewer

df, and is robust in the sense that it can be more powerful

in some cases and has modest power deficits otherwise.

Among test statistics evaluated asymptotically, we compared

MLC to representatives of the main classes of gene-based

tests: linear combination, variance component, and minimum
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P-value statistics. We observed that different methods can be

more powerful than others under certain genetic structures,

but genome-wide, MLC test size and power are less variable

compared to existing methods, and become increasingly com-

petitive with increasing number of causal variants in a gene.

This suggests the potential value of combining MLC with

complementary methods for genome-wide discovery analy-

sis when the genetic architecture is unknown. MLC uniquely

combines within- and between-cluster signals in a global

test statistic adapted to the gene LD structure, but is free of

selection bias arising from trait-based optimization. Because

MLC derives from multiple regression, the coefficients are

adjusted for all variants in the model, aiding in identifica-

tion of independent associations within the gene. Moreover,

cluster-specific statistics can be extracted to assist in within-

gene localization.

In practical application of regression-based tests, some

computational issues need to be considered. First, depending

on the LD structure in the dataset, the joint analysis model

using multi-SNP regression may encounter linear dependen-

cies among the SNPs and near singularity in the variance-

covariance matrix. This can arise due to complete pairwise

LD between SNPs or higher order multi-SNP linear depen-

dence; the latter is a particular concern for regressions that

include SNPs imputed from genotyped SNPs. Most statisti-

cal software performing linear regression can deal with such

singularities and automatically remove covariates to obtain a

nonsingular matrix. By removing the SNPs that are redundant

(in complete LD with some other SNP), possible singularity

problems can often be resolved prior to analysis. Depending

on sample size, regression analysis including low frequency

SNPs may be underpowered and unstable. However, if a legit-

imate regression analysis can be performed for low-frequency

SNPs, the MLC tests can always be constructed.

MLC tests constructed from joint regression analysis and

SNP-specific beta coefficients thus account for direct and

indirect association of all the SNPs in the regression. Clusters

of SNPs in high correlation within a gene region represent

haplotypes with relatively low diversity (Chapman & Whit-

taker, 2008; Wason & Dudbridge, 2012). The SNPs located

at the extreme genomic positions of a cluster can be inter-

preted as the rough start and end points of the detected under-

lying haplotype. As illustrated in the detailed analysis of the

DCCT/EDIC study CETP application (Fig. 1), MLC cluster

construction by the CLQ algorithm is based on pairwise r val-

ues from (phased) genotype data, and SNPs within the clus-

ters identified are not necessarily within physically consecu-

tive blocks. Because the clique-based clustering algorithm we

incorporated in MLC testing can construct clusters of noncon-

secutive SNPs, the spans of different haplotypes can overlap

allowing for representation of a mosaic structure of haplotype

intervals.

Cluster-specific statistics can be constructed as shown in

the CETP genotype analysis. To the extent that clusters asso-

ciated with the trait correspond to possible causal haplotypes,

cluster-specific statistics can assist in potential cluster-level

localization. For example, once an associated gene region

is identified by a MLC test, clusters of closely correlated

SNPs may be examined to identify haplotypes that contribute

to the overall gene region signal. In the CETP application,

gene-based statistics including MLC showed an overall strong

signal, with a relatively strong cluster-specific signal in the

SNP4/SNP5 cluster. In the joint regression analysis, SNP4 is

the only SNP with a P-value as small as 0.001 (and large

beta −0.063), consistent with previous reports of associa-

tion between this SNP (rs12720922) and HDL (Asselbergs

et al., 2012; Enquobahrie et al., 2008; Wu et al., 2013).

We can conclude that the cluster including SNP4 represents

a possible causal haplotype and is a candidate for dense

fine-mapping.

By means of evaluations performed under various trait

models for each of 1,000 representative genes using HapMap

Asian data, we determined the performance of the MLC

test in two general situations. In one, the regression analy-

sis excluded causal SNPs so as to imitate the complexity of

conventional GWAS analysis consisting mainly of common

tagging SNPs. In the second, to imitate the settings of GWAS

imputation or dense genomic data such as exome array data,

the regression analysis included both causal and noncausal

SNPs. Our Asian HapMap gene panels included a large num-

ber of genes selected to represent the overall distribution of

within-gene LD structure across the genome; the number of

SNPs per gene ranged from 4 to 30, and random assignment

of causal variants and genetic associations under the alterna-

tive genetic models produced diverse genetic architectures,

including variation in the number and proportion of causal

variants per gene.

Based on the analytic and simulation results, we conclude

that MLC tests can perform better than Wald, MinP-J, LC, and

SSB tests for genes with a complex LD structure. According

to simulation results, MinP-M, SSBw, and SKAT showed bet-

ter performance on average than MLC-B tests across five sim-

ple genetic models. In scenarios with multiple causal SNPs,

however, MinP-M, SSBw, and SKAT had larger IQR, and for

untyped causal variants, they had lower median power than

MLC tests. The Wald test is robust to the presence of multi-

ple causal variants, but may not exploit LD information effi-

ciently. MinP-M does use LD information to adjust P values

but can be prone to inflated type I error and is more suitable

for situations with a single causal SNP. The SSBw statistic

performs well with increasing numbers of causal SNPs, and

incorporates LD through robust covariance estimation to pro-

vide an effective global gene-based test. Here, however, the

beta coefficients obtained are marginal and do not as eas-

ily lend themselves to localization of causal variants. The

SKAT variance-component method is also based on marginal

beta coefficients, and furthermore does not incorporate SNP

covariances directly into the test statistic. The linear burden
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test component of SKAT-O also ignores SNP LD, whereas

the LC test can benefit from positive SNP covariances. Our

observation that power for SKAT is often greater than for

SKAT-O is consistent with rare variant study findings that the

burden test is less powerful than the variance component test

when many variants are noncausal (Lee, Abecasis, Boehnke,

& Lin, 2014), which is predominantly the situation in our sim-

ulations. The principal component based method, PC80, also

reduces the df based on the LD structure, and is close in spirit

to the MLC method, yielding similar power for a majority of

genes (supplementary Fig. S2); it showed overall good per-

formance in this and previous studies. However, each princi-

pal component may not always have a ready biological inter-

pretation, and some information may be lost by choosing a

subset of the principal components. In contrast, each cluster

in the MLC statistics maintains meaning as a small cluster of

SNPs with high LD, and the df are effectively reduced using

LD information while explicitly combining information from

correlated SNPs. We therefore conclude that the MLC regres-

sion test has merits for gene-based analysis of genetic associ-

ation data as a robust, interpretable, and reasonably powerful

multi-SNP method.

The MLC methods have potential for application in large

regional testing such as described by Paré, Asma, and Deng

(2015) for analysis of common-frequency whole genome

scans not limited to prespecified SNP sets corresponding

to genes. To proceed with regional analysis within a whole

genome scan, genomic variants must be assigned to analy-

sis units such as genes, haplotype blocks, or other biological

regions (Wu et al., 2010). Kwee et al. (2008) suggest that only

regions of modest size be examined; Petersen et al. (2013)

suggest that only intergenic SNPs that are in high LD with

intragenic SNPs be included in region-based analysis. To limit

the number of SNPs jointly analyzed in a multi-SNP statistic,

a sliding window approach can be useful to examine analytic

units (Kwee et al., 2008; Paré et al., 2015; Petersen et al.,

2013). Application of the MLC approach to dense genome-

wide data similarly requires partitioning of inter- and intra-

genic regions into workable analysis units prior to cluster con-

struction. LD block regions consisting of consecutive SNPs

can be determined using software such as Haploview (Barrett,

Fry, Maller, & Daly, 2005). Although LD blocks could be

used to identify haplotype blocks instead of clique clusters

for the bin assignment for MLC, this precludes specification

of multiple overlapping haplotypes. Furthermore, LD block

sizes vary and large blocks with many SNPs may exacer-

bate problems of opposing effect directions. For MLC SNP

clustering, it is undesirable to include SNPs that do not

correlate well with their physical neighbors. Because MLC

is focused on capturing within-gene structure (and poten-

tially, multiple causal associations), multiple clusters corre-

sponding to different haplotypes are more likely to provide

homogeneous within-cluster effects suitable for combining

statistically.

Multivariant methods designed for rare variants analysis

are well-developed (see Derkach, Lawless, & Sun, 2014, Lee

et al., 2014; Pan, Kim, Zhang, Shen, & Wei, 2014; Wang

& Biernacka, 2015 for recent reviews), and some methods

can be applied to both rare and common variants (Ayers &

Cordell, 2013; Ionita-Laza, Lee, Makarov, Buxbaum, & Lin,

2013; Pan, Kwak, & Wei, 2015; Wang, Morris, Zhu, & Elston,

2013; Yoo et al., 2013). In gene-based analysis, a high pro-

portion of noncausal variants within a regional analytic unit

reduces test effectiveness in rare variant analysis (Derkach

et al., 2014; Lee et al., 2012), as well as in joint analysis of

common SNPs (Petersen et al., 2013). Although test statistics

that use trait association evidence can be more powerful, bias

introduced by such adaptation needs to be taken into account,

which can require adjustment to df or use of intensive compu-

tation (Bacanu, 2012; Derkach et al., 2014; Han & Pan, 2010;

Pan et al., 2015). Furthermore, knowledge about relative test

performance for rare variant analysis may not apply for com-

mon variant analysis, given that LD among common variants

is stronger than among rare variants. Uniformly most power-

ful methods rarely exist for jointly evaluating multiple param-

eters, so no one method can be most powerful. Evaluations

of methods for gene-based analysis of typical GWAS data

consisting mainly of genotyped common variants (with or

without additional imputed SNPs) have largely concluded that

without knowledge of underlying genetic architecture, it may

be wise to apply complementary approaches (Asimit, Yoo,

Waggott, Sun, & Bull, 2009; Bacanu, 2012; Ballard et al.,

2010; Clayton et al., 2004; Gauderman et al., 2007; Han &

Pan, 2010; Kwee et al., 2008; Pan, 2009; Petersen et al., 2013;

Taub, Schwender, Youkin, Louis, & Ruczinski, 2013; Wason

& Dudbridge, 2012; Yang et al., 2012).

We find MLC to be a well-powered and robust choice

among the existing methods across a broad range of complex

genetic architectures. We are not aware of other studies that

compare multiple methods in haplotypes drawn from 1,000

different genes. Compared to other methods, MLC test size

and power are less variable, and mean power is never much

lower, and can be higher, particularly with multiple causal

variants. With accumulating evidence that LD structure influ-

ences the power of gene-based tests, methods such as MLC

specifically designed to utilize LD information are worthy of

consideration as an alternative for analysis of dense genetic

association data with correlated SNPs and complex LD

structure.
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