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We inherently maintain a stable perception of the world despite frequent changes in the 
head, eye, and body positions. Such “orientation constancy” is a prerequisite for coher-
ent spatial perception and sensorimotor planning. As a multimodal sensory reference, 
perception of upright represents neural processes that subserve orientation constancy 
through integration of sensory information encoding the eye, head, and body positions. 
Although perception of upright is distinct from perception of body orientation, they share 
similar neural substrates within the cerebral cortical networks involved in perception of 
spatial orientation. These cortical networks, mainly within the temporo-parietal junction, 
are crucial for multisensory processing and integration that generate sensory reference 
frames for coherent perception of self-position and extrapersonal space transformations. 
In this review, we focus on these neural mechanisms and discuss (i) neurobehavioral 
aspects of orientation constancy, (ii) sensory models that address the neurophysiology 
underlying perception of upright, and (iii) the current evidence for the role of cerebral 
cortex in perception of upright and orientation constancy, including findings from the 
neurological disorders that affect cortical function.

Keywords: subjective visual vertical, cerebral cortex, upright perception, Bayesian, temporo-parietal cortex, 
spatial orientation, orientation constancy, ocular torsion

iNTRODUCTiON

Spatial orientation refers to the perceptual awareness of the body position relative to the environ-
ment. While oriented to the surroundings, we maintain a stable perception of the world in upright 
orientation despite frequent changes in the eye, head, and body positions. Such “orientation con-
stancy” is a key functional aspect of our spatial perception, and if disrupted the consequences can 
be quite debilitating due to ensuing dizziness, disorientation, and loss of balance. These symptoms 
are often triggered by motion or changes in the head or body positions, e.g., as in patients with 
vestibular dysfunction. Our perception of spatial orientation is possible because the position of the 
body is linked to the external environment through processing and integration of visual, vestibular, 
and proprioceptive information. In this process, the compensatory movement of the eyes through 
the vestibulo-ocular reflex is vital to maintain visual stability with changes in the head position. In 
frontal-eyed animals, in addition to the horizontal and vertical eye movements, lateral head tilts (i.e., 
with respect to gravity) lead to changes in the torsional eye position in the opposite direction of the 
head tilt. In humans, this ocular counter-roll (OCR) is a constrained, phylogenetically old vestibular 
reflex and does not match the magnitude of the head tilt (1). Such “visual-vestibular” mismatch, 
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FigURe 1 | Perception of upright and sensory reference frames: The head, eye, and the world reference frames are all aligned in upright position along the 
gravitational vertical (A), but when the head is tilted, the ocular counter-roll only partially compensates for the amount of head tilt (gain about 10–25%), which results 
in a separation of the sensory reference frames that encode head-in-space and eye/retina-in-head orientations (B). Despite these differences, visual perception 
remains in upright orientation (C). Therefore, the brain—like any other sensorimotor system—must be able to integrate sensory inputs into a common reference 
frame to maintain a coherent perception of upright.
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although sounds counter-productive, may actually represent an 
evolutionary advantage, as it can provide the brain with pertinent 
cues to quickly deconstruct perceived tilts into changes in the 
body position and the visual world, thus facilitating interactions 
with the surrounding environment. In this scheme, however, to 
achieve orientation constancy, the brain must be able to generate 
a common reference frame based on the sensory inputs that are 
inevitably encoded in different reference frames.

Let us examine a simple lateral head tilt more closely. In the 
upright position—where the vertical meridians of the eyes, head, 
body, and the visual world are all aligned with the gravitational 
vertical—maintaining upright perception is not challenging for 
the brain. However, as mentioned earlier, when the head is tilted 
and as the brain senses changes in the head position relative to 
gravity, OCR will only partially compensate for the amount of 
head tilt, typically with a low gain of about 10–25% in humans. 
Therefore, as a result of head tilt, the reference frames for the 
head, eye, and the visual world are no longer aligned along the 
gravitational vertical, and images become tilted on the retina 
(Figure 1). Despite separation of these individual sensory refer-
ence frames, our visual perception remains in upright orientation 
within a common reference frame. This perceptual constancy in 
upright orientation can be effectively studied by removing orient-
ing visual cues, in which case the brain has to rely on information 
about the head and body positions in space and the eye position 
in the orbit to determine the orientation of external stimuli. A 
similar approach has been the basis of psychophysical experi-
ments dating back to 1860. Around that time, Hermann Aubert, 
an expert in optics, used afterimages to investigate perception of 
vertical and horizontal line orientations in light and darkness. 
Using afterimages of a bright line, Aubert tilted his head with eyes 

closed until the afterimage was earth-horizontal. Upon opening 
the eyes, he found that the afterimage would deviate toward the 
side of the head tilt (2). George Elias Müller then investigated a 
range of smaller head tilts and found that the line would devi-
ate away from the side of the head tilt (3). Müller also put forth 
theories to describe these perceptual errors, considering sensory 
contributions from the otoliths, semicircular canals, and proprio-
ception (3). Later on, mathematical models were used to account 
for these findings. One of the initial quantitative models was put 
forth by Mittelstaedt in 1983, in which he proposed that the brain 
must generate an internal common reference to “stabilize man’s 
confidence in the stability of his world” (4). From this perspective, 
he eloquently posited about discrepancies between the elements 
of our perception and the real world:

… in this facet of his subjectivity, man appears as a 
creature, whose mind underrates the humble services 
of his bodily feelings while naively taking at face value 
what [he] believes to see, unaware of being deceived, 
as it were, by the workings of a machinery which toils 
in the interest of survival but not in the service of 
truth… (4).

In recent decades, contributions of various sensory modalities 
to perception of upright have been studied extensively. However, 
currently, less is known about the neural structures and functions 
involved in orientation constancy. In this review, we first focus on 
neurobehavioral aspects of orientation constancy and describe 
sensory models that address the neurophysiology underlying 
upright perception. We then review the current evidence for the 
role of cerebral cortex in perception of upright and orientation 
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FigURe 2 | Subjective visual vertical (SVV) measurement with the line stimulus (solid orange) presented at a random orientation in each trial (A). In the forced-choice 
paradigm, the task is to report whether the line is tilted to the right or to the left of the perceived upright orientation (dashed orange) (B). SVV is then determined by 
fitting a psychometric curve to the responses from all trials and is calculated as the value on the curve at which the probability of left or right responses is 50% (point 
of subjective equality). In the active-adjustment paradigm, the line stimulus (solid orange) is adjusted (direction shown by arrow) to the perceived upright orientation 
(dashed orange) (C). In this paradigm, SVV is calculated as the average value from all trials. The true vertical is shown by the dashed white line (B,C).
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constancy. Finally, we outline findings from neurological disor-
ders that impact cortical mechanisms underlying perception of 
upright.

NeUROBeHAviORAL ASPeCTS OF 
UPRigHT PeRCePTiON

Measurement Paradigms
Upright perception is typically studied by means of a psycho-
physical task known as the subjective visual vertical (SVV). In 
this task, a visual line is used to report perceived earth-vertical 
orientation in the absence of visual cues. Various methods have 
been described for SVV measurement. Some paradigms use 
active adjustment of the visual line stimulus, and others are based 
on a forced-choice task, where in each trial a visual line orienta-
tion is reported with respect to the perceived upright orientation 
(Figure 2).

Although the visual exposure in SVV paradigms is limited to a 
line stimulus without any other orienting cues, the line itself may 
affect SVV responses, especially during active adjustments (5–7). 
For example, the initial orientation of the line stimulus can bias 
upright perception in the direction of the starting line orientation, 
and in the opposite direction of the line movement (7–12). This 
bias, however, may reverse and occur as a “hysteresis” effect in 
the direction of the line movement when the line is presented 
in sequential angles in a forced-choice paradigm (6). Also, with 
active adjustment of the line, the upright estimate may gradually 
drift as a result of trial-to-trial dependency of upright adjustments 
and inter-correlation among consecutive SVV responses (13). In 
addition, the torsional position of the eyes can change in the direc-
tion of the visual line rotation, and such “torsional entrainment” 
may introduce biases when SVV is measured using the line rota-
tion (14). Considering all these sources of error, a forced-choice 
task with a random line orientation in each trial would be the 
least biased method for SVV measurement, as it would remove 
the effects of line movement on SVV responses (15).

The length of the line stimulus can also influence SVV 
responses, resulting in biases in the direction of the body tilt with 
longer lines and in the opposite direction of the body tilt with 

shorter lines (16, 17). Another factor that can affect magnitude of 
SVV errors is the viewing distance from the visual line stimulus 
(18). This effect has been attributed to ocular torsion induced by 
changes in the vergence angle of the eyes (i.e., cycloversion). The 
viewing eye (i.e., monocular or binocular viewing), on the other 
hand, does not significantly affect SVV errors, neither in upright 
position nor during head tilt (6, 18).

Systematic errors
Subjective visual vertical errors reflect challenges for the brain 
in maintaining a common reference frame based on sensory 
information encoding eye, head, and body positions. In upright 
position, SVV errors typically remain within 2° of earth vertical 
(4, 19–21). However, with lateral head or whole body tilts, there 
are systematic errors in the perceived upright orientation which 
do not correspond with the errors in perception of body tilt (4, 
19, 22–25). Such inherent dissociation between the perceptions 
of body tilt and upright orientation is also seen with active body 
tilts (as opposed to passive tilts), even when the brain has access 
to additional proprioceptive cues or efference copy signals to 
encode the veridical position of the body (23).

In general, SVV errors are biased toward the direction of the 
body position at tilt angles greater than 60°. This finding, which 
reflects underestimation of upright orientation, is known as the 
Aubert or A-effect (Figure 3) (2, 4, 19, 20). At smaller tilt angles 
(e.g., less than 60°), however, SVV errors are often biased in the 
opposite direction of the body position. This finding, which reflects 
overestimation of upright orientation, is known as the Müller or 
E-effect (E for “Entgegengesetzt,” German for opposite) (3, 19–21). 
The peak underestimation error of the A-effect is usually around 
130°, and beyond this tilt angle the E-effect usually occurs again 
which is attributed to switching of the internal upright reference 
frame from the head to the feet (19, 21, 24, 26–28). Overall, the 
E-effect presents less consistently and less often compared with 
the A-effect (21, 24, 29). The variability of SVV responses also 
increases with the body tilts up to 120–150°, and then decreases 
again with the tilt angles approaching 180° (21, 26, 29–34). This 
pattern of SVV variability has been attributed to a tilt-dependent 
noise in the otolith and proprioceptive inputs (4, 21).
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FigURe 3 | Systematic errors of subjective visual vertical (SVV): healthy individuals typically have SVV errors within 2° of earth vertical in upright position. At large tilt 
angles (usually greater than 60°), SVV errors are deviated toward the tilt direction, which reflect “underestimation” of upright orientation (known as the Aubert or 
A-effect). At smaller tilt angles (usually less than 60°), however, SVV errors are often opposite to the tilt direction, which reflect “overestimation” of upright orientation 
(known as the Entgegengesetzt or E-effect).
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Other Measurement Methods
Some studies have used subjective visual horizontal (SVH) instead 
of visual vertical measurements. The results, however, show that 
SVV and SVH are not invariably orthogonal to one another, 
especially at larger tilt angles (13, 18, 19, 35–37). In other words, 
errors of vertical and horizontal perception may not match at the 
same body tilt position and while SVV errors tend be larger in 
the direction of the tilt (i.e., SVV errors show larger A-effects), 
SVH errors tend to be larger in the opposite direction of the tilt 
(i.e., SVH errors show larger E-effects) (18). SVV and SVH errors 
have also been studied in the pitch plane, and—similar to the 
systematic errors in the roll plane—they reflect overestimations 
in the opposite direction of small pitch angles, and underestima-
tions in the direction of large pitch angles (4, 38–40).

Another common method for measuring upright perception 
is with a haptic stimulus. Similar to SVV, haptic upright responses 
become less precise at large body tilt angles, but in some individu-
als they can be more accurate compared with the visual vertical 
responses (41–44). Also, haptic measurements tend to produce 
larger E-effects at smaller tilt angles (i.e., less than 60°) and may 
become more accurate in the supine position compared with the 
upright position (45–47). More importantly, the perceived haptic 
or postural upright can be dissociated from the visual perception 
of upright (48, 49). For example, while patients with unilateral 
vestibular loss showed significant SVV errors, their postural 
vertical adjustments were not different from the healthy controls 
(48). The disparity in the SVV and postural vertical responses 
in this study suggests different weights of sensory contributions 

to perception of upright depending on the method of measure-
ment (e.g., haptic versus visual tasks) (49, 50). However, only 
few patients were included here, and the postural vertical was 
measured while sitting in a motor-driven chair and adjusting its 
orientation to the perceived upright position. In keeping with 
such distinct sensory contributions, haptic upright responses, in 
contrast to SVV, were more biased by the whole body tilt than 
just the head-on-body tilt in a group of healthy individuals (49).

Spatial Perception Models
In recent years, several studies have addressed neural mecha-
nisms underlying perception of upright and the systematic 
errors with changes in body tilt orientation. Mittelstaedt first put 
forward a model in 1983 that could account for the A-effect (4). 
He proposed that the brain implements a computational strategy 
based on an internal bias signal to correct for the noisy inputs 
from the otolith organs (Figure 4). This internal signal, referred 
to as “the idiotropic vector,” is a constant, body-fixed vector that 
is added to the estimated direction of gravity from the otolith 
inputs to determine upright orientation. At large body tilts, the 
effect of idiotropic vector results in a bias in upright estimates 
toward the body axis and thus the A-effect. According to this 
model, the computation of upright orientation does not influence 
the estimate of body tilt. Therefore, the idiotropic vector could 
be viewed as a computational strategy to reduce distortions in 
upright perception for commonly encountered small body tilts, 
at the expense of large A-effects for rarely encountered large body 
tilts.
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FigURe 4 | Schematic presentation of Mittelstaedt’s idiotropic vector model: visual line orientation on the retina and head tilt are the two sensory inputs in this 
model. The visual signal is accurate, but the head tilt signal ( )ρ  shows increasing errors with head tilt (a range of ±90° tilt is shown in black graphs). As part of the 
central neural processing, vectorial summation of the head tilt signal ( )ρ  and the head-fixed idiotropic vector (MZ) yields the compensatory tilt signal (β). The 
compensatory tilt signal and the visual signal are then added to obtain an internal estimate of the upright orientation [i.e., subjective visual vertical (SVV)].
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The effect of the idiotropic vector was later described within a 
Bayesian framework and was equated to the role of the Bayesian 
“prior” for processing noisy sensory signals (21, 29, 51–54). In this 
Bayesian spatial perception model, the upright estimate is determined 
by a weighted average of the existing knowledge of tilt position (i.e., 
the prior) and the likelihood of change in tilt position based on noisy 
sensory information (Figure 5). Since we spend most of our time in 
upright position, the prior for tilt position is a Gaussian distribution 
centered at 0° (i.e., upright position). Thus, the effect of prior could 
bias upright estimates and result in underestimation of true vertical at 
large tilt angles (i.e., the A-effect). According to the Bayesian model, 
the head estimate can be determined in the following relation (53):
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In Eq. 1, HS  represents the final head-in-space estimate by 
the brain (i.e., “the posterior” in Bayesian terms), ĤS  the head 
orientation in space as measured by the head-in-space sensors, 
and HS the actual head-in-space position (i.e., measured head 
position with respect to the direction of gravity). Among the sen-
sory signals in the model, the head-in-space input ( )H S

  is noisy 
(with a variance of σHS

2 ), and thus the prior (with a small variance 
of σHSp

2 ) is taken into account to estimate the final head position 
HS( ). Based on Eq. 1, the error in head estimate µHS( ) is given by:
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De Vrijer et al. added another parameter to the Bayesian model 
to account for the error in estimating ocular torsion position by 
the brain µEH( ) (Figure  5) (53). This “uncompensated” ocular 
torsion can explain the SVV error in the opposite direction of 
the head tilt at smaller tilt angles (i.e., the E-effect). The error in 
estimating ocular torsion µEH( ) is determined in the following 
relation:
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In this Eq. 3, ÊH is the eye-in-head position based on sensory 
inputs encoding ocular torsion and EHP is the prior for the eye-in-
head position (with a variance σEHp

2 ), which is taken into account 
by the brain to estimate torsional eye position EH( ). The maxi-
mum torsion amplitude is denoted by A. Since the eyes always 
roll in the opposite direction of the head tilt, the final error in 
upright perception (μSVV) can be given by subtracting Eqs 2 and 
3 as below:
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Since this model assumes a vertical orientation of the trunk, 
the estimate of head-in-space ĤS( ) represents a combination of 
the otolith and proprioceptive inputs (53). Clemens et  al. later 
proposed an update to separately account for the head and body 
positions using the following signals: the head orientation with 
respect to gravity (otoliths), body orientation in space (body 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigURe 5 | Schematic presentation of Bayesian spatial perception model: various sensory modalities are integrated into a common spatial reference frame to 
determine upright orientation. A vertical line (line in space) is presented in front of a tilted observer (head in space) (a range of ±90° tilt is shown in black graphs). 
Signal ĤS, encoding head orientation in space, is accurate but contaminated by Gaussian noise. Head tilt results in ocular counter-roll (OCR) and signal ÊH, 
encoding eye-in-head orientation, is also contaminated by independent noise. As part of central neural processing, the estimates of head-in-space HS( )  and 
eye-in-head EH( ) are generated separately from the likelihoods and priors of head tilt and torsional eye position (i.e., ocular torsion). These estimates are integrated 
to generate eye-in-space estimate ES( ), which is then integrated with retinal signal (line on retina) to obtain an internal estimate of the upright orientation [i.e., 
subjective visual vertical (SVV)].
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proprioceptors), and the relative position of the head and body 
(neck proprioceptors) (54) (Figure 6). In this model, based on 
the optimal observer theory, the body orientation in space can 
be determined either “directly” using proprioceptive information 
from the trunk graviceptors (55–57) or “indirectly” from sub-
tracting the signals encoding head and neck positions. Likewise, 
the estimate of head-in-space orientation can be obtained directly 
from the head position or indirectly from the body and neck pro-
prioceptive signals. Accordingly, the optimal estimate of upright 
orientation is determined by integrating (1) direct information 
from the head position sensors (i.e., otoliths), (2) indirect infor-
mation from the body and neck proprioceptors, and (3) prior 
information about the head and body orientations in space. The 
indirect sensory signals require reference frame transformation 
before integration with other sensory information. Thus, alto-
gether, the final error in upright perception is calculated based 
on the weights of the direct and indirect information and is given 
by the following relation:
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In this Eq.  5, WHD represents the weight of direct sensory 
information, and WHI represents the weight of indirect sensory 

information. Here, the weight of the prior (WHP) works through 
the weights of direct and indirect sensory information, as 
WHD + WHI + WHP = 1. Therefore, the narrower the prior distribu-
tion, the larger its relative weight compared with the weights of 
direct and indirect sensory information [for more details, see Ref. 
(54)]. In this scheme, the effect of the prior could be seen as the 
factor that reduces the variance of upright estimates, however, 
with an accuracy-precision trade-off especially at large tilt angles. 
Tarnutzer et al. have proposed a Bayesian model to account for 
the lower SVV precision at larger head tilts based on variability 
in the otolith inputs. In this model, the preferred directions of the 
otolith afferents represent different sensitivities to changes in the 
angle of the head tilt. Thus, an overall likelihood of head position 
estimate is obtained by combining the probability distributions 
from individual otolith afferents. In this scheme, the effectiveness 
of the otolith estimator—reflected by the width of the likelihood 
distribution—decreases at larger head tilt angles, and it is com-
bined with the prior knowledge of the head orientation to derive 
the SVV estimate (21).

Multisensory Contributions
Various studies have addressed contributions of the head, neck, 
and trunk sensory signals to perception of upright. The findings 
from these studies indicate that the SVV errors are primarily 
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FigURe 6 | Schematic representation of the sensory integration model: body sensors, neck sensors, and otoliths provide information about the body in-space, 
head-on-body, and head-in-space positions, respectively. As part of the central neural processing, the neck and body signals undergo coordinate transformation to 
indirectly encode head-in-space orientation. Overall, the optimal head-in-space estimate HS( ) is obtained by the relative weights of the otolith information (WHD, blue 
pathway), coordinate-transformed information from the body and neck sensors (WHI, green pathway), and the head prior information (WHP, gray pathway). The 
head-in-space estimate HS( ) is then integrated with eye-in-head estimate EH( ) and line orientation on the retina to obtain an internal estimate of the upright 
orientation [i.e., subjective visual vertical (SVV)].
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processed in a head-in-space reference frame (30, 58–62). On the 
other hand, perception of body orientation is largely modulated 
by the proprioceptive inputs encoding trunk position, with 
errors that are more accurate but less precise than SVV responses 
(54, 55, 63–65). In line with these findings, and consistent with 
distinct sensory contributions to perception of body orientation 
from perception of upright, SVV deviations induced by galvanic 
vestibular stimulation (GVS) were dissociated from the errors in 
perception of body orientation (66).

In accordance with the multimodal sensory contributions to 
perception of upright, alterations in the neck, trunk, and intero-
ceptive inputs have modulating effects on perceptual upright 
responses (30, 61, 67–75). For example, vibration of the neck 
muscles can shift SVV errors in the opposite direction of the 
head tilt and increase the E-effect (73, 76, 77). Thus, the brain 
must be able to determine upright orientation either directly, by 
accessing the estimate of head-in-space orientation through the 
sensory inputs encoding head position (e.g., otolith signals), or 
indirectly, through the sensory inputs encoding neck and trunk 
positions (54). In this context, the sensory contributions to 
upright perception are modulated by the body tilt position, with 
likely a greater weight of the head position signals (e.g., from the 
otoliths) around the upright position, and a substantial weight 
of the trunk proprioceptive signals at larger tilt angles (30, 31). 
Such distinct patterns of sensory contributions to perception of 
upright are supported by the findings in patients with vestibular 
and proprioceptive loss (25, 78–87). Patients with vestibular loss 

tend to have no E-effect at small tilt angles and more pronounced 
A-effects at larger tilt angles, consistent with reduced weight of 
head position signals and consequently relative underestima-
tion of upright orientation (25, 80–82, 84, 86, 87). Patients with 
proprioceptive loss, on the other hand, have decreased A-effect 
consistent with reduced weight of body proprioception, and 
consequently relative overestimation of upright orientation (25, 
88, 89).

Perception of upright has been also studied with respect to 
changes in body position or posture (52, 84, 90). Healthy par-
ticipants lying supine had accurate SVV responses, but there 
were large errors in patients with vestibular loss in the supine 
position compared with the sitting and standing positions (84, 
91). In general, SVV responses tend to be more accurate while 
maintaining precarious postures, where there is a risk of falling 
and thus a higher demand for balancing activity (e.g., standing on 
a beam) (92, 93). Such findings underscore the ecological aspect 
of upright perception in which according to the task at hand the 
internal estimate of upright is modulated by available sensory 
cues.

Systematic errors of upright perception also occur with 
body rotation in the roll plane, and—similar to the static roll-
tilts—these dynamic errors are dissociated from the perception 
of the body orientation (27, 94–98). After constant-velocity roll 
rotations, SVV errors were transiently biased in the direction of 
the rotation (95–98). This “dynamic” bias was dependent on the 
velocity of the rotation and the final tilt position at which SVV was 
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FigURe 7 | Schematic representation of the periodic subjective visual vertical (SVV) modulation by the frame orientation (solid line) during head tilt: frame tilt 
orientations close to the subject’s upright perception (dashed line) usually result in an “attractor bias” (i.e., toward the direction of the frame tilt), while there is a 
“detractor bias” at angles beyond 45° and up to 90° (i.e., away from the direction of the frame tilt). These biases caused by the frame orientation can either 
attenuate or accentuate SVV errors, depending on head tilt position (e.g., here 20° head tilt to the left).
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measured. For example, with clockwise rotations starting from 
the upright position, SVV errors showed a significant A-effect 
when the rotation stopped at large body tilt angles, whereas the 
errors were close to veridical when it stopped at smaller tilt angles. 
By contrast, with counterclockwise rotations passing through the 
upside-down position, SVV errors showed a significant E-effect 
when the rotation stopped at small tilt angles (i.e., close to the 
upright position), whereas the errors were close to veridical when 
it stopped at large tilt angles (i.e., close to the 90° tilt position) 
(97). This post-rotation “hysteresis” effect lasted about 1  min, 
suggesting that the transient bias in SVV errors was related to 
semicircular canal activation from the forces generated through 
deceleration. Perception of roll-tilt can also be induced during 
off-axis yaw rotation with the head upright or during on-axis yaw 
rotation with the head tilted on the body (99, 100). In these sce-
narios, rotational cues mainly from the horizontal semicircular 
canal stimulation affect the time course of tilt perception (101, 
102). Moreover, SVV errors have been reported with the head 
pitched forward or backward during yaw-axis rotation. In this 
case, SVV errors were in the opposite direction of the rotation 
(same direction as the fast phase of the torsional nystagmus) 
and were more pronounced with the head pitched backward, 
consistent with a stronger effect from stimulation of the posterior 
semicircular canal (103).

Perception of upright has been also studied with respect to 
the modulating effects of visual backgrounds. Our daily environ-
ment is rich with visual cues that indicate world-horizontal and 
vertical orientations. In general, various visual functions (e.g., 
orientation discrimination, contrast detection, or visual acuity) 
show superior performance along the horizontal and vertical 
axes compared with oblique angles (e.g., 45°), which is referred 
to as the oblique effect (13, 20). However, visual vertical cues 
can have a greater effect on one’s perception of spatial orienta-
tion than the perceived orientation of objects (104–107). Strong 
effects of visual cues on upright perception have been shown in 
various settings, ranging from an entire tilted furnished room to 
more impoverished stimuli such as a simple square frame (20, 
106, 108–119). Remarkably, even the addition of a single line in 
the SVV paradigm can induce a visual bias in upright responses 

(118, 120, 121). In the case of a square frame, the visual vertical 
estimate is biased by the frame orientation, which is known as 
the rod-and-frame effect. The frame effect can be robust and, for 
example, significantly decrease SVV errors induced by rotating 
backgrounds (122, 123). This visual effect for the most part 
depends on the viewing distance and the head tilt position. It 
decreases with far viewing, indicating reduced reliability of the 
frame as a visual cue to upright orientation, and increases with 
head tilt, indicating reduced reliability of the vestibular cues to 
upright orientation (119, 124).

Overall, changes in the frame tilt orientation can result in 
periodic modulation of SVV errors by the rod-and-frame effect. 
Usually, frame tilts close to the perceived upright orientation 
result in an “attractor bias” toward the frame orientation, 
whereas there is a “detractor bias” at frame tilts beyond 45° and 
up to 90°, and no bias at frame tilts close to 90° (Figure 7) (118, 
121, 124). This modulating effect of the frame orientation is 
more pronounced at larger body tilts, and it can either enhance 
the E-effect or decrease the A-effect depending on the body 
tilt orientation (105, 118, 125). The rod-and-frame effect may 
also vary among individuals, as some exhibit a strong frame 
effect (i.e., visual dependence), while others may have a weaker 
effect (i.e., visual independence) (126–129). A similar pattern 
of variability with the rod-and-frame effect has been shown in 
patients with vestibular loss; however, the frame effect can be 
asymmetrical in these patients, with reduced or even abolished 
visual dependence when the frame is tilted toward the healthy 
side, as opposed to a significant frame effect when it is tilted 
toward the side of vestibular loss (130). Background rotation 
in the roll plane (i.e., around the line of sight) can also affect 
upright perception and induce SVV errors in the direction of the 
rotation (80, 131, 132). Similar to the rod-and-frame effect, this 
optokinetic effect is more pronounced at larger body tilt angles 
and can induce a larger bias toward the side of vestibular loss 
(83, 133–135).

Another important factor in perception of upright is the effect 
of gravity on sensory modalities that encode body position (90, 
136–141). As a fundamental reference for spatial orientation, the 
gravity vector plays a significant role in almost all aspects of our 
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FigURe 8 | Subjective visual vertical (SVV) and torsional eye position measured simultaneously before, during, and after prolonged head tilts (~15 min) in 12 
subjects (15): data points represent SVV or ocular torsion from 100 trials during 20° head tilts to the right and left. Error bars correspond with SEM across subjects. 
The SVV drift is in the same direction as the head tilt, and when the head returns to upright position there is an aftereffect, also in the same direction as the head tilt. 
Changes in ocular torsion do not correspond to the SVV drift or aftereffect.
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balance, perception, and action. In general, gravitoinertial forces 
can change perceived orientation of objects, an effect that has 
been described as the oculogravic illusion (142). Similarly, in 
microgravity and weightless conditions, space crews often report 
visual reorientation illusions such as difficulty distinguishing 
between spacecraft floors, walls, and ceiling surfaces (143–146). 
With respect to upright perception, rotating rooms, parabolic 
flights, and human centrifuge have been used to study the effects 
of gravitoinertial forces (39, 101, 102, 140, 147–153). For exam-
ple, in a centrifuge experiment, perception of tilt significantly 
increased late in the spaceflight duration compared with the 
early flight and preflight results on earth (152). This exaggerated 
perception of tilt also persisted into the early post-flight days. 
Likewise, other studies using the rod-and-frame test, optokinetic 
stimulation, and unilateral centrifugations (i.e., stimulating only 
one labyrinth at a time) have shown significant visual dependency 
and asymmetry in SVV responses upon returning back to the 
earth (146, 151, 154). These results suggest that the multisensory 
contributions to the internal reference for upright orientation is 
reduced with adaptation to microgravity. The effect of gravity on 
this multisensory reference is shown with gravitational forces 
as little as 0.15 g (close to the force of gravity at the moon) and 
up to 1.5–2 g, resulting in significant deviations in perception of 
upright (140, 148, 155, 156).

Upright Perception and Adaptation:  
Drift during Head Tilt
Upright perception may drift during prolonged tilts of the whole 
body or prolonged tilts of the head on body (15, 31, 61, 157, 158). 
The drift pattern is usually variable across individuals (157), but 

often there is a gradual change in the direction of the tilt, followed 
by a post-tilt bias referred to as the aftereffect (Figure 8) (15, 61, 
157–161). When this aftereffect was studied across a wide range 
of body orientations, there was a “local” effect (as opposed to a 
“global” effect), where the post tilt bias was mainly seen in the 
tilt orientations adjacent to the initial, adapting position (162). 
For example, if the subject was initially tilted at 90°, the SVV 
aftereffect was more pronounced at nearby tilt angles such as 60°. 
Based on this finding, it was proposed that maintaining a static 
tilt position could bias the internal upright reference toward this 
adopted position, thus resulting in an aftereffect at subsequent 
tilt positions (162).

As mentioned earlier, ocular torsion can be a significant 
source of SVV errors during head tilt, due to the low OCR 
gain and altered orientation of the images on the retina (15, 
53, 100, 103). However, neither the drift in upright perception 
nor the aftereffect correlate with changes in ocular torsion 
(15) (Figure  8). These findings indicate that the torsional eye 
position—or its driving input from the otoliths—cannot be the 
source of the drift or the aftereffect in perception of upright. 
Similar drifts have been found with haptic measurements, which 
also confirms that the visual error induced by ocular torsion 
cannot be the source of drifts in upright perception during 
head tilt (157, 161). Overall, SVV drifts tend to be larger and 
more consistent across individuals with the head-on body tilts 
compared with the whole body tilts (15, 157, 158, 161, 163). 
These findings, along with predictions from the Bayesian spatial 
perception model, suggest that the adaptation of neck proprio-
ceptive inputs is the primary source of SVV drift during head 
tilt (15). Thus, the SVV drift is likely modulated by the position 
of the head relative to the body rather than the position of the 
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head or trunk relative to gravity. Visual vertical responses may 
also drift in upright body position, but considerably less when 
compared with the drift during static body tilt (13, 37). This drift 
attenuated when upright visual cues were present, but did not 
completely disappear (13).

PeRCePTiON OF UPRigHT AND 
CeReBRAL CORTeX

Multimodal vestibular Cortex
Multisensory integration is a key functional aspect of neural 
processes involved in the perception of spatial orientation. In 
this context, vestibular inputs are often integrated with other 
sensory modalities that are incorporated into self-perception and 
extrapersonal spatial orientation to subserve high level cognitive 
and sensorimotor functions (e.g., visual and proprioceptive sig-
nals). Accordingly, graviception and orientation constancy can 
also be understood as functions mediated by multiple sensory 
modalities.

Attempts to localize vestibular function to the cerebral cortex 
began with the ancient descriptions of vertigo and specula-
tions about global cerebral function (164). In recent years, 
electrophysiological recordings in animal studies have identi-
fied multiple cortical sites sensitive to vestibular stimulation, 
thus laying the groundwork for comparisons with the human 
cortex. The findings reveal distinct areas within the parietal and 
temporal cortices that receive and process vestibular inputs. 
These cortical areas include the parieto-insular vestibular 
cortex (PIVC), parts of the somatosensory cortex, the lower tip 
of the intraparietal sulcus, the dorsal subdivision of the middle 
superior temporal cortex (MSTd), the visual posterior Sylvian 
area (VPS), and the ventral intraparietal cortex (VIP) [for 
comprehensive review, see Ref. (165)]. While these vestibular 
areas are interconnected, there is no clear evidence that they are 
organized in a hierarchy similar to other sensory regions such 
as visual and somatosensory cortices. Direct cortical recordings 
suggest that PIVC is involved in the integration of vestibular and 
somatosensory information into a concept of “head in space” 
(166, 167). On the other hand, visual and vestibular signals have 
been recorded from MSTd, VPS, VIP, and caudal intraparietal 
area, with reference to heading perception or allocentric orienta-
tion in the earth-vertical direction (168–173). Note that despite 
the evidence for multimodal integration in these cortical areas, 
vestibular signals recorded from single neurons remain distinct, 
suggesting that sensory integration takes place through the 
function of a cortical network rather than individual neurons 
(174–176).

In human, as with primate studies, findings from cortical 
lesion analysis, functional imaging with caloric or galvanic 
stimulation (fMRI and PET), and also direct cortical stimulation 
point to a widely distributed multisensory vestibular system, 
mainly in the temporo-partieto-insular cortices [see Ref. (165) 
for comprehensive review]. The vestibular or combined visual-
vestibular activations in these cortical regions are predominantly 
focused at the temporo-parietal junction (TPJ), and more 
specifically around the posterior parietal operculum, inferior 

parietal lobule, superior temporal gyrus (STG), and the junction 
of the intraparietal sulcus and the postcentral sulcus (177–195). 
Overall, the patterns of cortical activity in these studies suggest 
that the posterior parietal operculum is the human homologue of 
PIVC area in monkey, and the human homologues of VPS, VIP, 
and MSTd areas are within or around the inferior parietal lobule 
(180, 196). Note, however, that a systematic mapping of TPJ is 
currently lacking, and we know little about the flow of sensory 
information among various areas within this cortical region, or 
how disruption in one sensory modality may affect multisensory 
integration and perception of spatial orientation.

Although not addressed in animal studies, significant 
vestibular activation has been found in the non-dominant 
human cortex, i.e., the right hemisphere in right-handers and 
the left hemisphere in left-handers (179). Notably, the cortical 
mechanisms involved in spatial functions also modulate lower-
level vestibular function, and a similar pattern of laterality has 
been shown for the cortical influence on the duration of the 
vestibulo-ocular reflex (i.e., the time constant) (197–199). With 
respect to the vestibular connections to the cerebral cortex, 
five distinct vestibular pathways have been identified based on 
functional and structural imaging analyses (200, 201). Three of 
these pathways run ipsilaterally, and two cross either within the 
pons or the midbrain. The ipsilateral pathways reach the inferior 
part of the insular cortex either directly or through the thalamus. 
Contralateral pathways run through the posterolateral thalamus 
to the parieto-insular cortex. In addition to connections with 
the brainstem, the parietal opercular regions also maintain 
communication with each other via an interhemispheric band of 
fibers passing through the antero-caudal splenium of the corpus 
callosum (200, 201).

Temporo-Parietal Cortex and Perception 
of Upright
The TPJ is a cortical hub for multiple sensory modalities, and 
it has been implicated in various aspects of spatial orientation 
including visuospatial attention, heading perception, visual 
gravitational motion perception, sense of embodiment, self-
localization, and egocentricity (186, 187, 191, 202–213). The role 
of TPJ in perception of spatial orientation is especially evident 
from the deficits in neglect syndrome as a result of lesions involv-
ing this cortical region. Patients with neglect are unable to attend 
to sensory stimuli in their contralesional hemispace and also 
show significant contraversive deviations of upright perception 
in both haptic and visual tasks (214–223). These multimodal 
deficits in upright perception are often related to the severity 
of neglect symptoms and are also modulated by the head and 
body positions (217, 220, 224–228). In addition, abnormal visual 
modulation of upright perception has been reported in neglect 
patients. Using the rod-and-frame test, upright responses were 
more biased by the frame effect when it was tilted contralesion-
ally, whereas the bias decreased when the frame was tilted toward 
the side of the lesion (216). Visuospatial deficits (i.e., visual 
extinction) have been also produced in healthy individuals by 
the inhibitory effect of transcranial magnetic stimulation (TMS) 
over the right TPJ. This transient effect, as with neglect patients, 
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FigURe 9 | Approximate projections of the cortical areas associated with subjective visual vertical deviation based on anatomical locations of the average lesion 
areas from seven studies. The color map shows the degree of overlap among cortical involvement in these studies with maximum convergence around the 
temporo-parietal junction. The average age of the patients in years and the average time from the stroke in days are included for each study.
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was dependent on the horizontal and vertical eccentricity of the 
visual stimulus (229). Taken together, these findings suggest 
that the perception of body orientation, visuospatial awareness, 
and upright orientation share the same cortical networks. In 
this scheme, sensory processing at the TPJ would be crucial for 
construction of the reference frames used for both self-position 
and extrapersonal space transformations. In line with the mul-
tisensory role of TPJ, cortical activations within this area during 
visual, tactile, and vestibular sensory conflicts correspond to 
the perception of self-location (230–232). Accordingly, TPJ 
lesions are also associated with symptoms such as out-of-body 
experience or room tilt illusion (210, 231, 233–236). Overall, 
these lines of evidence indicate that TPJ is involved in gener-
ating the multisensory internal reference used by the brain to 
anchor “self ” with respect to the surrounding environment and 
maintain orientation constancy especially with changes in the 
eye, head, and body positions.

Studies focused on the effects of brain lesions on upright 
perception go back as far as 1948, where SVV errors exceeding 
2° were described with fronto-parietal lesions, but not occipital 
lesions (for comparison, note the campanile of Pisa is currently 
at 4°) (237). More recently, lesion studies have shown associa-
tions between cerebral cortex and abnormal upright perception 
in the context of hemispheric stroke (88, 221, 226, 238–242). 
Note that these studies have recruited patients at different post-
lesion times which could affect the SVV results depending on the 
effect of brain adaptation following the stroke in these patients. 
While these studies indicate involvement of several cortical 
areas within and around TPJ, these lesions converge largely 
within the inferior parietal lobule and posterior aspect of the 
insular cortex (Figure 9). Isolated lesions within the posterior 
insula, however, are not associated with SVV deviations, which 
suggests that other cortical locations within TPJ are involved in 
perception of upright (243). With respect to subcortical white 
matter regions, lesion extensions to the superior longitudinal 
fascicle, inferior longitudinal fascicle, inferior occipitofrontal 
fascicle, and superior occipitofrontal fascicle are shown in 
connection with SVV deviations (239, 242). In general, lesion 
studies have widely reported contralesional SVV deviations, 

whereas only about 10% of patients may have ipsilesional SVV 
deviations (88, 220–222, 228, 237, 238, 240, 241, 244–248). 
This finding contrasts with to the SVV deviations seen with 
brainstem lesions, which more consistently are tilted toward 
the side of the lesion with caudal brainstem involvement, and 
away from the side of the lesion with rostral brainstem involve-
ment (249–251). In addition, the extent of SVV deviations with 
cerebral cortical lesions is usually less than the SVV deviations 
with the brainstem or peripheral vestibular lesions (251, 252). 
These anatomical differences in SVV errors are likely related to 
the pathological changes in ocular torsion with low-level brain 
lesions. Such deviations in ocular torsion lead to SVV errors by 
directly affecting the orientation of the images on the retina. 
SVV errors at the level of cerebral cortex, on the other hand, 
are primarily linked to the neural sensory processes underlying 
spatial perception.

Generally, SVV errors from the right hemispheric lesions 
tend to be larger, long lasting, and more often associated with 
contralesional deviations (239, 245, 247, 248). These findings 
are consistent with the dominance of the right hemisphere in 
processing spatial information. In addition, the magnitude of 
SVV deviations correlates with the extent of cortical lesions, 
highlighting the significance of a multisensory cortical network 
for coherent perception of upright (88, 247). The contralesional 
SVV bias persists with small body tilts away from the side of the 
lesion, resulting in an A-effect toward the paretic side, instead of 
a normal E-effect in the opposite direction (88, 220, 228, 244). 
Such bias, however, is not present when the body is tilted toward 
the side of the lesion (i.e., away from the paretic side), in which 
case the SVV errors are comparable to normal individuals (88). It 
is also shown that the errors of upright perception from cortical 
lesions could be dissociated from perception of body position or 
actual postural deviations. However, patients with concurrent 
errors in all these domains had lesions involving the right TPJ 
(247, 253, 254). When measured at different body tilts, SVV and 
perception of body position were correlated when the body was 
tilted toward the side of the lesion, but such correlation was not 
present while tilted away from the side of the lesion (244, 255). 
There were also larger overestimation errors in perception of body 
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FigURe 10 | Simultaneous subjective visual vertical (SVV) and ocular torsion recordings during prolonged left head tilt of 20° in a single subject (500 trials ~15 min) 
[data from Ref. (260)]: SVV shift from transcranial magnetic stimulation (TMS) at SMGp (red) is shown along with the SVV shift from the sham stimulation (i.e., no 
TMS) (blue) (A). In both traces, there is a gradual drift over time toward the left (i.e., in the same direction as the head tilt), but the SVV shift from TMS is larger with a 
deviation opposite to the direction of the head tilt. Ocular torsion shift from TMS at SMGp (red) is not different form the sham stimulation (blue) (B). As opposed to 
SMGp, SVV shift from TMS at another cortical location outside of TPJ (orange) is smaller than the sham stimulation with a deviation in the same direction as the 
head tilt (C). PMC, primary motor cortex; SMG, supramarginal gyrus; AG, angular gyrus; STG, superior temporal gyrus; SF, Sylvian fissure.
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position compared with SVV while the body was tilted away from 
the side of the lesion. Such dissociation between perceptions of 
upright and body position is consistent with different weights of 
sensory contributions for processing upright orientation versus 
body position. With respect to other axes of spatial perception, a 
significant backward deviation of upright responses in the pitch 
plane has been reported in patients with right hemisphere stroke 
in addition to the errors in the roll plane (222, 223).

The role of TPJ in perception of upright is also studied using 
non-invasive brain stimulation (256–259). We recently applied 
TMS in healthy participants at the right TPJ and probed its 
transient cortical effects on perception of upright using SVV 
measurements (256). The inhibitory effect of TMS at the pos-
terior aspect of the right supramarginal gyrus (SMGp) resulted 
in a shift of SVV errors in the opposite direction of the head 
tilt (Figure 10). The direction of this error, induced by the focal 
cortical inhibition, is consistent with the “overestimation” errors 
reported by the cortical lesion studies [i.e., increase in E-effect; 
e.g., Ref. (88)]. On the other hand, when TMS was applied ran-
domly at other cortical locations within or outside of the TPJ, 
there was no significant SVV deviation, suggesting a location-
specific effect at SMGp. In addition, there was no change in the 
torsional position of the eyes despite the SVV shift at SMGp, 
showing that the changes in perception of upright at the level 
of cerebral cortex were dissociated from the changes in ocular 
torsion (260) (Figure 10). Altogether, these findings suggest that 

unlike subcortical regions that have direct influence over ocular 
torsion, TPJ is primarily involved in sensory processing. Fiori 
et al. also investigated the role of TPJ in upright perception using 
the focal inhibitory effects of TMS (257). They found that the 
effect of TMS at the right TPJ selectively increased SVV errors 
when no visual cue was provided (i.e., no visual frame during the 
SVV task). However, inhibition of V1–V3 and not TPJ disrupted 
the visual detection of a Gabor patch orientation. This functional 
distinction between TPJ and early visual cortex is in line with 
the role of TPJ in multisensory integration for perception of 
upright. A significant SVV shift has also been shown using tran-
scranial direct current stimulation (tDCS) over TPJ (258). This 
shift was dependent on tDCS electrode placement, with SVV 
deviation toward the side of anode placement. There was also a 
rebound effect (i.e., reversal of the SVV shift) immediately after 
the stimulation, which lasted longer with the right cathode/left 
anode placement. Cortical involvement in perception of upright 
has also been investigated using EEG recordings (261, 262). The 
results suggest that early cortical activity in the lateral temporo-
occipital cortex (around 100  ms post-stimulus) is important 
for extracting orientation features, whereas a later activation 
involving the temporo-occipital and parieto-occipital cortices 
(around 300 ms post-stimulus) reflects multisensory integration 
for perception of upright.

Peripheral vestibular injuries can also provide clues to the 
mechanisms of recovery and multisensory compensation with 
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FigURe 11 | Schematic showing the directions of subjective visual vertical 
(SVV) tilt and postural deviation in pusher syndrome. In these patients, SVV 
and postural vertical perception deviate away from the side of the lesion (X), 
matching the direction of postural tilt (i.e., lateropulsion) as well as the 
pushing behavior toward the paretic side. Therefore, patients with pushing 
behavior seem to actively align their body with erroneous upright and postural 
estimates.
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respect to cortical function and upright perception. For example, 
it is reported that hemispheric dominance can affect the speed 
of recovery based on the side of peripheral vestibular injury. The 
recovery from the right-side vestibular loss was significantly 
slower than from the left-side vestibular loss in right-handers, 
while such difference was not found in left-handers (87). Based 
on this observation, it was hypothesized that the difference in 
the pattern of recovery in left-handers is related to a greater dis-
tribution of transcallosal connections between parietal cortices 
compared with right-handers (87).

Cerebral Cortical Pathology and 
Perception of Upright
Pathological perception of upright is widely reported with cer-
ebral infarctions (88, 214, 220–222, 226, 228, 238–240, 244–247, 
249, 253, 255, 263–285). SVV deviations in association with 
cortical strokes are typically found in the territory of the medial 
cerebral artery (MCA), mainly involving the temporal, parietal, 
and insular cortices. The absence of skew deviation of the eyes 
with these lesions suggests the affected cortical areas are primar-
ily involved in processing sensory information (238). Notably, 
posterior cerebral artery infarctions, despite causing visual field 
defects, do not significantly alter perception of upright (238). In 

a sample of unilateral hemispheric infarction, the branches of 
the MCA resulting in SVV deviation were the temporal (mean 
SVV deviation about 6°), parietal (mean SVV deviation about 
5°), and the deep cortical perforators (mean SVV deviation about 
4°). Lesions affecting the anterior part of the internal capsule can 
also be associated with SVV tilt (mean SVV deviation about 
3°), primarily via the lenticulostriate arteries and the anterior 
choroidal artery (238).

In general, hemispheric infarcts more often result in contra-
versive SVV deviations, while about 10% of patients may show 
ipsiversive SVV deviations. Pathological SVV tilts can be as large 
as 15°, though usually they are 5–10° and deviated leftwards as a 
result of right hemispheric lesions (note again that the campanile 
of Pisa is currently at 4°) (238, 275, 286). The range of SVV devia-
tions in a sample of 40 patients with hemispheric stroke (time from 
lesions <13 weeks) was larger with the right hemispheric infarcts 
(−13.1° to 3.2°) compared with the left hemispheric infarcts 
(−3.6° to 9.3°) (228). The asymmetric hemispheric contribution 
to upright perception has been also shown in stroke patients with 
the bottom-up effects of GVS (276, 287). In these patients with 
right hemispheric infarcts and spatial neglect, left-cathodal but 
not right-cathodal galvanic stimulation significantly reduced 
SVV deviations, highlighting a significant cortical laterality for 
perception of upright. Another important factor affecting the 
extent and direction of SVV errors is the recovery time. Acute 
patients often have larger SVV errors compared with chronic 
patients, and such deviations often recover significantly within 
a few months (239, 245, 286). Patients with right hemispheric 
lesions also have higher variability (i.e., lower precision) in their 
SVV deviations (286).

Persistent SVV errors and low SVV precision are often linked 
to poor balance following stroke, especially in patients with the 
right hemispheric involvement (263, 286, 288, 289). However, 
perception of body orientation can be dissociated from SVV 
or from the actual postural deviations in these patients (63, 
244, 247, 249, 253, 255, 273, 275, 277, 280–282, 290–294). 
For example, in a sample of 80 stroke patients reported by 
Perrenou et al., 34 had abnormal contralesional postural verti-
cal tilts (i.e., deviations in posture alignment with perceived 
upright orientation), 44 had contralesional SVV tilts, 26 had 
contralesional haptic vertical tilts, and none had ipsilesional 
haptic or postural vertical tilts (247). Forty-one patients (52%) 
showed deficits in more than one modality, and 18 (22%) had 
transmodal contraversive deviations (i.e., SVV, postural verti-
cal, and haptic vertical were all tilted away from the side of the 
lesion). In general, postural deviations in stroke patients are 
more closely related to the errors of postural vertical percep-
tion than to the errors of upright perception (220, 244, 247, 
254, 286).

A subset of patients with cortical infarctions and postural 
deviations exhibit robust SVV deviations and also actively resist 
attempts to correct their false postural orientation back to upright 
position (247, 253, 265, 266, 270, 272, 274, 277, 281, 284, 294–300).  
This phenomenon, referred to as “pusher syndrome” (also 
“listing,” or “lateropulsion”), is typically toward the paretic side 
with an incidence of approximately 5–10% among acute stroke 
patients (266, 278, 288). In contrast to patients with Wallenberg 
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syndrome or thalamic astasia who pull themselves back toward 
upright to prevent an ipsilesional fall, pushers resist postural 
changes toward the non-paretic side. Patients with pusher 
behavior are often unable to learn to walk even with proper 
assistance, and their SVV errors or postural vertical devia-
tions often last longer (275). Pushing behavior is also highly 
correlated with neglect symptoms and more often is associated 
with lesions involving the right posterior insula, STG, inferior 
parietal lobule, and postcentral gyrus (247, 253, 274, 278, 
279, 281, 288, 297, 301, 302). In the study of Perennou et  al. 
mentioned earlier, the patients who showed lateropulsion and 
pusher behavior had contraversive transmodal tilt of postural 
vertical, haptic vertical, and SVV (247). This finding suggests 
that lateropulsion and pushing behavior lie on a continuum 
where pushers—as opposed to those with lateropulsion only—
actively align their body with their erroneous perception of 
upright (Figure  11) (247, 280, 299). When postural vertical 
perception was measured while standing (as opposed to sitting 
in other studies), pushers had large uncertainty, and, on aver-
age, ipsilesional deviation in their responses (303), showing that 
the postural vertical estimates can be altered by active pushing 
behavior while standing.

Parkinson’s disease (PD) is another pathology that can affect 
postural control and spatial perception, due to dysfunctions 
involving the cortical connections with basal ganglia (304, 305). 
On this premise, PD measures such as trunk flexion, stance, 
and gait parameters have been investigated in association 
with SVV deviation (306–311). The postural instability in PD 
patients may correlate with SVV deviations, and both postural 
vertical perception and SVV show higher variability compared 
with age-matched, healthy controls (312, 313). In these patients, 
however, visually induced postural sway cannot be linked to 
the deficits in perception of upright, which suggests that the 
postural instability is related to abnormalities in maintaining 
posture rather than perceptual errors (80, 314). PD patients may 
also have trunk lateropulsion with the tendency for postural 
tilts in the direction opposite to the affected side of the body 
(once dubbed “scoliosis of Parkinsonism”) (315). The patients 
with lateral trunk deviation show significantly larger SVV errors 
toward the trunk tilt compared with those without trunk tilt 
(308, 310). This lateral trunk tilt in PD has been attributed to 
vestibular hypofunction on the same side and described as 
postural imbalance syndrome with vestibular alterations or 
PISA (311). Patients with PISA have greater SVV deviations 
compared with those without the trunk tilt, either on or off of 
the effects of dopaminergic medications (310). Taken together, 
the above findings suggest that abnormal upright perception in 
PD patients can be linked to impaired sensorimotor processing 
related to corticobasal dysfunction.

Migraine syndrome can also result in visuospatial symptoms 
due to dysfunctions affecting neural networks from the level of 
brainstem to the cerebral cortex. Migraine patients with these 
symptoms typically complain of vertigo, dizziness, disorienta-
tion, or sense of disequilibrium, often triggered or worsened 
with changes in the head or body positions. This type of migraine 
presentation accounts for the most common cause of episodic 
dizziness and is classified as vestibular migraine (316–319). 

Patients with vestibular migraine have more pronounced pos-
tural sway compared with other types of migraine or healthy 
controls (320, 321). Consistent with the visuospatial symptoms 
in these patients, imaging analyses have found decreased gray 
matter volume within TPJ as well as metabolic changes in this 
cortical region during the attacks of vestibular migraine (322, 
323). With respect to upright perception, several studies have 
reported SVV measurements in migraine patients (322–327). 
According to these studies, patients with non-vestibular 
migraine correctly estimate upright orientation, while those with 
vestibular migraine show higher variability in SVV errors com-
pared with other headache disorders or healthy controls (319, 
327–330). Patients with vestibular migraine also have reduced 
motion detection thresholds in the roll plane compared with 
non-vestibular migraine or healthy controls (331). However, 
currently, it is not known whether these patients with vestibular 
migraine also have altered perception of upright during static 
head or body tilts.

SUMMARY AND CONCLUSiON

As a multimodal sensory reference, perception of upright rep-
resents neural processes that subserve orientation constancy. 
Consistent with the multisensory properties of these neural 
processes, several studies have described modulatory effects 
of gravity, visual cues, and position of the body on perception 
of upright. Also, various measurement paradigms have shown 
systematic errors of upright perception with tilting the head or 
body (i.e., underestimations of the true vertical orientation at 
large tilts and overestimations at small tilts). These errors reflect 
challenges for the brain in maintaining a common reference 
frame for upright orientation, based on the reliability of sensory 
signals that encode head, eye, and body positions. The compu-
tational mechanisms behind these systematic errors have been 
addressed using mathematical models that account for noisy 
sensory signals. In these models, the estimates of head, body, and 
ocular torsion that determine upright orientation are derived 
using frameworks such as Bayesian “prior” and relative weighting 
of sensory information.

Concerning the role of cerebral cortex in various aspect of 
spatial perception, animal and human studies show a widely 
distributed cortical network, primarily within the temporal, 
insular, and parietal cortices. This is not surprising considering 
the vital role of the information about body orientation with 
respect to the surrounding environment while any motor action 
is being contemplated. With respect to upright perception, the 
higher-order neural mechanisms must solve the problem of 
different sensory reference frames in the process of integrating 
various sensory information. The evidence for cortical involve-
ment in such neural processes comes from TMS and lesion 
studies. The inhibitory effect of TMS at the posterior aspect of 
the supramarginal gyrus results in overestimation of upright 
orientation in the opposite direction of the head tilt. Likewise, 
cortical lesions involving TPJ are associated with SVV deviations 
primarily away from the side of the lesion. Patients with these 
cortical lesions may also have neglect symptoms or out-of-body 
experiences. Altogether, these findings suggest that perception 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


15

Kheradmand and Winnick Upright Perception, Multisensory Convergence, and TPJ

Frontiers in Neurology | www.frontiersin.org October 2017 | Volume 8 | Article 552

of body orientation, visuospatial awareness, and upright orien-
tation share the same cortical networks in which an internal 
reference is generated to anchor “self ” with respect to the out-
side world and maintain orientation constancy. Currently, little 
is known about the flow of sensory information within these 
cortical networks and how disruption of one sensory modality 
may affect processing or integration of other sensory modali-
ties. Future studies will have to specifically address such sensory 
contributions with respect to cerebral cortical involvement in 
perception of upright.
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