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Abstract. Cyber physical systems are becoming ubiquitous devices in
many fields thus creating the need for effective security measures. We pro-
pose to exploit their intrinsic dependency on the environment in which
they are deployed to detect and mitigate anomalies. To do so, sensor
measurements, network metrics, and contextual information are fused
in a unified security architecture. In this paper, the model of the pro-
posed framework is presented and a first proof of concept involving a
telecommunication infrastructure case study is provided.
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1 Introduction

Cyber Physical Systems (CPSs) can be defined as the result of the integration
of computing, communication, and control capabilities for monitoring and man-
aging physical world objects [5]. The “Industry 4.0” paradigm is pushing the
spread of CPSs in many fields: smart manufacturing, e-health, smart city, smart
vehicles, wearable devices, telecommunication systems, defense systems, etc. As
can be easily understood, the security of CPSs is an open and critical issue [5].

A CPS can be described with a three-layer architecture: perception, trans-
mission, and application. The first layer is responsible for data collection in real-
time, the second deals with data exchange, and the third layer provides data
processing and control functionalities. Even if the security can be addressed
for each layer separately, to counteract the attacks in an effective manner, a
multi-layer approach can be beneficial. The intrinsic dependency between CPSs
and the sensing environment can further expand the attack surface. However,
this connection can also be exploited to design effective security measures. The
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idea of context aware security has been introduced in [14], where the context is
defined as “the set of environmental states and settings that either determine an
application’s behaviour or in which an application event occurs”. Moreover, four
context classes are introduced: system, user, physical environment, and time.
This concept has been applied to CPSs in [8], where context is considered as
a new class of information to be exploited for improving the safety and secu-
rity of CPSs. The authors suggest that contextual data can be used both for
inferring information about the system state, and for preventing wrong detec-
tion decisions due to bad-data scenarios. In [7], moreover, a general introduction
about CPS security issues is provided together with the presentation of a con-
text aware biometric security framework. The proposed approach fuses real-time
mechanisms with contextual information such as the client setting area, lighting,
temperature, climate and time. Context is considered also in the security infras-
tructure for Internet of Things (IoT) systems proposed in [11]. The presented
architecture includes some contextual information, such as the amount and rate
of collected data, which may be correlated to security indicators. Furthermore,
the environmental impact has been exploited in [12], where device fingerprint-
ing for IoT authentication is analyzed. More specifically, the authors propose to
exploit the environmental effects on IoT fingerprints to detect emulation attacks.
The idea is that an attacker will not be able to imitate the true environmen-
tal changes experienced by the legitimate device thus failing in reproducing an
environment-based fingerprint. At last, in [10], the concept of context aware
intrusion detection systems is realized by including the operating environment
information in the collected data. This category involves for instance networking
conditions (e.g. start and goal address/port, access frequency, and data traffic),
and systematic operation conditions (e.g. the presence of idle CPU or memory
occupation conditions). In this paper, we focus on the impact of the physical
environment context to design a CPS anomaly detection framework, and we
apply the introduced model to a telecommunication infrastructure case study.
More specifically, according to [4], here we define an anomalous situation as a
malicious or a genuine but unusual behaviour of the system. We propose the
CPS Context Aware Security Protection for Enhanced Robustness (CCASPER)
model, to identify anomalies in the system behaviour exploiting both the phys-
ical aspect of the CPS and the information that can be collected through their
networking capabilities. In more details, sensor outputs, network performance
indicators, and the surrounding context conditions are fused together for select-
ing the mitigation strategy. A multi-metric approach which treats each metric
independently, in fact, would ignore the possible correlations or cause-effect rela-
tionships between them, thus resulting less effective [2].

The rest of the paper is organized as follows. In Sect. 2 the security framework
is presented, in Sect. 3 the model is applied to a communication infrastructure
scenario, and in Sect. 4 the conclusions are drawn.
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2 Proposed Method

The proposed CCASPER model is based on the fusion of the information gath-
ered from two sources: the system (i.e. the deployed CPSs) and the context.
Concerning the first source, information may be collected both in the perception
layer (which gathers data about a physical process) and in the communication
layer (which allows to share information). Nominal value ranges for sensor out-
puts and network performance indicators may be defined, so that when the
measurements deviate from their nominal values, an anomaly is detected and
an alarm is triggered. However, using only system indicators could give a par-
tial representation of the real scenario leading to a misclassification of anomalies.
The physical process and the communication link, in fact, are considerably influ-
enced by the surrounding context. If sensor outputs and network performance
indicators do not match the expected values, then, at least four causes should
be investigated: a fault, a cyber-attack, or a physical attack may be occurring,
or the surrounding ecosystem may be affecting network performances and/or
sensor measurement. Therefore, before triggering an attack alarm, it is worth
to collect contextual information to verify if a natural event (a storm, an earth-
quake, or strong wind) may cause such anomaly. To this aim, the proposed model
relies on a context monitoring algorithm localized around the CPS position. In
fact, adverse environment conditions may cause a temporary decrease of network
performance or, even, damages to the physical system (e.g., antenna collapsing
or broken sensor). In the first case, once the environmental emergency is over,
the normal operating level of the network has to be quickly restored. On the
contrary, a physically damaged system must be repaired. The proposed security
model can be described through the state machine architecture shown in Fig. 1.

Fig. 1. Security framework: state machine model.

The state machine model is detailed as follows. In the normal state the
system monitoring is performed through the analysis of application-dependent
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quantitative attributes. For example, in a point to point connection, network
performance metrics could be delay or throughput values while the sensor mea-
surements could be temperature, humidity, or antenna tilt. If a relevant deviation
from the nominal behavior occurs, the model moves to the deep analysis state.
In this state, a first consistency analysis is performed to verify if the system
behaviour can be justified through the current context conditions. To do so, sev-
eral additional information sources can be analysed: weather news, local news,
exceptional events such as flooding or fire, etc. Moreover, due to the distributed
nature of CPSs, information gathered from neighbouring devices can be included
in the consistency analysis. The context, in fact, should cause a similar deviation
from the nominal behaviour for CPSs deployed on the same area. The gathered
data are exploited to perform the consistency check between the current context
and the quantitative attributes, leading to one of the following outcomes:

– anomalous context/anomalous system: the environmental context may have
caused a temporary network performance decrease or a change in the moni-
tored physical process so that the measured values deviate from the nominal
range. In this case a joint monitoring is performed until when the context
anomalous behaviour is over. Two outcomes are possible:
• the system returns in the nominal range: the event is saved in a log file,

and the system goes back to the normal state.
• the system anomaly persists thus requiring a further analysis. The model

moves to the security consistency analysis state.
– normal context/anomalous system: a further analysis is needed, the model

goes in the security consistency analysis state.

If the model goes in the security consistency analysis state an additional moni-
toring is performed in order to identify the possible causes for system anomaly.
This state can be further expanded as shown in Fig. 2.

Depending on the use case, different combinations of the monitored param-
eters may lead to four states which, in turn, represent the anomaly cause:

– cyber attack a cyber attack to the sensor may be on going;
– cyber-physical attack an attack involving both physical and cyber aspects

of the system may be on going.
– physical attack a physical damage of the system may have occurred;
– fault a system fault (e.g. a component damage) may have occurred.

Once the cause has been identified, the associated recovery procedure is deployed.
If such procedure is effective, the event occurrence is saved and the model returns
to the normal state, otherwise a new security consistency check is performed. Let
us note that in case of cyber-physical attacks, a further study is needed to select
the most suitable recovery procedure. As first proof of concept, here we present
the case in which the choice between cyber and physical recovery plans is per-
formed based on cost. However, depending on the application, other parameters
could be considered such as the time needed for the solution deployment. In some
scenarios, in fact, restoring the system availability is the most crucial issue.
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Fig. 2. Security framework: consistency analysis model.

3 Case Study

In this paper we deal with a use case scenario involving a mobile network opera-
tor radio infrastructure. The strict 5G requirements lead to the need of relevant
improvements in the Radio Access Network (RAN). To this aim, the classic
rule-based network functionalities can be replaced by their Artificial Intelligence
(AI) based counterparts. However, a key enabler for the application of AI in this
context is a deep insight into the nature and role of the different network per-
formance contributors [1]. Moreover, the satellite segment of 5G networks is one
of the main topics in the 5G development in 2020–2025 [13] and, as highlighted
in [9], for such applications the antenna pointing and the mobile tracking are
crucial. More specifically, for pointing purposes, the AI-based method proposed
in [9] exploits data acquired by the inclinometer and an electronic compass. In
addition, antenna tilting is considered as a key enabler for RAN optimization
also in [1]. Let us note that tilt monitoring is of utmost importance both for
mechanical and electronic tilting systems. In the former case it is needed to
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correctly set the beam pointing, whereas in the latter the physical orientation of
the antenna has to be set and kept with sufficient accuracy. For this reason, we
included a tilt sensor installed on the base station antennas in our case study.

Concerning the network performance metrics, we referred to the security
studies performed on the existing LTE infrastructure. In [6], for instance, the
authors analyzed three metrics: throughput, end to end delay, and packet deliv-
ery rate. Their simulations show a significant impact on these parameters due
to malicious user equipment devices, malicious base stations, malicious connec-
tions, and malicious femtocells. To show the operating principle of the proposed
framework, in this work we considered only the throughput, but the analysis can
be extended to the other network parameters as well. In this case, the general
framework presented in Fig. 1 can be modified as shown in Fig. 3.

Fig. 3. Security framework: case study model. In the figure, Cc and Cp represent the
cyber and physical action cost, respectively.

As in the general model, once an anomalous parameter is detected, the sys-
tem moves to the deep analysis state. More in details, we included in the context
monitoring the analysis of: weather, terrorism, civil protection department alerts,
earthquakes, floods, severe storm, and fire. Moreover, in this scenario, the mea-
surements collected by nearby base stations can be considered as an additional
information source. As a consequence, the context information includes both the
surrounding environment and the neighbouring infrastructure. The deep analy-
sis correlates these data with the current quantitative attributes. For instance, a
heavy rain may cause a severe attenuation phenomenon which, in turn, causes a
throughput reduction without any impact on the antenna tilting. A strong wind,
on the contrary, may cause an antenna movement which will produce a pointing
inaccuracy. In this case, the first phenomenon will be detected by the tilt sen-
sor, whereas the latter will have an impact on the measured throughput. Under
these circumstances, the system stays in the deep analysis state until when the
environmental emergency is over.
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If the contextual cause can be excluded, or if the system parameters are
still anomalous when the context emergency is over, a consistency check of the
remaining inputs is performed. The analysis of the throughput indicator and the
antenna tilt sensor, in fact, can lead to different scenarios. A normal tilt value
in conjunction with an anomalous throughput can suggest a channel attack.
The opposite situation can be due to a cyber-attack to the tilt sensor. If both
indicators fail to satisfy their requirements, a physical attack to the antenna, or
the combination of a channel and sensor attacks, should be considered. Moreover,
the anomalous context may have caused a network damage which has to be
physically repaired. If both cyber and physical recovery hypothesis need to be
checked, the mitigation scheduling is chosen according to the cost of the required
operations (Cc and Cp respectively). As a consequence, the cheaper recovery
procedure is deployed first and, if it is not effective, the other one is performed.
Let us note that when a “Physical action” is required, a technical team will
be sent to the antenna location. This solution will thus be required in case of
physical antenna damage.

Fig. 4. Context data collection: the CCASPER GUI

As first proof of concept of the proposed security framework we implemented
the CCASPER model and a user interface. In order to gather up-to-date envi-
ronmental context information, the antenna position has to be retrieved. To this
aim, we used the antenna map provided in [3]. Moreover, in the implemented
system, antennas can be deleted or added directly from the Graphical User Inter-
face (GUI). From the tool GUI, it is possible to select a specific antenna and run
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the simulation. In the performed tests, as a proof of concept, tilt and throughput
data have been entered by the user. The implementation of the complete frame-
work which collects the tilt information from the sensor and uses the measured
throughput will be the object of future research. Once the tilt and through-
put data have been entered, context information about the location where the
antenna is placed is collected and shown as presented in Fig. 4. The button
“Deep analysis” allows to move to the corresponding state in which, as first
step, the context analysis is performed. In case of normal environmental con-
ditions, according to the tilt and throughput values, a cost analysis or a cyber
action can be suggested as shown in Fig. 3.

Fig. 5. Cost analysis output.

Concerning the cost analysis, the physical action cost may be computed
depending on the distance of the antenna from the actual position of the tech-
nical team. More specifically, we assumed to have an office for each town and
we considered a total cost made of a fixed component plus a variable cost linked
to the distance from the antenna. However, it is possible to configure the costs
directly from the GUI main page. An example of the cost analysis output is
provided in Fig. 5.

The proposed model allows to process the information coming from several
data sources to figure out the reason behind an anomalous behaviour of the
system, thus suggesting a suitable mitigation strategy. Although limited to the
analysis of two quantitative attributes, the presented approach can be easily
extended for including other performance indicators (e.g. delay) and/or other
sensor measurements (e.g. temperature). According to the analyzed case study,
we argue that the fusion of environmental, technical, and financial information
sources is a key enabler to provide prompt reactions to communication infras-
tructure anomalies.
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4 Conclusions

In this contribution, a model for inferring anomaly situations is proposed. Tech-
nical and environmental inputs are considered for defining the best mitigation
technique in terms of effectiveness and financial feasibility. We implemented the
proposed security framework through a state machine model which provides the
general architecture of the proposed approach. As first proof of concept we ana-
lyzed a telecommunication infrastructure case study. To do so, we realized a tool
for collecting and fusing the information coming from the different sources, and
exploited a user friendly graphical interface for entering input data.

The proposed framework can be applied to every scenario involving CPSs,
after the definition of application-dependent quantitative attributes. We believe
that the fusion of several information sources is a crucial facilitator for inferring
anomalous situations in CPS-based critical infrastructures.
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