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ABSTRACT: The system-size dependence of computed mutual
diffusion coefficients of multicomponent mixtures is investigated,
and a generalized correction term is derived. The generalized
finite-size correction term was validated for the ternary molecular
mixture chloroform/acetone/methanol as well as 28 ternary LJ
systems. It is shown that only the diagonal elements of the Fick
matrix show system-size dependency. The finite-size effects of
these elements can be corrected by adding the term derived by Yeh
and Hummer (J. Phys. Chem. B 2004, 108, 15873−15879). By
performing an eigenvalue analysis of the finite-size effects of the
matrix of Fick diffusivities we show that the eigenvector matrix of Fick diffusivities does not depend on the size of the simulation box.
Only eigenvalues, which describe the speed of diffusion, depend on the size of the system. An analytic relation for finite-size effects of
the matrix of Maxwell−Stefan diffusivities was developed. All Maxwell−Stefan diffusivities depend on the system size, and the
required correction depends on the matrix of thermodynamic factors.

1. INTRODUCTION

The past few decades, Equilibrium Molecular Dynamics
(EMD) simulation has emerged as a powerful tool for
computing diffusion coefficients of pure components and
multicomponent mixtures.1−18 Typically, system sizes in the
order of hundreds to a few thousands molecules are used,
combined with periodic boundary conditions.19,20 As shown in
the pioneering work by Dünweg and Kremer almost 30 years
ago,21 the choice of the system size strongly affects computed
self-diffusivities, which scale linearly with the inverse of the
simulation box size. In early 2000s, Yeh and Hummer22 (YH)
derived an analytic hydrodynamic correction which should be
added to self-diffusivities computed from EMD, to obtain
diffusivities at the thermodynamic limit, i.e., the quantity
measured in experiments. The practically more relevant mass
transport due to concentration gradients depends on mutual
diffusion coefficients (i.e., Fick and Maxwell−Stefan).23−25
Very recently, Jamali et al.26 proposed an empirical correction
that should be applied to computed Maxwell−Stefan (MS)
diffusivities in binary mixtures. To the best of our knowledge, it
is still unknown if and how finite-size corrections should be
applied to mutual diffusivities in multicomponent systems. In
this study, we show that such corrections should indeed be
applied, and we derive a general correction term for mutual
diffusion coefficients of multicomponent mixtures computed
from EMD. In this way, multicomponent diffusivities can be
computed in a reliable way, allowing for quantitative
comparison with experiments. The derivation of the new

generalized correction presented in the present study proves
the validity of the empirical correction term proposed by
Jamali et al.26 for binary mixtures and provides fundamental
understanding of the underlying mechanisms of system size
effects in multicomponent mutual diffusion.
The manuscript is organized as follows: Some essential

theoretical definitions are provided in the following paragraphs.
The generalized correction term for the mutual diffusivities in
multicomponent mixtures is derived in the Results and
Discussion section, where also the verification of the new
correction is shown for 28 ternary Lennard-Jones (LJ)
mixtures and for a ternary molecular mixture. In the
Conclusions section, the main findings of this study are
summarized.

2. BACKGROUND: MUTUAL DIFFUSIVITY AND
FINITE-SIZE EFFECTS

Fick (mutual) diffusion coefficients are commonly used to
describe transport diffusion in a mixture.23,24,27 According to
Fick’s law, the molar flux (Ji) of species i in an n-component
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mixture is proportional to the concentration gradients of (n −
1) constituent species (cj):

23,28

J D ci
j

n

ij j
1

1

∑= − ∇
=

−

(1)

in which Dij denotes Fick diffusion coefficients. For an n-
component mixture, the matrix of Fick diffusivities consists of
(n − 1)2 elements. The empirical nature of Fick’s law has been
overcome by the MS formulation of diffusion, according to
which the driving force for diffusion is the gradient in chemical
potential (μ i), which is in balance with frictional
forces:23,24,28,29
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where xi is the mole fraction of species i, ct is the total
concentration, R is the universal gas constant, and T is the
temperature of the system. The friction force is due to the
difference in the fluxes (velocities) of species i and j, (i.e, xjJi −
xiJj). The inverse of the MS diffusion coefficient (i.e.,

Đ
1

ij
) can

be considered as a friction coefficient. For an n-component
mixture, n·(n − 1)/2 diffusion coefficients are defined. In a
homogeneous mixture, Dij and Đij describe the same physical
phenomenon. These diffusivities are related via the so-called
matrix of thermodynamic factors, [Γ]:23,24,28

DFick[ ] = [Δ][Γ] (3)

where [DFick] is the matrix of Fick diffusivities. [Δ] is the
symmetric phenomenological diffusion coefficient matrix
which is related to MS diffusivities according to11,28−30
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where i and j take values from 1 to n − 1 and i ≠ j. [Γ] is an
asymmetric matrix, whose elements can be computed
from28,31−33
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δ
γ

Γ = +
∂

∂
Σ (7)

where δij is the Kronecker delta and the subscript “T,p,Σ”
denotes constant temperature, pressure, and mole fractions of
all species, except for the nth species.28,29,33 More information
about the computation of [Δ] and [Γ] from EMD simulations
can be found in the literature.28−30,34−38

The Brownian motion of molecules in a pure or a
multicomponent fluid mixture can be described by the self-
(or tracer) diffusivity.39 In EMD, self-diffusivities are
computed from ensemble averages of mean-squared displace-
ments of individual molecules.28,40 According to the studies of
Dünweg and Kremer,21 and Yeh and Hummer,22 computed
self-diffusivities from EMD (Di,self

MD) scale linearly with the
inverse of the simulation box length (L). Based on hydro-
dynamic arguments, these authors derived an analytic

correction (hereafter referred to as the YH correction, DYH)
for the self-diffusivity, Di,self, of species i:

D D D T L D
k T

L
( , , )

6i i i,self ,self
MD YH

,self
MD Bη

ξ
πη

= + = +∞

(8)

in which kB is the Boltzmann constant, η is the shear viscosity
of the system computed from EMD, and Di,self

∞ is the self-
diffusivity in the thermodynamic limit. η computed in EMD
does not show finite-size effects.22,26,41 ξ is a constant which
depends on the shape of the simulation box42−45 (for a cubic
simulation box,22 ξ = 2.837297). The validity of eq 8 has been
extensively verified for various conditions and types of
molecules.22,26,41,46 Moultos et al.41 showed that the YH
correction holds for nonspherical molecules when a minimum
number of 250 molecules is used in the simulation. In a recent
study,46 we showed that the YH finite-size correction also
holds for self-diffusivities of mixtures. This finding allowed us
to develop a method to compute the shear viscosity of a
mixture from the computed self-diffusivities of its constituent
components.46

In our previous work,26 finite-size effects of binary mutual
diffusivities were studied. For a binary mixture, the matrix form
of eq 3 reduces to an algebraic equation as there is a single
DFick, ĐMS, and Γ. By performing simulations for more than
200 distinct Lennard-Jones and 9 molecular systems, we
derived the following phenomenological correction for the
computed (i.e., finite-size) MS diffusivity, ĐMS

MD:26

Đ Đ D
1

MS MS
MD YH= +

Γ
∞ i

k
jjj

y
{
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By combining eq 9 and eq 3 for a binary mixture, it can be
shown that finite-size effects of the binary Fick diffusion
coefficient require the same correction as self-diffusivities:

( )
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D D

( )Fick Fick
MD

MS MS
MD

MS MS
MD

1 YH YH

− = Γ − Γ = Γ −

= Γ =

∞ ∞ ∞

Γ
(10)

3. SIMULATION DETAILS
The open-source software package LAMMPS47 (version 16,
Feb. 2016) was used to perform MD simulations for two sets
of simulations: ternary Lennard-Jones (LJ) systems and a
ternary molecular mixture. To compute transport properties
and thermodynamic factors of these systems, the OCTP plugin
was used.48 The scheme used for computing Maxwell−Stefan
(MS) diffusivities from Onsager coefficients and thermody-
namic factors from Kirkwood−Buff coefficients is described in
detail in the main text and Supporting Information of our
published papers.26,28,48,49

3.1. Molecular Mixture. MD simulations were performed
for a ternary mixture of (1) chloroform, (2) acetone, and (3)
methanol at 298 K and 1 atm, corresponding to a density of
1025 kg/m3. The mole fractions of these components in the
mixtures are 0.3, 0.3, and 0.4, respectively. Similar to the work
of Liu et al.,38 force field parameters for methanol,50 acetone,51

and chloroform52 are obtained from literature. Schematic
representations of these molecules are shown in Figure S1 in
the Supporting Information, and force field parameters are
listed in Table S2 in the Supporting Information. All molecules
are considered rigid. The bond lengths and angles are listed in
Table S3 in the Supporting Information. LJ interactions are
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truncated at a cutoff radius of 12 Å, and analytic tail
corrections are included for the energy and pressure of the
system.20 Long-range electrostatic interactions are considered
by using the particle−particle particle−mesh (PPPM) method
with a relative precision of 10−6.20 Diffusion coefficients were
computed for four system sizes of 250, 500, 1000, and 2000
molecules. Initial molecular configurations were constructed in
PACKMOL,53 and LAMMPS input files were generated in
VMD.54 A time step of 1 fs was used, and all simulations have a
total length of 100 ns. A total of 100 independent simulations
were performed to obtain low statistical uncertainties.
Thermodynamic factors (Γ) for this system are obtained
from the work of Liu et al.38 Γ11, Γ12, Γ21, and Γ22 are 0.61,
−0.40, −0.31, and 0.79, respectively.
3.2. Lennard-Jones Systems. In this study, 28 distinct LJ

ternary systems are considered. Properties are reported in
reduced units, where the LJ energy (ϵ), size (σ), and mass (m)
are equal to 1. To create asymmetric systems, the LJ energy
parameter of each species is different (ϵ1 = 1.0, ϵ2 = 0.8, and ϵ3
= 0.6), while the sizes and masses for all particles are equal (σ1
= σ2 = σ3 = σ and m1 = m2 = m3 = m). All 28 ternary LJ systems
correspond to homogeneous mixtures away from demixing.
Interactions between dissimilar LJ particles are calculated
according to the Lorentz−Berthelot mixing rules with an
adjustable parameter (kij) for the energy parameters:20

k(1 )

2

ij ij ii jj

ij
ii jjσ

σ σ

ϵ = − ϵ ·ϵ

=
+

(11)

The kij parameters for the 28 ternary systems are listed in
Table S1 in the Supporting Information. LJ interactions are
truncated at a cutoff radius of 4σ. Analytic tail corrections are
considered for energy and pressure calculations.20 The mole

fraction of species 1 is 0.4, and species 2 and 3 have mole
fractions equal to 0.3. Simulations were performed at a reduced
temperature of 0.65 and a reduced pressure of 0.05. The
corresponding densities of these systems range from 0.78 to
0.89. Transport properties were computed in the micro-
canonical (NVE) ensemble for four system sizes consisting of
500, 1000, 2000, and 4000 LJ particles. To achieve sufficient
statistics, 100 independent simulations with different initial
configurations were performed for each system. To calculate
radial distribution functions (RDFs) and consequently
thermodynamic factors, MD simulations were performed in
the canonical (NVT) ensemble. The statistical uncertainties of
thermodynamic factors were obtained by performing 5
independent simulations, each one consisting of 25000 LJ
particles. A time step of 0.001 was used to integrate equations
of motion by using the velocity Verlet algorithm.20 The total
simulation lengths for computing transport properties and
RDFs are 100 and 10 million timesteps, respectively.

4. RESULTS AND DISCUSSION
4.1. Generalized Correction for the Finite-Size Effects

in Fick Diffusivities. Equation 10 is used as the initial step for
investigating finite-size effects in multicomponent mixtures.
Fick diffusion coefficients were computed for 4 system sizes for
the ternary mixture (1) chloroform/(2) acetone/(3) methanol.
Simulation details can be found in the Supporting Information.
The finite-size effects are shown in Figure 1 for all elements of
the Fick diffusivity matrix. The extrapolation to the
thermodynamic limit is performed by fitting a line to the 4
finite-size diffusivities. Figure 1 strongly suggests that the off-
diagonal elements of the Fick diffusivity matrix do not show
any system-size dependence. In sharp contrast, the diagonal
elements depend on the size of the simulation box and
experience a finite-size effect of the same magnitude as the YH

Figure 1. Computed elements of the Fick diffusivity matrix for the ternary mixture of (1) chloroform, (2) acetone, and (3) methanol (xchloroform =
xacetone = 0.3) as a function of the inverse simulation box length L: (a) Diagonal element DFick1‑1, (b) off-diagonal element DFick1‑2, (c) off-diagonal
element DFick2‑1, and (d) diagonal element DFick2‑2. Blue circles are the computed diffusion coefficients in MD simulations. Red squares are
corrected diffusivities using the YH correction (eq 8). Dashed lines show extrapolation to the thermodynamic limit, and solid lines are the
extrapolated values. All data related to Fick diffusion coefficient computations are provided in the Simulation Details section and in the Supporting
Information.
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correction. Hence, we will hypothesize that the YH correction
should be applied to the diagonal elements of the Fick
diffusivity matrix, while no finite-size correction is needed for
off-diagonal elements:

D D D IFick Fick
MD YH[ ] = [ ] + [ ]∞

(12)

where [DFick
MD] and [DFick

∞ ] are the Fick diffusivity matrices for a
finite-size simulation box and in the thermodynamic limit,
respectively. [I] is the identity matrix.
To examine the validity of this hypothesis, EMD simulations

were performed to obtain the mutual diffusion coefficients of
28 different ternary LJ mixtures. For each mixture, 4 system
sizes were simulated. All simulation details are provided in the
Supporting Information. The differences between Fick
diffusivities for the finite size and for the extrapolation to the
thermodynamic limit are shown in Figure 2. Clearly, the results
for the LJ and the molecular systems are in-line with our
hypothesis (eq 12).
The system-size dependency of multicomponent Fick

diffusivities can also be investigated using the eigenvalue
[D̂Fick] and modal [P] matrices of the Fick diffusivity matrix
[DFick]. [D̂Fick] is a diagonal matrix containing all eigenvalues of
the Fick diffusivity matrix, while [P] consists of all
eigenvectors.23 By definition, the modal matrix [P] has the
property that23

D P D PFick
1

Fick[ ̂ ] = [ ] [ ][ ]−
(13)

Eigenvalue and modal matrices are important for the linearized
theory of multicomponent diffusion.23,55,56 Importantly, the
linearized theory of multicomponent diffusion allows trans-

forming the (n − 1) equations of motion to (n − 1)
pseudobinary eigen-species representing (n − 1) hydro-
dynamic diffusion modes. The speed of these hydrodynamic
diffusion modes is expressed by the eigenvalues of the Fick
matrix. Thus, we expect that the hydrodynamic YH correction
should affect the eigenvalues of the Fick matrix. Techniques
like light dynamic light scattering (DLS), that can access
hydrodynamic modes, determine the eigenvalues of the Fick
matrix in multicomponent mixtures.57,58

By definition, the ith eigenvalue of the matrix of finite-size
Fick diffusivities (D̂i,Fick

MD ) is calculated from the following
equation:

D D I 0iFick
MD

,Fick
MD[ ] − ̂ [ ] = (14)

A similar equation can be written for the ith eigenvalue of Fick
diffusivities in the thermodynamic limit (D̂i,Fick

∞ ):

D D I 0iFick ,Fick[ ] − ̂ [ ] =∞ ∞
(15)

By combining eq 15 with eqs 12 and 14 we obtain

D D I D D I D I

D I D I D I

D D D I

0 (16)

(17)

( ) (18)

i i

i i

i i

Fick ,Fick Fick
MD YH

,Fick

,Fick
MD YH

,Fick

,Fick
MD YH

,Fick

= [ ] − ̂ [ ] = [ ] + [ ] − ̂ [ ]

= | ̂ [ ] + [ ] − ̂ [ ]|

= | ̂ + − ̂ [ ]|

∞ ∞ ∞

∞

∞

The last equation holds only when the term in the parentheses
equals zero. Hence, all eigenvalues of the Fick diffusivity matrix
need a finite-size correction equal to DYH. This means that the
eigenvalue matrix of finite-size Fick diffusivities, [D̂Fick

MD], whose

Figure 2. Finite-size corrections required for elements of the Fick diffusivity matrix (a) DFick,1‑1, (b) DFick,1‑2, (c) DFick,2‑1, and DFick,2‑2 as a function
of the YH correction (DYH, eq 8) for 28 LJ systems containing 500 particles (blue circles), 1000 particles (red squares), 2000 particles (green
diamonds), and 4000 particles (magenta pentagons). Reduced temperature is 0.65 and reduced pressure 0.05. The diagonal dashed lines indicate
perfect agreement between the YH correction and the required finite size corrections for Fick diffusivities. The vertical dashed lines indicate no
finite-size effects of Fick diffusivities. Raw data are provided in the Supporting Information.
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diagonal elements are the eigenvalues of [DFick
MD], should be

corrected according to

D D D IFick Fick
MD YH[ ̂ ] = [ ̂ ] + [ ]∞

(19)

Equation 19 is a general expression according to which one
should correct the finite size effects of Fick diffusivity
computed in EMD. Although the validity of this expression
is shown in Figures 1 and 2 for ternary mixtures, the theoretical
derivation presented in this section makes it valid for any n-
component mixture.
A similar finite-size effect investigation can be performed for

the modal matrix, [P]. Based on eq 13, for the Fick diffusivity
in the thermodynamic limit, we can write

D P D PFick
1

Fick[ ̂ ] = [ ] [ ][ ]∞ ∞ − ∞ ∞
(20)

By using eq 12 and simplifying the identity matrix (i.e., [I] =
[P∞]−1 [P∞]), one can rewrite eq 20 as

D P D D I P

P D P D P I P

P D P D I

( ) (21)

(22)

(23)

Fick
1

Fick
MD YH

1
Fick
MD YH 1

1
Fick
MD YH

[ ̂ ] = [ ] [ ] + [ ] [ ]

= [ ] [ ][ ] + [ ] [ ][ ]

= [ ] [ ][ ] + [ ]

∞ ∞ − ∞

∞ − ∞ ∞ − ∞

∞ − ∞

According to eq 19, the left-hand side of this equation can be
substituted by [D̂Fick

MD] + DYH[I]. Therefore, the terms DYH[I]
on both sides of the equation cancel out, and the following
relation can be obtained:

D P D PFick
MD 1

Fick
MD[ ̂ ] = [ ] [ ][ ]∞ − ∞

(24)

Similarly to eq 20, for finite-size diffusivities computed by
EMD, one can write

D P D PFick
MD MD 1

Fick
MD MD[ ̂ ] = [ ] [ ][ ]−

(25)

By comparing eqs 24 and 25, one can conclude that P∞ = PMD.
This means that the modal (eigenvector) matrix of Fick
diffusivities does not have any system-size dependency, while
according to eq 19 the eigenvalue matrix of Fick diffusivities
should be corrected. This finding leads to the conclusion that
while the size of the simulation box affects the speed of
diffusion (i.e., the eigenvalues), the direction of the diffusion
process (i.e., the eigenvectors) is unaffected.

4.2. Generalized Correction for the Finite-Size Effects
in Maxwell−Stefan Diffusivities. As Fick and MS diffusivity
are connected via the thermodynamic factors (see eq 3), a
correction term for the finite-size MS diffusivities can be
derived as follows:

D D D I

D I

D

D

(26)

(27)

(28)

( ) (29)

Fick Fick
MD YH

MD YH

MD YH 1

MD YH 1

[ ] = [ ] + [ ]

= [Δ ][Γ] + [ ]

= [Δ ][Γ] + [Γ] [Γ]

= [Δ ] + [Γ] [Γ]

∞

−

−

and by using [DFick
∞ ] = [Δ∞] [Γ] in the equation above leads to

DMD YH 1[Δ ] = [Δ ] + [Γ]∞ − (30)

from which the MS diffusivities can be computed. Equation 30
indicates that both the diagonal and off-diagonal elements of

Figure 3. MS diffusion coefficients for a mixture of (1) chloroform, (2) acetone, and (3) methanol (xchloroform = xacetone = 0.3) as a function of the
simulation box length (L). Blue circles are the computed diffusion coefficients in MD simulations. Red squares are the corrected diffusivities using
the proposed correction in eq 30. Dashed lines show extrapolation to the thermodynamic limit, and solid lines are the extrapolated values.

Figure 4. Comparison between finite-size corrections required for MS diffusivities (ĐMS
∞ − ĐMS

MD) and the proposed correction for MS diffusivities
(ĐMS

correction, eq 30, for 28 LJ systems containing 500 particles (blue circles), 1000 particles (red squares), 2000 particles (green diamonds), and 4000
particles (magenta pentagons). Parts 1-2, 1-3, and 2-3 indicate Đ1‑2, Đ1‑3, and Đ2‑3, respectively. Reduced temperature is 0.65 and reduced pressure
0.05. The dashed lines indicate perfect agreement between the proposed correction and the required finite size corrections for MS diffusivities. Raw
data are provided in the Supporting Information.
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the matrix of MS diffusivities show system-size dependency, in
sharp contrast to the Fick diffusivity matrix.
In Figure 3, the results of eq 30 are shown for the finite-size

effects of the computed MS diffusivities for the ternary
molecular mixture (1) chloroform/(2) acetone/(3) methanol.
All three MS diffusivities can be corrected using eq 30, while
the magnitudes of the required corrections are different. The
validity of this correction was further examined for 28 ternary
LJ systems (see Figure 4). For all systems, very good
agreement between the computed correction and eq 30 is
observed. Figures 3 and 4 clearly show that the correction (i.e.,
eq 30) can accurately predict the finite-size effects of the matrix
of MS diffusivities. It is important to note here that, similarly to
eq 19, eq 30 is a generalized expression that can be used for
any multicomponent mixture, independently of the number of
components.

5. CONCLUSIONS
In this study, we investigated the finite-size dependency of
mutual diffusion coefficients of multicomponent mixtures, and
a generalized correction is derived, i.e., eq 19. While the off-
diagonal elements of the Fick diffusivities do not show any
system-size dependency, the diagonal elements should be
corrected with the term proposed by Yeh and Hummer for the
finite-size self-diffusivities.22 An eigenvalue analysis of the
finite-size effects of the matrix of Fick diffusivities revealed that
the eigenvector matrix of Fick diffusivities is unaffected by the
size of the simulation box. Only eigenvalues, which describe
the speed of diffusion, depend on the size of the system. This is
in-line with the hydrodynamic nature of the finite-size effects.
An analytic relation for finite-size effects of the matrix of
Maxwell−Stefan diffusivities was also developed. The finite-
size correction term for the mutual diffusivities was examined
for the ternary molecular mixture chloroform/acetone/
methanol as well as 28 ternary LJ systems. All simulation
results are in good agreement with the proposed corrections
for Fick and Maxwell−Stefan mutual diffusion coefficients.
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■ NOMENCLATURE

Greek letters
η Shear viscosity (Pa·s)
Γ Thermodynamic factor (−)
[Δ] Matrix of phenomenological diffusion coefficient (m2·

s−1)
μi Chemical potential of species i (kg·m2·s−2·mol−1)
ξ Constant value for the YH correction (−)
δij Kronecker delta (−)
Roman letters
ĐMS Maxwell−Stefan (MS) diffusivity (m2·s−1)
ĐMS

correction Correction to finite-size Maxwell−Stefan (MS)
diffusivities (m2·s−1)

Đij Maxwell−Stefan (MS) diffusivity between pair i−j
(m2·s−1)

D̂i,Fick ith eigenvalue of the matrix of Fick diffusivities (m2·
s−1)

[ĐMS] Matrix of Maxwell−Stefan (MS) diffusivities (m2·
s−1)

[D̂Fick] Diagonal matrix whose elements are eigenvalues of
the matrix of Fick diffusivities (m2·s−1)

[B] Inverse of matrix of phenomenological diffusion
coefficient, i.e., [Δ]−1 (m−2·s)

[DFick] Matrix of Fick diffusivities (m2·s−1)
[I] Identity matrix (−)
[P] Modal matrix, i.e., eigenvector matrix of the matrix

of Fick diffusivities (−)
cj Molar density of species j (mol·m−3)
ct Total molar density (mol·m−3)
DYH Yeh and Hummer (YH) correction (m2·s−1)
DFick Fick diffusivity (m2·s−1)
Di,self Self-diffusivity of species i (m2·s−1)
Dij element (i, j) of the matrix of Fick diffusivities (m2·

s−1)
Ji Molar flux of species i (mol·m−2·s−1)
kB Boltzmann constant (1.38064852 × 10−23 m2·kg·s−2·

K−1)
L Length of the cubic simulation box (m)
n Total number of components in the mixture (−)
R Universal gas constant (8.3145 kg·m2·s−2·K−1·mol−1)

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00268
J. Chem. Theory Comput. 2020, 16, 3799−3806

3804

https://pubs.acs.org/doi/10.1021/acs.jctc.0c00268?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00268/suppl_file/ct0c00268_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c00268/suppl_file/ct0c00268_si_002.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Othonas+A.+Moultos"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-7477-9684
mailto:o.moultos@tudelft.nl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Seyed+Hossein+Jamali"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-4198-0901
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andre%CC%81+Bardow"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-3831-0691
http://orcid.org/0000-0002-3831-0691
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thijs+J.+H.+Vlugt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-3059-8712
https://pubs.acs.org/doi/10.1021/acs.jctc.0c00268?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00268?ref=pdf


T Temperature (K)
xi Mole fraction of species i (−)
Superscripts
MD Referring to finite-size properties
∞ Referring to the thermodynamic limit (infinite-size)
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