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Abstract 

The influenza pandemic is a major threat to human health, and highly aggressive strains such as 
H1N1, H5N1 and H7N9 have emphasized the need for therapeutic strategies to combat these 
pathogens. Influenza anti-viral agents, especially active small molecular inhibitors play important 
roles in controlling pandemics while vaccines are developed. Currently, only a few drugs, which 
function as influenza neuraminidase (NA) inhibitors and M2 ion channel protein inhibitors, are 
approved in clinical. However, the acquired resistance against current anti-influenza drugs and the 
emerging mutations of influenza virus itself remain the major challenging unmet medical needs for 
influenza treatment. It is highly desirable to identify novel anti-influenza agents. This paper reviews 
the progress of small molecular inhibitors act as antiviral agents, which include hemagglutinin (HA) 
inhibitors, RNA-dependent RNA polymerase (RdRp) inhibitors, NA inhibitors and M2 ion channel 
protein inhibitors etc. Moreover, we also summarize new, recently reported potential targets and 
discuss strategies for the development of new anti-influenza virus drugs. 

Key words: anti-influenza virus agent, hemagglutinin inhibitors, RNA-dependent RNA polymerase inhibitors, 
neuraminidase inhibitors, M2 ion channel protein inhibitors. 

Introduction 
The influenza virus continues to threaten public 

health because of its high morbidity and mortality 
rates despite the efforts and success of antiviral 
research (1-3). According to the World Health 
Organization (WHO), seasonal influenza virus 
epidemics result in the infection of 3-5 million people 
and 250,000 to 500,000 deaths worldwide (4). In recent 
years, the emergence of highly aggressive virus 
strains such as H1N1, H5N1, and H7N9 has 
reemphasized the need for therapeutic strategies to 
overcome these pathogens (5). Vaccines and antiviral 
agents are essential for mitigating the influence of the 
influenza virus (6, 7). Due to the frequent variation in 
the influenza virus, anti-influenza agents seem to be 

more effective at preventing the highly contagious 
infection with the virus and at treating disease 
epidemics. 

Influenza pandemics are caused by the influenza 
virus, a negative-sense single-stranded member of the 
Orthomyxoviridae family of RNA viruses (8). 
Influenza virus could be classified as one of three 
distinct subtypes (influenza A, influenza B, or 
influenza C) depending on its nucleoproteins and the 
antigen determinants of its matrix proteins. Influenza 
A and influenza B appear to cause highly infectious 
diseases, while influenza C does not seem to cause 
significant disease (1). However, pandemic outbreaks 
are caused by influenza A viruses. Therefore, much 
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more attention has been paid to the influenza A 
viruses. 

The structure of the influenza virus contains 
three motifs (Figure 1): the core, the matrix protein 
and the viral envelope (9). Influenza A virus was 
made up by proteins encoded by eight segments of 
negative-strand RNA (8, 10). These proteins include 
hemagglutinin (HA), neuraminidase (NA), 
nucleoprotein (NP), RNA polymerase (PA, PB1, PB2), 
matrix protein 1 (M1), proton channel protein (M2), 
non-structural protein 1 (NS1) and nuclear export 
protein (NEP, NS2) (8, 11). Additionally, some 
proteins exist in particular strains were identified 
recently, such as PB1-F2 (12), PB1-N40 (10), and PA-X 
(13). Moreover, some novel proteins have been 
identified recently (14). 

Depending on the differences of the subtypes of 

18 HA (H1-H18) and 11 NA (N1-N11), influenza A 
viruses can be classified into 162 subtypes (15). 

The life cycle of the influenza virus is a complex 
biological process and can be divided into the 
following steps (Figure 2): (i) attachment of the virion 
to the cell surface (receptor binding); (ii) endosomal 
internalization of the virus into cell (endocytosis and 
endocytosis); (iii) uncoating, cytoplasmic transport 
and nuclear import of viral ribonucleoproteins 
(vRNPs); (iv) transcription and replication of the viral 
RNAs; (v) nuclear exportation and protein synthesis; 
(vi) viral progeny assembly, budding and release 
from the cell membrane. 

Viral proteins and host cellular proteins 
involved in each step of the life cycle of virus infection 
are attractive target to combat influenza virus 
infections (8, 16, 17). 

 

 
Figure 1. Schematic views of the structure of influenza A virus. 

 

 
Figure 2. Schematic representation of the life cycle of influenza virus. 
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Figure 3. Structures of currently available licensed anti-influenza drugs. 

 
At present, only a few drugs that function as 

influenza NA inhibitors, M2 ion channel protein 
inhibitors, RNA-dependent RNA polymerase 
inhibitors and protease inhibitors are used in clinical. 
Structures of currently available licensed 
anti-influenza drugs were shown in Figure 3. 

The emergence of influenza virus mutations and 
acquired resistance are extremely influential in 
driving the development of new anti-influenza agents 
against possible future influenza epidemics. Small 
molecular inhibitors (molecular weight less than 1000) 
are powerful tools to fight against influenza virus. 
Besides small molecular inhibitors, peptides (Entry 
Block-peptide (EB-peptide) (18, 19), FluPep (FP) 
peptides (20) , NDFRSKT (21, 22) etc.), proteins 
(Hepatocyte growth factor activator inhibitor 2 (23), 
Ulinastatin (23-25) and Fludase (26-28)), monoclonal 
antibodies (29) , Nanoparticles (30-33) and other types 
of anti-viral drugs are effective in influenza virus 
infection (those agents are out of the scope of this 
article). According to the target of the antiviral agent, 
research on anti-influenza virus agents can currently 
be categorized into two fields: agents that target 
functional proteins of the virus itself and agents that 
target potential sites of the host cells. 

1. Agents targeting functional proteins of 
the virus itself 

The HA protein facilitates viral binding to 
receptors on host cells receptors and the fusion 
process. Viral RNA replication and transcription is 
carried out by the nucleoprotein (NP) and three 
polymerase subunits (PB2, PB1 and PA). The M2 
protein is involved in uncoating and maturation of the 
virus. The NA protein is essential for the release of the 
virus from infected cells. Therefore, the functional 
proteins described above are attractive targets for 
antiviral research. 

1.1 Entry inhibitors 
Antiviral compounds designed (or discovered) 

to interrupt the attachment and entry course of the 
virus were named entry inhibitors (34). Extracted 
from nature produce from Traditional Chinese 
Medicine (TCM) licorice, triterpenoids derivatives 
showed antiviral activities (35-40). Glycyrrhizic acid 
(or named glycyrrhizin) (41) and glycyrrhetinic acid 
(42) have been proved to be effective to interrupt the 
attachment and entry course of the influenza virus 
(Figure 4). 

Glycyrrhizin exhibited broad spectrum 
inhibitory activity and showed the most potent 
inhibitory activity against the replication of H3N2, 
H5N1 etc (43). Saponins and uralsaponins M-Y 
(Figure 4) showed anti-influenza activities in recent 
studies (44). Uralsaponins M exhibited inhibitory 
activities against influenza virus A/WSN/33 H1N1 in 
MDCK cell lines with IC50 value of 48.0 μM (44).  

As a negatively charged sulphated 
polysaccharide, Dextran sulphate (DS, Figure 4) 
inhibit the attachment and entry course as well as the 
HA-dependent (45, 46) and NA-dependent (47) fusion 
course (strictly speaking, DS is not a small molecular). 
Silymarin (Figure 4) (48), extract from milk thistle 
seeds, showed activity against influenza. Its main 
component silibinin and derivatives can also regulate 
autophagy course. As a multi-target natural product, 
curcumin can also inhibit the virus entry course and 
HA activity (EC50 was approximately 0.47 µM for 
inhibition of influenza virus, Plaque Reduction Assay) 
(49-51). Lysosomotropic agents (such as 
Concanamycin A, Bafilomycin A1, Chloroquine etc.), 
exhibit their anti-influenza activities depending on 
the pH value of the intracellular environment (52-57). 
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Figure 4. Structures of representative entry inhibitors. 

 

1.2 Hemagglutinin (HA) inhibitors  
HA is encoded by the vRNAs and is composed 

of three identical structural subunits (1). These 
subunits have two important functions in linkage and 
the internalization trigger: first, HA can provide a link 
between the virus and the surface of target host cells 
(58-60); and second, HA triggers the internalization of 
the virus through the fusion of the viral envelope and 
the endosomal membrane of the host. Both HA and 
NA recognize N-acetylneuraminic acid (Neu5Ac, also 
called sialic acid), a typical terminal unit of 
glycoconjugates attached to the membranes of cells in 
the upper respiratory tract and lungs (1), to facility its 
function. 

HA is formed via the proteolytic cleavage of the 
precursor protein HA0 into either HA1 or HA2, and 
the inhibitors of HA can be classified into two 
different subtypes. The first type of inhibitor blocks 
the association between HA1 and the neuraminic acid 
(Neu) receptors on the surface of the target host cells. 
The second type of inhibitor, such as BMY-27709 (61, 
62) and stachyflin (63-65), interrupts the HA2- 
mediated fusion process (Figure 7). This second type 
of inhibitor can inhibit the conformational transition 
of HA2 that is induced by lower pH values. 

Extracted from cotton plant in 1970s, a natural 
phenolic aldehyde named Gossypol (Figure 6) was 
found to be effective against pneumonia caused by 
influenza virus (66-69). Further studies found that 
other natural products (or its derivatives) such as 

Rutin (70, 71), Quercetin (71-74), Xylopine (71, 75) and 
Theaflavins (76, 77) are HA inhibitors that interacts 
with HA (Figure 6). 

 

 
Figure 5. Structures of N-acetylneuraminic acid and neuraminic acid. 

 
Figure 6. Structures of typical natural products as HA inhibitors. 
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Figure 7. Structures of newly developed HA inhibitors. 

 
BMY-27709, contains a salicylamide scaffold and 

has been identified as specific to the influenza A virus 
(with IC50 values of 3-8 mM in a multicycle replication 
assay for A/WSN/33 virus) (61). BMY-27709 was 
found to inhibit the H1 and H2 viruses (though it is 
inactive against H3 virus) in the early stage of 
infection. Further study has indicated that BMY-27709 
blocks the HA-mediated fusion process (62). 
Stachyflin (Figure 7) is a HA inhibitor that is similar to 
BMY-27709 in that it has activity against the H1 and 
H2 influenza A viruses (64). Experiments have 
suggested that Stachyflin blocks the HA-mediated cell 
fusion process by inhibiting the conformational 
transition of the HA protein (64, 65).  

It is interesting that a trivalent glycopeptide 
mimetic (compound 1, Figure 7) displayed inhibitory 
activity against HA (H5) of avian influenza (inhibitory 
constant ( Ki ) = 15 μM and compound 1 is not a small 
molecular but this compound cannot simply be 
subdivided into peptide either) (2). The follow-up 
work carried out by Zhao et al found that a series of 
podocarpic acid derivatives (compound 2, Figure 7) 
exhibited potent activities (EC50 = 140-640 nM ) 
against a cell-line adapted influenza virus (A/Puerto 
Rico/8/34, PR8, an oseltamivir and amantadine resist 
H1N1 strain) infection of MDCK (Madin-Darby 
canine kidney) cells (78). Natural product pentacyclic 
triterpenoids (compound 3, Figure 7) exhibited 
inhibitory against influenza viruses, which were 
comparable to or even more potent than that of 
oseltamivir (79). Compound 3 was effective against 
the A/HuNan-ZhuHui/1222/2010 H3N2 strain 
(amantadine and ribavirin resistant), the 
A/LiaoNing-ZhenXing/ 1109/2010 H1N1 strain 
(oseltamivir-resistant), and even the influenza 
B/ShenZhen/155/2005, with EC50 values of 3.18, 6.58, 
and 2.80 μM (MDCK cell- based Cytopathic effect 

reduction assay, CPE Assay). Obtained from 
marine-derived fungus Eurotium rubrum, a class of 
novel prenylated indole diketopiperazine alkaloids 
displayed potent inhibition against H1N1 virus 
including oseltamivir and amantadine-resistant 
clinical isolates (80). The indole alkaloids (such as 
Neoechinulin B) can disrupt the interaction between 
the virus and host cells through binging to influenza 
envelope HA (80). The EC50 valuses of Neoechinulin B 
against A/LiaoNing-ZhenXing/1109/2010 H1N1, 
A/HuNan-ZhuHui/1222/2010 H3N2 and A/WSN/33 
H1N1 were 16.89, 22.22 and 27.4 μM, respectively 
(MDCK cell- based CPE Assay). 

Thiazolides such as Nitazoxanide (Figure 7) are 
powerful broad-spectrum antiviral drugs by blocking 
the maturation of viral HA, which made them be 
active against influenza viruses (81-86). The IC50 
valuses of Nitazoxanide against influenza 
A/WSN/1933 H1N1, A/Parma/24/2009 H1N1 
(Oseltamivir-resistant), A/Parma/06/2007 H3N2 
(amantadine-resistant), A/goose/Italy/296246/2003 
H5N9 and A/turkey/Italy/RA5563/1999 H7N1 were 
1.6, 1.9, 1.0, 3.2 and 1.6 μM, respectively (MDCK 
cell-based CPE assay). 

1.3 NA inhibitors (NAIs)  
NA (also called sialidase) is a viral enzyme that 

is made up of four identical subunits and is anchored 
to the membrane of the virus (87). NA plays a key role 
in the spreading of the virus. The terminal neuraminic 
acid residues of the glycoproteins of the newly 
formed virion progeny form glycosidic linkages with 
the neuraminic acid receptor on the host-cell surface; 
this glycosidic linkage is cleaved by NA, which 
thereby assists in the release of the virion progeny 
from the infected cells (88, 89). Therefore NA is an 
attractive target for anti-influenza research, and 
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inhibitors of NA containing a Neu core have attracted 
much attention (90-92).  

Meindl et al synthesized FANA (93, 94) and 
DANA (Neu5Ac2en)(94, 95), which are analogues of 
sialic acid (Figure 8). However, further study 
indicated that DANA has limited activity and failed 
as a clinical treatment of influenza (95-97). Von 
Itzstein and colleagues (98) modified the structure of 
DANA to synthesize the novel NA inhibitor 
Zanamivir (Figure 8). Zanamivir was effective against 
influenza A/(Singapore/1/57 and B/Victoria/102/85 
virus with IC50 values of 14 nM and 5 nM, respectively 
(MDCK cell-based Plaque Reduction Assay). 
Although the oral bioavailability of Zanamivir is very 
low (2%-3%), the FDA approved it in 1999 as the first 
NA inhibitor agent (formulated for oral inhalation). 

Based on the structure of Zanamivir and the 
3-dimensional structure of Zanamivir and 
influenza-virus NA (subtype N9) (99) , Kim et al (100) 
synthesized Oseltamivir (Figure 8), which has 
enhanced oral bioavailability. The FDA also approved 
Oseltamivir in 1999, and it is the most popular NA 
inhibitor in the clinic at present. The activities of 
Oseltamivir carboxylate against representative N3-N9 
NAs with IC50s range from 0.3 nM to 1.5 nM 
(Neuraminidase Enzyme Assay). More importantly, 
Zanamivir and Oseltamivir are effective against 
amantadane resistant strains.  

Peramivir (101) and Laninamivir (102, 103) are 

also used as NA inhibitors and currently licensed in 
Asian countris (Figure 8). Peramivir is only 
administered intravenously because of its poor 
bioavailability (104). Laninamivir showed potent NA 
inhibitory activities against 11 strains of H1N1 
viruses, 15 strains of H3N2, 23 strains of B viruses 
with IC50 valuses range 1.29-5.97 nM, 7.09-38.8 nM 
and 10.4-31.4 nM, respectively (Enzymatic assays). 
Laninamivir (also formulated for oral inhalation) is a 
long-term NA inhibitor, and it appears to be effective 
for patients with Oseltamivir resistance (94, 105-107). 
The suggested treatment usage of laninamivir (Japan) 
is beneficial when patients confer resistance to 
oseltamivir (94, 106, 107). 

The recent progress in researching NA inhibitors 
has mainly focused on the structure 
modification/optimization of Zanamivir and 
Oseltamivir, both of which are similar to the Neu 
analogues (compounds 4-9, Figure 8) (108-115).  

The development of irreversible inhibitors is an 
attractive strategy for overcoming drug resistance. 
Designed and synthesized by Kim et al. (116), those 
compounds (represented by compound 10, Figure 8) 
could form transient covalent intermediates with 
Tyr406 located at the catalytic domain of NA, thereby 
gaining potent broad-spectrum inhibitory activity 
against drug-resistant strains. Furthermore, those 
compounds exhibited equivalent or better drug 
efficacies in animal experiments. 

 

 
Figure 8. Structures of representative NAIs. 
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Figure 9. Structures of dimeric zanamivir conjugates and benzoic acid derivatives. 

 
Figure 10. Structures of pyrrolidine derivatives as NAIs. 

 
Remarkably, dimeric (or tethered) NA inhibitors 

developed by Tucker and co-workers are prospective 
for the clinical realization as anti-influenza agents 
(117-120). Dimeric zanamivir conjugates were 
synthesized and proved to be highly potent NA 
inhibitors (Figure 9) (120, 121). These dimeric 
compounds showed broad-spectrum activity and 
were 10-1000 fold more potent than that of zanamivir. 

With the aim to find novel, potent NA inhibitor, 
benzoic acid derivatives (Figure 9) were developed in 
recent studies (122-125). However, the plane of the 
aromatic ring may limit the orientation of the 
substituent group, resulting in the poor activity of 
these benzoic acid derivatives. Pyrrolidine derivatives 
are also effective against the influenza A virus (Figure 
10). Wang et al (126) found compound 15 showed 
anti-influenza activity ( IC50 = 0.2 μM against NA 
A/Tokyo and 8 μM against NA B/Memphis, NA 
inhibition assay). Compound 16 (127) and compound 
17 (128), showed anti-influenza activity against 
influenza A and influenza B, respectively. Compound 
18, as an analogue of L(-)-proline, showed inhibitory 
activity against NA from the influenza A virus (129). 

Some natural products have also been found to 
possess anti-influenza activities in past few years 
(Figure 11). Ginkgetin-sialic acid conjugates 

(compound 19) (130), significantly improved the 
survival rate of mice infected with the influenza virus. 
Flavanones and flavonoids (Figure 11, 20-23) also 
showed potent NA inhibition (IC50 ranges 1.4-20 μM 
against NA, NA inhibition assay) (131-134). 
Isoscutellarein (compound 24) and its derivatives are 
also active in cellular assays (EC50 = 20 μM against 
influenza A/Guizhou/54/89 H3N2, MDCK 
cell-based CPE assay) and animal models (135, 136). 

A novel highly potent oral drug candidate 
AV5080 (Figure 12) exhibited subnanomolar activity 
against influenza virus NA in vitro (with IC50s = 0.03 
nM and 0.07 nM against NA of 
A/Duck/Minnesota/1525/1981 H5N1 and 
A/Perth/265/2009 H1N1 in NA enzyme based 
assays, respectively) (137). The N-substituted 
Oseltamivir analogues (compound 25, Figure 12) 
displayed enhanced inhibition against NA from 
Oseltamivir-resistant and wild-type strains (138). 
Jin-Hyo Kim et al synthesized a series covalent NA 
inhibitors (represented by compound 26 and 27, 
Figure 12) by introducing the strong electronegative 
fluorine atom at core-ring of Zanamivir and 
Oseltamivir (116); and these compounds showed 
excellent antiviral activity in vitro. Compound 27 
showd IC50 values of 1 nM and 10 nM agaisnt 
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B/Perth/211/01 and A/Fukui/45/01 H3N2 in 
plaque size reduction assays, superior than those for 
Zanamivir (10 nM and 100 nM, respectively). These 
compounds also showd comparable inhibition levels 
in animal models (compared with Zanamivir) (116). 

1.4 RNA-dependent RNA polymerase (RdRp) 
inhibitors 

The RNA-dependent RNA polymerase (RdRp) 
of the influenza virus has been highly conserved 
among all strains and subtypes during evolution 
(139). Unlike mammals, the RdRp of the influenza 
virus exhibits activities of both replicases and 
endonucleases. During the early stages of infection, 
RdRp synthesizes mRNA using vRNA as a template. 
During the advanced stage of infection, as the 
conformation of RdRp changes, RdRp becomes 
responsible for the catalytic synthesis of cRNA and 
vRNA (140-143). RdRp was also named “3P-complex” 
because it is composed of three subunits (PA, PB1 and 
PB2). RdRp plays a critical role during the life cycle of 
the virus. Therefore, it has become a promising target 

for the development of anti-influenza drugs in recent 
years (144, 145). Based on the mechanism of the 
interactions berween inhibitors and polymerase, 
RdRp inhibitors can be easily subdivided into the 
following four subtypes (146, 147): (i) RdRp 
disrupting compounds, (ii) PB2 cab-binding 
(PB2-CBD) inhibitors, (iii) PA endonuclease 
inhibitors, (iv) PB1 or nucleoside analogue like 
inhibitors. 

RdRp disrupting compounds: An attractive 
strategy for developing RdRp inhibitors appears to be 
interrupting the subunits interactions (the assembly 
course of the subunits in to a functional polymerase 
complex), and this strategy proves to be effective in 
recent studies. Figure 13 shows the structures of 
typical RdRP disrupting inhibitors (compounds 28-33, 
Figure 13) (17, 148-153), and RdRp disrupting 
compounds also named prpotein-protein interaction 
inhibitors (PPI inhibitors) because of its 
interference/or inhibiton of the protein-protein 
interaction in the assembly course. 

 
 

 
Figure 11. Structures of nature products as NAIs. 

 

 
Figure 12. Structures of newly developed NAIs. 
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PB2 cab-binding inhibitors: The cap-binding 
activity resides in PB2 subunit was discovered more 
than 30 years ago (154, 155), but the binding mode of 
influenza A and B was revealed since the X-ray 
structure of the PB2 cap-binding domain was reported 
in 2008 (156). PB2-CBD as a drug target was validated 
by the clinical candidate VX-787 (94, 157-159) (Figure 
14). As an azaindole based inhibitors, VX-787 was able 
to occupy the m7GTP binding pocket in the PB2-CBD 
of influeza A (demonstrated by X-ray structure) (156). 
VX-787 displays potent antiviral activity against a 
widely range of influenza A virus strains in cellular 
assays (with EC50s in nanomolar range), including 
amantadine- and NAI-resistant strains. Cap-3 and 
Cap-7 (Figure 14) were also cap-binding inhibitors 
and were reported recently by Roch et al (160). These 
two compounds can inhibit the transcription process 
in enzymatic assay and inhibit the virus replication 
process in cell experiments (with EC50s range 1-9 μM). 

PA endonuclease inhibitors: Another promising 
target in polymerase may be the conserved residues 
inside of the catalytic site of N-terminal domain of PA. 
This stragety was also validated since the introduction 
of AL-794 and S-033188 (structures undisclosed) as 
PA inhibitors into clinical trials (161). The challenge of 
the strategy is to achieve inhibitors consist of 
metal-chelating scaffolds to bind the divalent metal 
ion(s), and occupy the PA-Nter catalytic site. Many 
inhibitors of this type have been report so far, and 
these inhibitors have in common that they possess 
chelating motifs (147). These inhibitors include: EGCG 
(162, 163) and its aliphatic analogues (EGCG 
analogues also showed inhibitory activity against 
Neuraminidase) (164), N-hydroxamic acids and 
N-hydroxyimides (165), flutimide (166) and its 
aromatic analogues (167), tetramic acid derivatives 
(168), L-742,001 (169, 170), ANA-0 (171), polyphenolic 

catechins (162), phenethyl-phenylphthalimide 
analogues (172), macrocyclic bisbibenzyls (163, 173), 
pyrimidinoles (174), fullerenes (175), hydroxy- 
quinolinones (176), hydroxypyridinones (IC50 = 11 nM 
in Enzymic Assay, compound 34) (177), 
hydroxypyridazinones (178), trihydroxy-phenyl- 
bearing compounds (compound 35 and 36) (179-181), 
2-hydroxy-benzamides(182), hydroxy-pyrimidinones 
(183), β-diketo acid and its bioisosteric compounds 
(184), thiosemicarbazones (183), bisdihydroxyindole- 
carboxamides (185), pyrido-piperazinediones 
(Endo-1) (160) and miscellaneous compounds (186). 
However, quite a number of these compounds 
showed in cell experiments, which is likely to be 
connected with the poor cellular uptake and/or 
insufficient anti-viral activity and selectivity. 
Structures of the representative inhibitors were shown 
in Figure 14. 

Nucleoside and nucleobase analogue inhibitors: 
This subtype of RdRp inhibitors is likely to be most 
promising in anti-influenza drug development 
because of the following advances: low cytotoxicity, 
high resistance barrier and broad coverage of diverse 
RNA viruses (147). 

Ribavirin (Figure 14) (187) and Favipiravir (188, 
189) (also named T-705, Figure 14) are RdRp 
inhibitors that both have a nucleoside fragment. 
Ribavirin was approved as a broad-spectrum antiviral 
drug for years (190, 191) and Favipiravir has 
advanced to phase II clinical trials (USA) and phase III 
clinical trials (Japan). Ribavirin can influence the 
DNA/RNA synthesis of the host cell (192, 193) 
through a combination of several different 
mechanisms (147). Further research reveals that 
ribavirin and its analogues (5-azacytidine and 
5-fluorouracil) are lethal mutagens of influenza virus 
(194). 

 

 
Figure 13. Structures of RdRp disrupting compounds and PB2 cab-binding inhibitors. 
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Figure 14. Structures of representative PA endonuclease inhibitor, Nucleoside and nucleobase analogue inhibitors. 

 

As a nucleobase mimetic, Favipiravir and its 
analogues showed to be effective against strains that 
are resistant to NA inhibitors and M2 ion channel 
protein inhibitors (188, 195-199). 

2ʹ-Deoxy-2ʹ-fluoroguanosine (2’-FdG) (200) and 
other nucleoside analogues (such as C-3ʹ-modified 
analogues (201), 2ʹ-substituted carba-nucleoside 
analogues (202), 6-methyl-7-substituted-7-deaza 
purine nucleoside analogues (203) etc.) were reported 
to posess anti-influenza activities against influenza A 
and B viruses. 2’-FdG can inhibit the polymerase 
complex through nonobligate chain termination. As a 
pyrimidine analogue of 2’-FdG, 2ʹ-deoxy-2ʹ- 
fluorocytidine (2’-FdC) seems more potent against 
various strains of influenza A and/or B in vitro and in 
vivo (204). Although these nucleoside analogues 
showed strong inhibitory activities, the clinical 
application was limited because the therapeutic 
window is too narrow (147). 

1.5 Nucleocapsid protein (NP) inhibitors 
NPs account for 30% of the total protein of the 

virus and, as a structural protein, form the virus 
ribonucleoprotein (vRNP) (205, 206). NP has multiple 
functions in the virus and is involved in replication, 
the formation of specificity to the host, and other 
activities (7, 207). Recent research has resulted in the 
discovery of some potential targets and inhibitors of 
NP (7, 148, 208-210). A study carried out by Ye and 

co-workers indicated that the tail loop-binding pocket 
in the influenza A virus NP could be a potential site 
for antiviral development. Kao et al (210) found a 
small molecular, nucleozin (NCZ, Figure 15), which 
may inhibit the infection caused by the H1N1, H3N2 
and H5N1 strains as it can initiate the aggregation 
process of NP, blocking its nuclear accumulation 
(with EC50s of 0.069 μM, 0.16 μM and 0.33 μM showd 
in MDCK cell-based Plaque Reduction Assay, 
respectively). Their work also proved that viral NP is 
a potential target for the development of 
anti-influenza drugs. Ke ding et al (211) replaced the 
isoxazole ring of nucleozin with triazole to obtain 
compound 37 (Figure 15), which showed enhanced 
activity against the replication of various H1N1, 
H3N2, H5N1 and H9N2 influenza A virus strains 
(with IC50s ranges 0.15-12.4 μM, MDCK cell-based 
Anti-influenza Assay). Furthermore, compound 37 
was also effective against strains that are resistant to 
amantadine (A/WSN/33, H1N1) and oseltamivir 
(A/WSN/1933 H1N1, 274Y). 

Small molecules such as Cycloheximide (CHX, 
Figure 15) (212-214) and Naproxen (Figure 15) (215) 
were found to be effective against the functional 
polymerization of the NP monomers. Furthermore, a 
licensed drug named Ingavirin (approved in Russia, 
Figure 15) interacts with NP directly by interrupt 
transportation of newly synthesized NPs to the 
nucleus (173, 216-221). 
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Figure 15. Structures of NP inhibitors. 

 

1.6 M2 ion channel inhibitors 
The M2 ion channel protein is a transmembrane 

protein that possesses the activities of typical ion 
channels (222-225). Influenza B lacks an M2 ion 
channel protein, but the B/M2 protein functions as an 
M2 ion channel protein during the assembly of the 
virus (225). The M2 and B/M2 proteins play 
important roles in the incorporation of the viral 
ribonucleoprotein (vRNP) complex into the virus 
during the assembly process. 

Although the M2 inhibitors (Amantadine and 
Rimantadine) are firstly approved and recommend 
for use in clinical, but drug resistance has limited their 
clinical use. Most H1N1, H3N2 strains and virus B are 
resistant to Amantadanes, but the resistance to 
Zanamivir and Oseltamivir is very low. Furthermore, 
neurotoxic effects (such as confusion, disorientation, 

anxiety, jitteriness, etc.) caused by Amantadine are 
usually more common when the drug is used more 
than a week. Since the structure of M2 channel protein 
has been determined (226), developing more potent 
drugs against H1N1 influenza virus and solving the 
drug-resistant problem become promising (226-229).  

M2 inhibitors can be classified as two groups 
based on the structure of the inhibitors (34). The first 
group includes Amantadine and Rimantadine (225) 
analogues (226, 230-234) (Figure 16, compounds 
38-40). Amantadine and compound 39 showed 
activities against influenza A H3N2 virus with IC50s of 
3.35 and 8.58 μM in a MDCK cell-based CPE Assay, 
respectively. The second group is non-adamantane 
derivatives and promising drugs (235, 236). 
Polyamines are effective against influenza virus (such 
as Spermine and Spermidine, Figure 16) (237, 238). 
This is because there is another binding site for 
polyamines at the M2 protein (significantly distinct 
from the Amantadine binding site) (239), and 
polyamines have attracted much attention for 
developing novel anti-influenza drugs (240, 241). 
Spiropiperidine and its derivatives (represented by 
compound 41 in Figure 16) are also effective against 
M2 protein and showed activities against 
amantadine-resistant viruses (34). Nature products 
such as pinanamine derivatives (compound 42 in 
Figure 16) also exhibit good anti-influenza activities 
(242). However, almost none of M2 inhibitors are 
effective against the influenza B virus (225). 

 

 
Figure 16. Structures of M2 ion channel inhibitors. 
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Mopyridone (Figure 17), a compound which was 
screened from a series of tetrahydro-2(1H)- 
pyrimidinone derivatives by Galabov et al in 1980s 
(243, 244), demonstrated to be a large scope anti-flu 
effect and large spectrum of influenza A1H1, AH2N2, 
AH3N3 and B strains in vitro and in vivo (245). What is 
particularly noteworthy is that this compound is the 
only anti-flu compound for which it was proved to 
have as a target M1 protein (246), and further research 
shows this compound with low acute toxicity in mice 
(247).  

1.7 Arbidol hydrochloride 
Developed by the Pharmaceutical Chemistry 

Research Center of the former Soviet union (248-251), 
arbidol hydrochloride (AH, Figure 17) was selected as 
a new antiviral drug for influenza infection in Russia 
and China (250, 251). AH is effective for the 
prophylaxis and treatment of influenza and other 
acute respiratory viral infections (ARVI) (250). AH 
inhibits viral entry into target cells and also stimulates 
the immune response (252). At the same time, AH has 
immunomodulatory activity, a capacity to induce 
interferons, and antioxidant properties. Although 
some studies from Russia and China have proved AH 
to be effective, it has not been approved for use in 
western countries.  

 

 
Figure 17. Structures of Mopyridone and Arbidol Hydrochloride. 

2. Agents targeted at potential host sites 
The potential targets for antiviral therapies 

include proteases, vacuolar-type proton-adenosine 
triphosphatases (V-ATPases), kinases, and other 
proteins. However, the effectiveness of inhibitors 
against these enzymes needs further improvements. 

2.1 Protease inhibitors 
The interaction between the host protease and 

the splice site of the viral precursor protein HA0 
determines whether the species is infected with 
influenza and affects the virulence of the virus. For 
example, the splice site of HA0 in highly pathogenic 
avian influenza strains such as H5 and H7 can be 
easily be spliced by the widespread basic amino acid 
protease or PC6 serine protease, resulting in fatal 
systemic infection in birds (253, 254). In fact, known 
inhibitors such as nafamostat, Leupeptin (255), 
epsilon-aminocapronic acid (256), Camostat (257), 
Aprotinin (258) have been studied for years (Figure 
18). Some of them (such as Camostat) have shown 
selective inhibition against the influenza A and 
influenza B viruses in vitro and in vivo (259). 

2.2 V-ATPase inhibitors 
The selective V-ATPase inhibitors may increase 

the internal pH of the prelysosome, thereby inhibiting 
the conformational transformation of HA from the 
unfused conformation to the fused conformation. This 
would result in the inhibition of replication during the 
course of the viral life cycle. It is interesting that four 
drugs used in the treatment of Parkinson’s disease 
(NorakinR, ParkopanR, AntiparkinR and AkinetonR) 
all contain an adamantine scaffold that has shown 
inhibitory activity against the influenza A and 
influenza B viruses (260-262). 

 
Figure 18. Structures of agents targeted at potential sites of host. 
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2.3 Anti-oxidants  
Increasing evidence has indicated that the 

oxidation plays a major role in influenza virus life 
cycle and replication. 

Among the antiviral strategies make use of 
anti-oxidants, alpha-tocopherol (Figure 19) enjoys a 
long history since 1960s (263-266). Further researches 
revealed that alpha-tocopherol (or combination) could 
normalize the lipid peroxidation processes caused by 
viral infection (264, 267-272). 

The activation of the NADPH oxidase 2 (NOX2) 
might promote the respiratory symptoms result from 
infection with influenza A viruses and impede the 
clearance of the virus (273-277). Therefore, NADPH 
oxidases became promising novel pharmacologic 
targets against influenza A virus infection (278-280). 

 

 
Figure 19. Structures of alpha-tocopherol, Rapamycin and Bortezomib. 

 

3. Other targets and strategies 
As described above, the research into the 

development of anti-influenza drugs has been 
ongoing for decades and has greatly progressed. 
However, the drug resistance acquired in recent years 
from the widespread use of anti-influenza drugs has 
prompted researchers to find new potential targets.  

Pathway inhibitors: The mTOR inhibitor 
Rapamycin (Figure 19), which has been marketed as 
an immunosuppressive drug that surprisingly leads 
to the protection from infection with multiple 
subtypes of the influenza virus (6). In addition, some 
proteasome inhibitors, such as NFKβ inhibitors 
(Bortezomib, Figure 19), Raf/MEK/ERK pathway 
inhibitors are also effective and can work as new 
antivirals against influenza virus (281). 

NS1 inhibitors: The non-structural protein 1 
(NS1A) of the influenza virus is a small, 
multifunctional protein that plays a critical role in the 
response of the host antiviral process (282, 283). When 
NS1A binds to cleavage and polyadenylation 
specificity factor (CPSF30), the maturation of the host 
RNAs is blocked, which leads to the reduction of host 
proteins (282-286). Twu and co-workers (287) found 

that the binding of CPSF30 is mediated by the second 
and third zinc fingers (F2F3) of CPSF30. When the 
binding process of CPSF30 to the NS1A protein was 
blocked by a fragment which containing the F2F3 
binding motif, the replication of the influenza A virus 
was inhibited. This work indicated that the CPSF30 
binding site in the NS1A protein is a potential target 
for antiviral therapies against the influenza A virus 
(287). A recent study carried out by Jablonski et al. 
showed a series of compounds derived from the 
NSC125044 (Figure 20, compound 43) displayed 
inhibitory activity against NS1 protein (288). 

Phospholipase inhibitors: Phospholipase D 
(PLD) is one kind of phospholipase that catalyzes the 
formation of phosphatidic acid, an important 
messenger in signaling and metabolic pathways (289). 
Recent studies show that human PLD2 inhibitor such 
as ML395 (Figure 20) possess a broad-spectrum 
inhibitory against influenza strains (290).  

vRNPs inhibitors: As the exportion of influenza 
virus vRNPs from nuclear has been demonstrated to 
be mediated by hostexportin 1 (XPO1) (291-293), 
developing inhibitors of XPO1 to interrupt the vRNP 
exportion process and then hinder the replicationcycle 
of the virus make some sense. A study performed by 
Olivia Perwitasari et al. show that verdinexor (Figure 
20), a novel selective inhibitor of XPO1 selectively and 
potently inhibited the replication process of various 
influenza virus A and B strains in vitro (294). 
Resveratrol (Figure 20) could interrupt the 
translocation process of RNPs from the nucleus to the 
cytoplasm and may be useful as an anti-influenza 
drug (295-297). Ascorbic and dehydroascorbic acids 
(Figure 20) also possess the antiviral effect, and this 
effect may work at the envelopment of viral 
nucleocapsids after the completion of viral DNA 
replication (298, 299). 

RNA inhibitors: RNA inhibitors refer molecule 
that regulate the expression of gene. RNA inhibitors 
play important roles in RNA silencing, RNA 
interference (33) and post-transcriptional regulation 
of gene expression. RNA inhibitors are able to 
regulate the expression of influenza viral RNAs. 
Accordingly, viral genes became a potential target 
and RNA inhibitors may be effective in influenza 
treatment (300). 

Immunomodulatory agents: Inflammatory 
changes and other immune reactions that associated 
with acute coronary syndrome may influence the 
mortality of influenza (301). Immunomodu-
latory agents can reduce levels of LDL-cholesterol and 
improve the inflammatory changes. Studies show that 
statin treatment in pneumonia patients or influenza 
patients exhibited reduced mortality (301-304). 
Other immunomodulatory agents (305) such as 
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Cyclooxygenase inhibitors (aspirin) (306), 
ACE inhibitors (ACEIs) (302, 307), angiotensin 
receptor blockers (ARBs) (302), AMPK agonists 
(metformin) (308), PPARα and PPARγ agonists 
(fibrates and glitazones) (309-311), however, showd 
the ability to reduce mortality in mouse models of 
influenza (312, 313) and patients with pneumonia 
(ARBs and ACEIs) (302, 314). 

Combination therapies: Combination therapy is 
one of the prospective domains in the investigation 
for anti-flu agents. Combination therapies used in 
anti-influenza treatment may improve the clinical 
outcomes and enhance antiviral activity against 
drug-resistant strains. They can also reduce the risk of 
side effects, dose-related toxicity, mortality and 
morbidity (315-317). Therefore, combination therapies 
are recommend in clinical and can be classified in to 
early combination chemotherapy and sequential 
multidrug chemotherapy. A classical combination is 
M2 blockers and NA inhibitors to avoid 
drug-resistance. Many studies have been carried out 
to evaluate the efficacy of combination therapies and 
single-drug treatment, and most combination 
therapies showed superior outcomes in mice models 
(272, 318-321).  

Conclusion 
As drug resistance (often caused by 

mono-therapy and, sometimes, uncontrolled use in 
farm animals) (322) and frequent mutations of strains 
are increasingly serious in the past few years, few 
drugs can be effective in this situation. The 
development of antiviral agents is a practical 
significance topic that has attracted much attention 
and had made great progress during the past several 
decades. Small molecular inhibitors are powerful 
weapon to fight against influenza virus. Small 
molecular inhibitors function as M2 ion-channel 
inhibitors, NA inhibitors and protease inhibitors are 
used in clinical. M2 ion-channel inhibitors were firstly 
used in clinic but they have shown some defects in 

clinical use. The quick development of 
drug-resistance (strains such as H1N1, H3N2 and type 
B viruses) has limited their clinical use. Alternatively, 
NA inhibitors are currently the most popular targets 
of antiviral research (Oseltamivir and Zanamivir are 
effective against amantadane resistant strains). While 
arbidol hydrochloride is effective against the 
influenza A and B viruses, its precise mechanisms of 
action remain unclear. The usefulness of the marketed 
NA inhibitors oseltamivir and Zanamivir is also 
limited due to the increasing prevalence of resistant 
strains. Besides mono-therapy, combination therapies 
were also developed (29, 315, 317). Treatment with 
immunomodulatory agents also represents a new 
approach to deal with seasonal and 
pandemic influenza. Along with the determination of 
the NA structure and the discovery of SAR in recent 
years, the basis of rational design for novel, potent 
NAIs is valid. As drug resistance became an 
increasingly serious problem, and the existing drugs 
may no longer be useful due to the emergence of 
mutated strains, researchers have focused on making 
structural modifications of current drugs to identify 
potential new targets such as HA (HA) inhibitors, 
RNA-dependent RNA polymerase (RdRp) inhibitors, 
nucleocapsid protein (NP) inhibitors, protease 
inhibitors, V-ATPase inhibitors, Pathway inhibitors, 
Anti-oxidants, Phospholipase inhibitors, vRNPs 
inhibitors and RNA inhibitors etc. Some inhibitors of 
these targets have shown certain anti-influenza 
activities in vivo and in vitro, and further studies are 
in progress. It is particularly worth mentioning here 
that major progress was made in unravelling of 
functioning and mechanisms of the virus polymerase 
in past few years, as well as novel RdRp inhibitors. It 
can be anticipated that polymerase inhibitors will 
reshape the field of influenza prevention and therapy 
in the near future. There is, however, still a long way 
to go in winning the battle against influenza 
pandemics.  

 
Figure 20. Structures of NS1 inhibitors and phospholipase inhibitors. 
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