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Abstract: Due to the growth in aging populations, prevention for cognitive decline and dementia
are in great demand. We previously demonstrated that the consumption of iso-α-acids (IAA),
the hop-derived bitter compounds in beer, prevents inflammation and Alzheimer’s disease pathology
in model mice. However, the effects of iso-α-acids on inflammation induced by other agents aside
from amyloid β have not been investigated. In this study, we demonstrated that the consumption
of iso-α-acids suppressed microglial inflammation in the frontal cortex of rTg4510 tauopathy mice.
In addition, the levels of inflammatory cytokines and chemokines, including IL-1β and MIP-1β,
in the frontal cortex of rTg4510 mice were greater than those of wild-type mice, and were reduced
in rTg4510 mice fed with iso-α-acids. Flow cytometry analysis demonstrated that the expression of
cells producing CD86, CD68, TSPO, MIP-1α, TNF-α, and IL-1β in microglia was increased in rTg4510
mice compared with wild-type mice. Furthermore, the expression of CD86- and MIP-1α-producing
cells was reduced in rTg4510 mice administered with iso-α-acids. Moreover, the consumption of
iso-α-acids reduced the levels of phosphorylated tau in the frontal cortex. Collectively, these results
suggest that the consumption of iso-α-acids prevents the inflammation induced in tauopathy mice.
Thus, iso-α-acids may help in preventing inflammation-related brain disorders.
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1. Introduction

Dementia and cognitive impairment are becoming an increasing burden not only on patients and
their families, but also on national healthcare systems worldwide, concomitant with the rapid growth
in aging populations. Owing to the lack of disease-modifying therapies for dementia, preventive
approaches, including diet, exercise, and learning are garnering increased attention. Etiological
studies of lifestyle have demonstrated that low-to-moderate consumption of alcohol, such as wine
and beer, may reduce the risk of cognitive decline and the development of dementia. Indeed,
individuals who consume low-to-moderate levels of alcoholic beverages on a daily basis were shown
to have a significantly lower risk of developing a neurodegenerative disease, as compared with
individuals who abstained from alcohol beverages or drank heavily [1–3]. Apart from the effects
of alcohol itself, resveratrol, a polyphenolic compound present in red wine, has been shown to be
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neuroprotective [4–7]. We previously demonstrated that the consumption of iso-α-acids, the bitter
components present in beer, prevents Alzheimer’s pathology in 5 × FAD transgenic model mice.
In addition, iso-α-acids suppress the microglial inflammation induced by amyloid β deposition
in the brain, resulting in protection against cognitive decline. Iso-α-acids activate the peroxisome
proliferator-activated receptor-γ (PPAR-γ) and regulate microglial phagocytosis and inflammation [8].
However, the effects of iso-α-acids on inflammation induced by other agents aside from amyloid
β have not been investigated. In Alzheimer’s disease, neurofibrillary tangles (NFTs) composed of
hyperphosphorylated tau are observed in each brain region with aging, as well as senile plaques
composed of amyloid β [9]. Tauopathy is characterized by fibrillar tau accumulation in neurons
and glial cells, which is associated with neuronal dysfunction [10]. Proliferation and activation of
microglia in the brain around NFTs and senile plaques are prominent features of Alzheimer’s disease.
Inflammation caused by activated microglia is associated with the disease progressions [11]. rTg4510
tauopathy model mice overexpress human P301L mutant tau and show neuroinflammation in the
brain, accompanied by disease progression [12]. On the other hand, there is no report evaluating
the preventive effects of nutritional components with anti-inflammatory activity in rTg4510 mice.
Therefore, in the present study, the effects of iso-α-acids on inflammation in rTg4510 tauopathy mice
were investigated.

2. Results

2.1. Effects of Iso-α-Acids on Inflammation in the Brain with Tauopathy

To evaluate the effects of iso-α-acids on inflammation in the brain of rTg4510 tauopathy mice, the
levels of proinflammatory cytokines and chemokines in the frontal cortex of tauopathy mice fed with
iso-α-acids were measured. The levels of IL-1β, TNF-α, MIP-1β, and IL-12p40 in the frontal cortex of
rTg4510 mice were higher than those of wild-type mice (Figure 1a–d). The administration of iso-α-acids
reduced the levels of IL-1β and MIP-1β in rTg4510 mice (Figure 1a,c), but did not change those in
wild-type mice. These results indicate that proinflammatory cytokines and chemokines are increased
in the frontal cortex in rTg4510 mice, and the consumption of iso-α-acids reduce the inflammation
induced in tauopathy mice.
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Figure 1. Effects of iso-α-acids on rTg4510 mice. Three-month-old rTg4510 mice and wild-type mice
were fed 0% or 0.05% (w/w) iso-α-acids (IAA) for three months. (a–d), the levels of IL-1β, TNF-α,
MIP-1α, and IL-12p40 in the frontal cortex, respectively. Data are the means ± SEM of 12 (wild-type
mice without IAA), 6 (wild-type mice with IAA), 12 (rTg4510 mice without IAA), and 10 (rTg4510 mice
with IAA) mice. p-values shown in the graph were calculated by one-way ANOVA, followed by the
Tukey-Kramer test. * p < 0.05 and ** p < 0.01.

2.2. Effects of Iso-α-Acids on Microglial Phenotype in the Brain of Tauopathy

To evaluate the effects of iso-α-acids on microglia in rTg4510 tauopathy mice, CD11b-positive
microglia were isolated and analyzed using flow cytometry. The expression of CD86, a costimulatory
molecule, on CD11b-positive cells in the brain was increased in rTg4510 mice compared with
wild-type mice and reduced in rTg4510 mice fed with iso-α-acids (Figure 2a). The expressions
of CD68 and TSPO in CD11b-positive microglia were increased in rTg4510 mice compared with
wild-type, but did not change in rTg4510 mice fed with iso-α-acids (Figure 2b,c). MIP-1α-, TNF-α-, and
IL-1β-producing cells were also increased in rTg4510 mice, and MIP-1α-producing cells were decreased
by iso-α-acids (Figure 2d–f). These results indicate that the microglia phenotype was induced into the
proinflammatory type in rTg4510 mice, and some of these inflammatory inductions were suppressed
by the consumption of iso-α-acids.
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Figure 2. Analysis of microglia in rTg4510 mice. Microglia in the brains of rTg4510 mice were isolated
using magnetic cell sorting and analyzed using a flow cytometer. (a–c), the expression of CD86, CD68,
and TSPO in CD11b-positive microglia of rTg4510 or wild-type mice, respectively. (d–f), the percentages
of intracellular MIP-1α-, TNF-α-, and IL-1β-producing cells in CD11b-positive cells, respectively. Data
are the means ± SEM of five mice in each group. p-values shown in the graph were calculated by
one-way ANOVA, followed by the Tukey-Kramer test. * p < 0.05 and ** p < 0.01.

2.3. Effects of Iso-α-Acids on Tau Phosphorylation in Tauopathy Mice

To evaluate the effects of iso-α-acids on the phosphorylation of tau, the levels of total tau and
phosphorylated tau in the hippocampus and frontal cortex were measured. The levels of total tau were
not changed by the consumption of iso-α-acids (Figure 3a). However, the levels of phosphorylated tau
(pS199) soluble in TBS buffer in the frontal cortex were significantly decreased with the consumption
of iso-α-acids (Figure 3b). The levels of phosphorylated tau (pS396 and pT231) in rTg4510 mice fed
with iso-α-acids were lower, but this change was not significantly different from control rTg4510 mice
(Figure 3c,d). pTau soluble in lauric acid and formic acid was not changed by the administration of
iso-α-acids. The levels of phosphorylated tau in the hippocampus of rTg4510 mice and the levels of
total tau and phosphorylated tau (pS199) in the frontal cortex of wild-type mice were not changed by
the consumption of iso-α-acids. These results indicate that the consumption of iso-α-acids reduces the
phosphorylation of tau in rTg4510 mice.
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3. Discussion 

Figure 3. Effects of iso-α-acids on the phosphorylation of tau in rTg4510 mice. Three-month-old
rTg4510 mice and wild-type mice were fed 0% or 0.05% (w/w) iso-α-acids (IAA) for three months. (a–d),
the levels of total tau and phosphorylated tau (pS199, pS396, and pT231) soluble in tris-buffered saline
(TBS) buffer, lauric acid, and formic acid of rTg4510 were measured. p-values shown in the graph were
calculated by Student’s t-test. * p < 0.05. (e,f), the levels of total tau and phosphorylated tau (pS199)
soluble in TBS buffer of rTg4510 and wild-type mice fed with 0% or 0.05% (w/w) IAA, respectively.
p-values shown in the graph were calculated by one-way ANOVA, followed by the Tukey-Kramer test.
* p < 0.05 and ** p < 0.01.

3. Discussion

In the present study, we demonstrated that the consumption of iso-α-acids mitigated microglial
inflammation and the phosphorylation of tau in the frontal cortex of tauopathy rTg4510 mice.
To evaluate the effects of iso-α-acids on tauopathy, rTg4510 tauopathy mice were fed with iso-α-acids,
and the levels of proinflammatory cytokines and pTau were measured. The consumption of iso-α-acids
suppressed the levels of cytokines and chemokines in the frontal cortex and induced microglia into the
anti-inflammatory type in rTg4510 mice. We previously reported that iso-α-acids activate PPAR-γ [13],
and PPAR-γ activation by iso-α-acids is involved in the suppression of microglial inflammation using
primary microglia [8]. It has also been reported that PPAR-γ activation induces microglia into the M2
anti-inflammatory type [14,15]. Pioglitazone, an agonist of PPAR-γ, induced microglia into the M2
type and showed anti-inflammatory effects in vivo [16]. These results suggest that iso-α-acids also
suppress tau-induced microglial inflammation.

Inflammation in the brain has increasingly become a focus for studies of preventive and
therapeutic approaches for Alzheimer’s disease [17]. Epidemiological investigations have suggested
that the intake of non-steroidal anti-inflammatory drugs (NSAIDs) has a preventive effect on
Alzheimer’s disease [18,19]. In addition, the potential of pioglitazone for medical treatments related
to Alzheimer’s disease has been suggested. Microglia play a crucial role in inflammation in the
brain. In general, microglia remove the old synapses and waste products in the brain to maintain the
environment [20]. On the other hand, massively activated microglia produce neurotoxic substances,
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including reactive oxygen spices and inflammatory cytokines [21]. It has been suggested that
the polarization of microglia between the M1 inflammatory type and the M2 anti-inflammatory
type is important for improving the neurological pathology and cognitive decline observed in
Alzheimer’s disease [22]. CD86 and MIP-1 proinflammatory markers of microglia are increased
in rTg4510 mice [23,24], and consumption of iso-α-acids suppressed the expression of CD86 in rTg4510
mice. Therefore, it is suggested that iso-α-acids suppress the induction of microglia into the M1
proinflammatory type in rTg4510 mice.

We next evaluated the effects of iso-α-acids on the phosphorylation of tau, and the concentrations
of tau and pTau were measured. pTau (Ser199), soluble in TBS, in rTg4510 mice fed with iso-α-acids was
significantly lower than that of control rTg4510 mice. It has been reported that inflammation in the brain
accelerates the phosphorylation of tau [25,26]. Intraventricular injection with lipopolysaccharide (LPS)
in rTg4510 mice induces microglia into the proinflammatory type and increases the phosphorylation
of tau (Ser199) in the frontal cortex and hippocampus [25]. These reports suggest that the suppression
of inflammation in the frontal cortex of rTg4510 mice reduces the phosphorylation of tau. However,
in the present study, we did not evaluate the direct effects of iso-α-acids on the phosphorylation of
tau. Thus, further study is needed to further evaluate the relationship between inflammation and
phosphorylation of tau.

In summary, in the present study, we analyzed the microglial inflammatory phenotype in rTg4510
mice; induced microglial inflammation in rTg4510 was suppressed by the consumption of iso-α-acids.
Iso-α-acids are considered a safe food material because they are generated from α-acids in hops,
and hops have been used as a material for brewing beer for more than 1000 years. The consumption of
iso-α-acids suppresses the inflammation induced by various agents, including amyloid β [8], a high-fat
diet [27], and pTau; therefore, it may help in preventing inflammatory-related brain disorders. Further
study as part of a clinical trial is needed to evaluate the effects of iso-α-acids on cognitive function.

4. Materials and Methods

4.1. Animals

rTg4510 mice [28], a transgenic mouse model for human tauopathy, and control FVB/N-C57BL/6J
mice (wild-type mice) were used in this study. Animals were maintained in an experimental facility at
the University of Tokyo. rTg4510 mice overexpress human tau that contains the frontotemporal
dementia-associated P301L mutation, and tau expression can be suppressed with doxycycline
treatment [28]. For the expression of mutant tau in rTg4510 mice, the mutated gene, located
downstream of a tetracycline-operon-responsive element, must be co-expressed with an activator
transgene consisting of a tet-off open reading frame located downstream of the Ca2+-calmodulin
kinase II promoter elements [28]. Wild-type control mice lack both the tau responder and the activator
transgene. Mice under 3 months of age were housed in cages, with free access to a standard purified
rodent growth diet (AIN-93G, Oriental Yeast, Tokyo, Japan); mice over 3 months of age were housed
with free access to a maintenance diet (AIN-93M, Oriental Yeast). Three-month-old mice were fed 0% or
0.05% (w/w) iso-α-acids for 3 months. The number of mice were 12 (wild-type mice without iso-α-acids),
6 (wild-type mice with iso-α-acids), 12 (rTg4510 mice without iso-α-acids), and 10 (rTg4510 mice with
iso-α-acids). The Institutional Animal Care and Use Committee of the Graduate School of Agricultural
and Life Science at the University of Tokyo approved all experiments in 2017 (Approval No. P17-020).
All efforts were made to minimize suffering.

4.2. Preparation of Iso-α-Acids

Iso-α-Acids consist predominantly of three congeners: Cohumulone, humulone, and adhumulone.
During the brewing process, they are each isomerized into two epimeric isomers, namely, cis-
and trans-iso-α-acids (Figure 4). A purchased isomerized hop extract (IHE; Hopsteiner, Mainburg,
Germany) with 30.5% (w/v) iso-α-acids, comprising cis-isocohumulone (7.61% w/v), cis-isohumulone
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(14.0% w/v), and cis-isoadhumulone (3.37% w/v), trans-isocohumulone (1.74% w/v), trans-isohumulone
(3.05% w/v), and trans-isoadhumulone (0.737% w/v)was used in this study.
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4.3. Microglia Analysis

Primary microglial cells were isolated from the brain via magnetic cell sorting after conjugation
with anti-CD11b antibodies (Miltenyi Biotec, Bergisch Gladbach, Germany), as previously
described [29]. Isolated CD11b-positive cells (>90% pure as evaluated by flow cytometry) were stained
with anti-CD86-FITC (eBioscience, CA, USA), anti-CD68-APC (BioLegend, CA, USA), anti-TSPO-PE
(PBR, Abcam, Cambridge, UK), and anti-CD11b-APC-Cy7 (BD Biosciences, CA, USA) antibodies
after treatment with the BD Cytofix/Cytoperm Fixation/Permeabilization kit (BD Biosciences). To
measure intracellular cytokines, microglia were plated in poly-D-lysine (PDL)-coated 96-well plates
(BD Biosciences) and cultured in DMEM/F-12 (Gibco, CA, USA) medium supplemented with 10% fetal
calf serum (Gibco) and 100 U/mL penicillium/streptomycin (Sigma-Aldrich, MO, USA) containing
a leukocyte activation-cocktail with BD GolgiPlugTM (BD Biosciences) for 12 h. Microglia cells were
treated with the BD Cytofix/Cytoperm Fixation/Permeabilization kit (BD Biosciences) and then
stained with anti-IL-1β-FITC (eBiosciences), anti-MIP-1α-PE (eBiosciences), anti-TNF-α-APC (BD
Pharmingen, CA, USA), and anti-CD11b-APC-Cy7 (BD Biosciences) antibodies. Stained cells were
analyzed using a flow cytometer (FACSCanto II; BD Biosciences).

4.4. Cytokines and Tau Measurement in Transgenic Mice

To measure cytokines and tau in the brain, the hippocampus and frontal cortex were homogenized
in TBS buffer (Wako, Monza, Monza and Brianza, Lombardy, Italy) containing protease inhibitor
cocktail (Biovision, CA, USA) and phosphatase inhibitor cocktail l and II (Wako) with a multi-bead
shocker (Yasui Kikai, Osaka, Japan). After centrifugation at 50,000× g for 20 min (MX-107, Tommy,
Tokyo, Japan), the supernatant was collected. The pellets were sonicated in sarkosyl solution (1%
N-lauroylsarcosine (Sarkosyl) in 1 mM Tris, 1 mM EGTA, 1 mM DTT, and 10% sucrose, pH 7.5), and the
supernatant was collected after centrifugation at 386,000× g for 20 min at 4 ◦C. The pellets were treated
with formic acid and dried. The samples were dissolved in an assay buffer (0.2 g/L KCl, 0.2 g/L
KH2PO4, 8.0 g/L NaCl, 1.150 g/L Na2HPO4, 5% BSA, 0.03% Tween 20, and 1× protease inhibitor
cocktail (Calbiochem) in ultrapure water, pH 7.4). The total protein concentration of each supernatant
was measured using a BCA protein assay kit (ThermoScientific, Yokohama, Japan). Each supernatant
was assayed for quantifying total tau and phosphorylated tau (pTau) of pS199, pS396, and pT231
(Thermo Scientific, Waltham, MA, USA) by ELISA. For quantifying cytokines and chemokines, the first
supernatant was evaluated by a Bio-Plex assay system (Bio-Rad, Hercules, CA, USA).

4.5. Statistical Analysis

The data represent the mean ± SEM. Data were analyzed by one-way ANOVA, followed by the
Tukey-Kramer test or Student’s t-test, as described in the figure legends. All statistical analyses were
performed using the Ekuseru-Toukei 2012 software program (Social Survey Research Information,
Tokyo, Japan). A value of p < 0.05 was considered statistically significant.
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