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INTRODUCTION 
 

The male abnormal gene family 21 (mab21), was first 

identified in C. elegans [1]. Since its identification, 

mab21L1 gene was found to control development of both 

eye and brain [2–9]. Moreover, it also has a role  

in regulating axis and dorsal-ventral patterning as well as 

heart and liver development [3, 4, 10]. Mutations of the 

human mab21L1 gene cause numerous ocular diseases 

including ocular coloboma, microcornea and cataract, 

neural defects, skeletal dysplasia and intellectual 

disability [7, 9, 11]. However, the functional mechanism 

of the mab21L1 gene remains largely unknown [8, 12]. 

Apoptosis is one of the major causes for ocular diseases 

[13–16]. In lens system, we initially demonstrated that 

induced lens epithelial cell apoptosis appears to be a 

common cellular mechanism mediating stress-induced, 

non-congenital cataractogenesis [17–19]. Subsequently, 

a number of laboratories have confirmed that lens 

epithelial cell apoptosis is indeed actively involved in 

lens pathogenesis as demonstrated from in vivo animal 

model studies [20–25]. Moreover, transgenic studies 

with overexpression of various exogenous genes or 

disruption of several endogenous genes caused 

apoptosis followed by cataractogenesis or small eye 

during lens development [26–33]. 
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ABSTRACT 
 

The male abnormal gene family 21 (mab21), was initially identified in C. elegans. Since its identification, studies 
from different groups have shown that it regulates development of ocular tissues, brain, heart and liver. 
However, its functional mechanism remains largely unknown. Here, we demonstrate that Mab21L1 promotes 
survival of lens epithelial cells. Mechanistically, Mab21L1 upregulates expression of αB-crystallin. Moreover, 
our results show that αB-crystallin prevents stress-induced phosphorylation of p53 at S-20 and S-37 through 
abrogating the activation of the upstream kinases, ATR and CHK1. As a result of suppressing p53 activity by αB-
crystallin, Mab21L1 downregulates expression of Bak but upregulates Mcl-1 during stress insult. Taken 
together, our results demonstrate that Mab21L1 promotes survival of lens epithelial cells through upregulation 
of αB-crystallin to suppress ATR/CHK1/p53 pathway. 
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In lens epithelial cells, apoptosis is mainly mediated  

by p53 and its downstream targets [26, 30, 33–49].  

Bcl-2 family proteins play a crucial role in mediating 

endogenous apoptotic pathway [50–54], and among 

which Bak is an important pro-apoptotic protein [55–59] 

and Mcl-1 is a major anti-apoptotic regulator [60–63]. 

 

αB-crystallin is initially known as major lens structural 

protein that plays an essential role in maintaining the 

transparency of the ocular lens [64]. Later, αB-crystallin 

is found to be a member of the small heat shock protein 

family [65] and act as a molecular chaperone [66–73] and 

also displays autokinase activity [74, 75]. As a strong 

antiapoptotic regulator, αB-crystallin is initially shown to 

protect cells from osmotic [76], thermal [77] and 

oxidative insult [78]. Later, αB-crystallin is found to 

prevent induced apoptosis by various factors including 

staurosporine [54, 79–81], TNF [79, 81], UVA 

irradiation [81, 82], okadaic acid [38] and hydrogen 

peroxide [51]. Regarding the antiapoptotic mechanism, 

previous studies from our laboratory and others have 

demonstrated that αB-crystallin can directly interact with 

multiple targets including members of the caspase and 

Bcl-2 families as well as the tumor suppressor p53 to 

suppress apoptosis [38, 54, 82–89]. 

 

In the present study, we present evidence to show that 

the mab21L1 gene has a role in promoting survival of 

lens epithelial cells. Mechanistically, overexpression of 

Mab21L1 upregulates expression of αB-crystallin. 

Moreover, we demonstrate that αB-crystallin prevents 

p53 phosphorylation at multiple sites through abrogating 

activation of the ATR and CHK1 kinases. As a result of 

suppressing p53 activity by αB-crystallin, Mab21L1 

downregulates expression of Bak but upregulates Mcl-1 

during okadaic acid treatment. It is well established that 

p53 plays an important role in regulating aging [90–92]. 

By regulating p53 activity, Mab21L1 may be involved in 

control of aging. Taken together, our results demonstrate 

that Mab21L1 promotes survival of lens epithelial cells 

through upregulation of αB-crystallin to suppress 

ATR/CHK1/p53 pathway. 

 

RESULTS 
 

Establishment of the stable lens epithelial cells 

expressing vector and Mab21L1 

 

To explore the function of Mab21L1, we have 

overexpressed the human Mab21L1 cDNA in mouse lens 

epithelial cells αTN4-1 using the vector p3X-FLAG-

CMV-10-Mab21L1 [with cDNA inserted in EcoRI (5’) 

and Kpn I (3’)] (Supplementary Figure 1). As shown in 

Figure 1A, 1B, αTN4-1 cells have very low level of 

endogenous Mab21L1, and overexpression of human 

Mab21L1 lead to over 2-fold upregulation of Mab21L1. 

 

 
 

Figure 1. Establishment of vector and MAB21L1 overexpression clones with mouse lens epithelial cells, αTN4-1 line. The 

plasmids of P3X-Flag-CMV-10-Vector and P3X-Flag-CMV-10-MAB21L1 were transfected into αTN4-1 cells, respectively. After transfection, the 
P3X-Flag-CMV-10-Vector-αTN4-1 (Vector-αTN4-1 in short) cells and P3X-Flag-CMV-10-MAB21L1-αTN4-1 (MAB21L1-αTN4-1 in short) cells 
were screened with 600 µg/ml G418 for 4 weeks, and individual clones were obtained. Clone 1 of vector-αTN4-1 and MAB21L1-αTN4-1 cells 
were confirmed by Western blot analysis (A). (B) Quantitative results of the MAB21L1 protein expression levels in A by Image J software. N=3. 
*** p<0.001. 
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Thus, we established two stable lines: vector-transfected 

cells, p3X-FLAG-CMV-10-αTN4-1 (Vector-αTN4-1 in 

short), and Mab21L1-transfected cells, p3X-FLAG-

CMV-10-Mab21L1-αTN4-1 (Mab21L1-αTN4-1 in 

short). The clone 1 from both vector- and Mab21L1-

transfected cells were used in most related experimental 

studies described below. 

 

Mab21L1 promotes survival of lens epithelial cells 

treated with okadaic acid 

 

Next, we tested if Mab21L1 expression cells display 

any property in resisting stresses upon exposure to 

phosphatase inhibitor, okadaic acid [38]. Both vector- 

and Mab21L1-transfected cells were treated with 100 

nM okadaic acid for 0 to 24 hours. As shown in Figure 

2, cells expressing Mab21L1 were much resistant 

against 100 nM okadaic acid than vector-transfected 

cells. After 24-hour treatment by 100 nM OA, over 40% 

vector-transfected cells underwent apoptosis. In 

contrast, less than 20% cells were induced to undergo 

apoptosis (Figure 2A, 2C). The apoptotic nature was 

confirmed with live/dead assay in which the live cells 

were stained in green color and the dead cells were 

stained in red (Figure 2B). Thus, Mab21L1 can promote 

survival of the transfected lens epithelial cells. 

Mab21L1 also displayed clear protection against UVA 

irradiation-induced apoptosis (data not shown). 

 

Mab21L1 upregulates αB-crystallin during OA-

induced apoptosis 

 

To explore how Mab21L1 could promote survival of 

lens epithelial cells against stress conditions including 

the okadaic acid and UVA irradiation, we examined 

expression of αB-crystallin during treatment by okadaic 

acid. As shown in Figure 3, cells expressing Mab21L1 

displayed enhanced expression of αB-crystallin. 

Moreover, during okadaic acid treatment, in Mab21L1 

expression cells, OA-induced downregulation of αB-

crystallin was much slower than that in vector-

transfected cells. Thus, Mab21L1 expression upregulates 

αB-crystallin, a small heat shock protein having strong 

antiapoptotic ability [38, 51, 54, 82–89]. 

 

αB-crystallin prevents UVA-induced phosphorylation 

of p53 at S-20 and S-37 

 

We and others have previously shown that αB-crystallin 

can prevent apoptosis through regulation of multiple 

targets [38, 51, 54, 82–86]. To further explore the 

possible mechanisms how αB-crystallin prevents 

apoptosis, we examined the effects of αB-crystallin on 
p53 phosphorylation at S-20 and S-37. As shown in 

Figure 4, in vector-transfected cells (pEGFP-HLE), UVA 

irradiation induces significant hyperphosphorylation of  

 
 

Figure 2. Analysis of okadaic acid (OA)-induced apoptosis 
of vector-αTN4-1 (vector) and MAB21L1-αTN4-1 
(Mab21L1) cells. (A) Hoechst staining of OA-treated vector-
αTN4-1 and MAB21L1-αTN4-1 cells for 0 to 24 hours. The 
apoptotic cells displayed fragmented or condensed nuclei, or 
were detached from the culture dishes, so that empty space 
appeared. Both vector-αTN4-1 and MAB21L1-αTN4-1 cells were 
grown to the density as shown in row one of Figure 2A 
(approximately 90% confluence, 0 Hr treatment), then subjected 
to 100 nM okadaic acid (OA) treatment with for 12 and 24 hrs. 
After OA treatment, the cells were processed for Hoechst staining 
as described (Mao et al., 2001). (B) Image of live cells (green 
color) and apoptotic cells (read color) of the vector-αTN4-1 and 
MAB21L1-αTN4-1 cells after 12 Hrs treatment by OA. (C) 
Quantitative results of apoptosis rate using live/dead assay as 
described (Wang et al., 2021). OA treatment for 12 hrs and 24 hrs 
induced about 15% and 41% apoptosis in vector-transfected cells, 
respectively. In contrast, only about 5% and 16% apoptosis were 
detected in MAB21L1-transfected cells after 12h and 24h-
treatment with 100 nM OA. Note that MAB21L1 displayed the 
anti-apoptotic ability in αTN4-1 cells. Scale bar, 250 μm. N=3.  
** p<0.01. 
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p53 at S-20 and S-37. However, in αB-crystallin 

expression cells (pEGFP-HαB-HLE), UVA irradiation-

induced hyperphosphorylation of p53 was much  

reduced. Thus, αB-crystallin can prevent UVA-induced 

hyperphosphorylation of p53 at S-20 and S-37. 

 

αB-crystallin prevents UVA-induced activation of 

check kinase 1 (CHK1) 

 

To explore how αB-crystallin prevents UVA-induced 

hyperphosphorylation of p53 at S-20 and S-37, we 

examined if αB-crystallin has any effect on the 

upstream kinase, check kinase 1 (CHK1). Previous 

studies have shown that CHK1 can phosphorylate p53 

at these sites [93, 94]. As shown in Figure 5, UVA 

irradiation induced activation of CHK1 (as reflected 

by the enhanced phosphorylation at S-345) in vector-

transfected cells. In αB-crystallin expression cells, 

however, activation of CHK1 was largely abrogated. 

Thus, αB-crystallin is capable of suppressing UVA 

irradiation-induced activation of CHK1. 

 

αB-crystallin prevents UVA-induced activation of 

ATR kinase 

 

Since CHK1 is activated by the upstream kinase, ATR 

[95–98], we next examined if αB-crystallin has any 

effect on the upstream ATR kinase. As shown in Figure 6, 

 

 
 

Figure 3. Upregulation of αB-crystallin in Mab21L1-αTN4-1 cells and its attenuated degradation during okadaic acid (OA)-
induced apoptosis of the Mab21L1-αTN4-1 cells. Both vector-αTN4-1 and MAB21L1-αTN4-1 cells were grown to about 90% 

confluence and then subjected to 100 nM OA treatment for 12 and 24 hrs. Thereafter, the cells were harvested for extraction of total 
proteins which were used for analysis of αB-crystallin expression by Western blot analysis (A). Quantitative results of the αB-crystallin 
protein expression levels were analyzed by Image J software (B). Note that in the MAB21L1-αTN4-1 cell clones, the αB-crystallin protein 
expression level was much higher than that in the vector-αTN4-1 cell clone in the absence of 100 nM OA treatment. During OA treatment 
for 12 and 24 hrs, the degradation of αB-crystallin protein was much slower in MAB21L1-αTN4-1 cell clones than that in vector-αTN4-1 
clone. N=3. ** p<0.01. 
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UVA irradiation induced activation of ATR kinase (also 

reflected by the enhanced phosphorylation at S-428 in 

vector-transfected cells). In αB-crystallin expression 

cells, however, activation of ATR was totally abrogated. 

Thus, αB-crystallin is also capable of suppressing UVA 

irradiation-induced activation of ATR kinase. 

 

Mab21L1 downregulates Bak during OA-induced 

apoptosis and silence of Bak attenuates OA-induced 

apoptosis 

 

Since Mab21L1 may prevent p53 hyperphosphorylation 

through upregulation of αB-crystallin, we next tested if 

Mab21L1 have any effect on the downstream targets of 

p53 during okadaic acid-induced apoptosis. As shown in 

Figure 7A, 7B, in Mab21L1 expression cells, Bak 

expression was relatively higher than that in vector 

transfected cells. However, during okadaic acid 

treatment, we observed that Bak was upregulated in 

vector-transfected cells. However, in Mab21L1 

expression cells, okadaic acid-induced upregulation of 

Bak was abrogated. Next, we silenced Bak expression in 

mouse lens epithelial cells, αTN4-1 using CRISPR/Cas9 

technology [49] (Figure 7C). As shown in Figure 7D, 

silence of Bak expression significantly attenuated 

okadaic acid-induced apoptosis. Thus, Mab21L1 can 

downregulate Bak level to suppress okadaic acid-induced 

apoptosis. 

 

 
 

Figure 4. αB-crystallin inhibited p53 hyperphosphorylation under UVA irradiation. Both pEGFP-HLE and pEGFP-HαB-HLE cells (Mao 
et al., 2004) were grown to 90% confluence, then subjected to mock irradiation, 37.5 KJ/m2 and 75 KJ/m2 UVA irradiation, respectively. The 
irradiated cells were harvested for extraction of total proteins which were used for analysis of total p53 (T-p53) (A, B), phosphorylated p53 at 
S-20 (p-p53-S20) (A) and phosphorylated p53 at S-37 (p-p53-S37) (B) by Western blot analysis. Quantitative results of the T-p53, p-p53-S20 
(C) and p-p53-S37 (D) levels were analyzed by Image J software. Note that UVA-induced much stronger p53 activity (phosphorylation at S-20 
and S-37) in pEGFP-HLE cells than that in pEGFP-HαB-HLE cells. N=3. NS, not significant; *p<0.05, ** p<0.01, *** p<0.001. 
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Mab21L1 promotes Mcl-1 expression during OA-

induced apoptosis and overexpression of Mcl-1 

suppresses OA-induced apoptosis 

 

To further understand how Mab21L1 regulates survival 

of lens epithelial cells, we examined the dynamic 

change of another Bcl-2 family member, the mcl-1 gene 

encoding an important anti-apoptotic regulator [60–63]. 

A previous study reported that Mcl-1 expression is 

related to p53 activity in a reverse relationship [99]. As 

shown in Figure 8A, 8B, in Mab21L1 expression cells, 

Mcl-1 expression was slightly lower than that in vector 

 

 
 

Figure 5. αB-crystallin inhibited CHK1 activation under the UVA irradiation. Both pEGFP-HLE and pEGFP-HαB-HLE cells (Mao et al., 
2004) were grown to 90% confluence, then subjected to mock irradiation, 37.5 KJ/m2 and 75 KJ/m2 UVA irradiation, respectively. The 
irradiated cells were harvested for extraction of total proteins which were used for analysis of total CHK1 (T-CHK1, 54 kd), phosphorylated 
CHK1 at S-345 and β-Actin (loading control) levels (A) by Western blot analysis. Quantitative results of the T-CHK1 and p-CHK1-S345 against β-
actin (loading control) levels in pEGFP-HLE cells and pEGFP-HαB-HLE cells (B) were analyzed by Image J software. Note that UVA induced 
significant upregulation of CHK1 activity (as reflected by phosphorylation at S345) in pEGFP-HLE cells. In contrast, in pEGFP-HαB-HLE cells, 
both total CHK1 and phosphorylated CHK1 at S345 were downregulated under UVA irradiation. N=3. NS, not significant. *p<0.05, ** p<0.01. 
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transfected cells. However, during okadaic acid 

treatment, we observed that Mcl-1 was downregulated 

in vector-transfected cells. However, in Mab21L1 

expression cells, okadaic acid induced upregulation of 

Mcl-1. Next, we overexpressed Mcl-1 in mouse lens 

epithelial cells αTN4-1 using the vector, pCI-Mcl-1 

(Figure 8C). As shown in Figure 8D, overexpression of 

Mcl-1 significantly suppressed OA-induced apoptosis. 

Thus, Mab21L1 can upregulate Mcl-1 level to attenuate 

OA-induced apoptosis. 

 

 
 

Figure 6. αB-crystallin inhibited ATR activation under the UVA irradiation. Both pEGFP-HLE and pEGFP-HαB-HLE cells (Mao et al., 
2004) were grown to 90% confluence, then subjected to mock irradiation, 37.5 KJ/m2 and 75 KJ/m2 UVA irradiation, respectively. The 
irradiated cells were harvested for extraction of total proteins which were used for analysis of total ATR (T-ATR, 300 kd), phosphorylated ATR 
at S-428 and β-Actin (loading control) by Western blot analysis (A). Quantitative results of the T-ATR, and p-ATR-S428 levels against loading 
control in pEGFP-HLE cells and pEGFP-HαB-HLE cells (B) were analyzed by Image J software. Note that UVA induced significant upregulation 
of ATR activity (as reflected by phosphorylation at S428) in pEGFP-HLE cells. In contrast, in pEGFP-HαB-HLE cells, both total ATR and 
phosphorylated ATR at S428 were downregulated under UVA irradiation. N=3. NS, not significant. *p<0.05. 



www.aging-us.com 6135 AGING 

DISCUSSION 
 

In the present study, we have demonstrated the 

followings: 1) Overexpression of human mab21L1  

gene cDNA in mouse lens epithelial cells, αTN4-1 

significantly promotes survival of lens epithelial cells 

under treatment by okadaic acid; 2) Overexpression of 

human mab21L1 gene cDNA in αTN4-1 cells 

upregulates expression of αB-crystallin gene; 3) αB-

crystallin prevents UVA-induced hyperphosphorylation 

of the tumor suppressor p53 at S-20 and S-37; 4) αB-

crystallin inhibits UVA-induced activation of the check 

kinase 1 (CHK1) and its upstream kinase ATR; 5) 

Overexpression of human mab21L1 gene cDNA in 

αTN4-1 cells downregulates the pro-apoptotic factor Bak 

but upregulates expression of the pro-survival regulator 

Mcl−1 during okadaic acid treatment. Together, our 

results demonstrate that MAB21L1 promotes survival of 

lens epithelial cells through upregulation of αB-crystallin 

to suppress ATR/CHK1/p53 pathway. (Figure 9). 

 

 
 

Figure 7. Dynamic change of Bak levels in vector-αTN4-1 and MAB21L1-αTN4-1 cells in the absence and presence of 100 OA 
treatment and effect of Bak level on OA-induced apoptosis of αTN4-1 cells. (A, B). Dynamic change of Bak levels in vector-αTN4-1 

and MAB21L1-αTN4-1 cells in the absence and presence of 100 OA treatment. Both vector-αTN4-1 and MAB21L1-αTN4-1 cells were grown to 
about 90% confluence and then subjected to 100 nM OA treatment for 12 and 24 hrs. Thereafter, the cells were harvested for extraction of 
total proteins which were used for analysis of Bak expression by Western blot analysis (A). Quantitative results of the Bak protein expression 
levels were analyzed by Image J software (B). Note that in the MAB21L1-αTN4-1 cells, the Bak protein expression level was much higher than 
that in the vector-αTN4-1 cell clone in the absence of 100 nM OA treatment. During OA treatment for 12 and 24 hrs, however, Bak protein 
was upregulated in vector-αTN4-1 cells. In contrast, in MAB21L1-αTN4-1 cells, Bak protein was significantly degraded. N=3. *p<0.05, ** 
p<0.01, *** p<0.001. (C, D) Effect of Bak level on OA-induced apoptosis of αTN4-1 cells. Vector-αTN4-1 cells were used as Bak knockdown 
with CRSPR/Cas9 technology (see Materials and Methods). Both mock and Bak KD clones were verified with Western blot analysis (C). The 
two types of cells were then subjected to 100 nM OA treatment for 12 and 24 hrs, and the apoptosis rate was determined with live/dead 
assays (D). N=3. *p<0.05, ** p<0.01. 
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Mab21L1 positively regulates αB-crystallin to 

promote survival of lens epithelial cells 

 

The mab21 gene was first identified as a cell fate 

determination gene that regulates sensory ray 

morphogenesis in male C. elegans [1]. Later it was found 

that Mab21L1 is a lens lineage-specific transcription 

factor [100]. It has an important role in regulating lens 

development [5, 7–9, 11]. Mutations in human Mab21L1 

gene causes aberrations in lens ectoderm morphogenesis 

and lead to congenital cerebellar, ocular, craniofacial and 

genital (COFG) syndrome [101, 102]. The ocular 

abnormalities include microphthalmia, coloboma and 

cataracts [7, 9]. Similar to human mab21L1 gene 

mutations, Mab21L1-deficient mice display severe cell-

autonomous defects in lens placode invagination due to 

impaired cell proliferation and survival [5] and other 

deficiency [6, 101]. Using mouse lens epithelial cells, 

αTN4-1 and the stable lines expressing P3X-Flag-CMV-

10 vector, or human mab21L1 gene cDNA, here we   

 

 
 

Figure 8. Dynamic change of Mcl-1 levels in vector-αTN4-1 and MAB21L1-αTN4-1 cells in the absence and presence of 100 
OA treatment and effect of Mcl-1 level on OA-induced apoptosis of αTN4-1 cells. (A, B) Dynamic change of Mcl-1 levels in vector-
αTN4-1 and MAB21L1-αTN4-1 cells in the absence and presence of 100 OA treatment. Both vector-αTN4-1 and MAB21L1-αTN4-1 cells were 
grown to about 90% confluence and then subjected to 100 nM OA treatment for 12 and 24 hrs. Thereafter, the cells were harvested for 
extraction of total proteins which were used for analysis of Mcl-1 expression by Western blot analysis (A). Quantitative results of the Mcl-1 
protein expression levels were analyzed by Image J software (B). Note that in the MAB21L1-αTN4-1 cells, the Mcl-1 protein expression level 
was much lower than that in the vector-αTN4-1 cell clone in the absence of 100 nM OA treatment. During OA treatment for 12 and 24 hrs, 
however, Mcl-1 protein was down-regulated to background level in vector-αTN4-1 cells. In contrast, in MAB21L1-αTN4-1 cells, Mcl-1 protein 
was significantly upregulated after 24 h treatment by OA. N=3. ** p<0.01, *** p<0.001. (C, D) Effect of Mcl-1 level on OA-induced apoptosis 
of αTN4-1 cells. Both pCI-αTN4-1 and pCI-Mcl-1-αTN4-1 cell clones were verified with Western blot analysis (C). The two types of pCI-αTN4-1 
and pCI-Mcl-1-αTN4-1 cells were then subjected to 100 nM OA treatment for 12 and 24 hrs, and the apoptosis rate was determined with 
live/dead assays (D). N=3. *p<0.05, ** p<0.01. 
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demonstrated that human mab21L1 gene cDNA-

expression lens epithelial cells are much resistant against 

stress condition of okadaic acid treatment than the vector-

transfected cells (Figure 2). Mechanistically, we 

demonstrated that Mab21L1 is capable of upregulating 

αB-crystallin, a strong anti-apoptotic regulator (See 

below discussion for more details). 

 

How might Mab21L1 up-regulates αB-crystallin? In a 

recent study using single cell sequencing strategy, 

Yamada et al. (2021) [8] demonstrated that in Mab21L1 

knockout mice, 61 genes were upregulated and 131 

genes were downregulated in comparison with the wild 

type mice. Among these down-regulated genes are two 

transcription factors: Maf and Sox2 [8]. Since previous 

studies have shown that both Maf and Sox2 can 

positively regulates expression of αB-crystallin [100, 

103, 104], it is plausible that Mab21L1 may upregulate 

αB-crystallin through Maf and Sox-2. Alternatively, 

Mab21L1 may directly bind to the promoter of αB-

crystallin gene to control its expression. Whether this is 

the case is currently under investigation. 

 

αB-crystallin represses ATR/CHK1/p53 pathway to 

inhibit apoptosis 

 

As an anti-apoptotic regulator, αB-crystallin can prevent 

cells from induced-apoptosis in several mechanisms 

based on the studies from us and several other 

laboratories [38, 51, 54, 82–89]. First, it can suppress 

the maturation of the members of the caspase family 

[38, 51, 83–84]. Second, it can also interact with  

 

 
 

Figure 9. Diagram to show the mechanism mediating 
Mab21L1 promotion of survival of lens epithelial cells. 
Mab21L1 promotes survival of lens epithelial cells through 
upregulation of αB-crystallin to suppress the ATR/CHK1/p53 
pathway and thus downregulate Bak expression but enhance 
Mcl-1 expression. As a result, MAB21L1 can suppress stress 
(okadaic acid or UVA)-induced apoptosis. 

members of the Bcl-2 family including Bax and Bcl-Xs 

to prevent their translocation into mitochondria [54]. 

Third, αB-crystallin was found to negatively regulate 

the Ras/Raf/MEK/ERK signaling pathway to prevent 

UVA-induced apoptosis [40, 82]. 

 

Previous studies have shown that αB-crystallin can also 

bind to the tumor suppressor, p53 [105]. However, how 

does αB-crystallin modulate p53 activity remains 

unknown. Here, using stable lines of human lens 

epithelial cells HLE expressing pEGFP-vector, or 

human αB-crystallin gene cDNA, we demonstrated that 

UVA induced hyperphosphorylation of p53 at S-20 and 

S-37 in pEGFP-HLE cells (Figure 4A–4D). This UVA-

induced p53 hyperphosphorylation is significantly 

reduced in αB-crystallin expression cells, pEGFP-HαB-

HLE (Figure 4A–4D). At present, seventeen 

phosphorylation sites have been identified [92]. 

Whether the remaining 15 phosphorylation sites besides 

S-20 and S-37 can be induced by UVA and whether αB-

crystallin also has strong impact on the phosphorylation 

of the remaining phosphorylation sites remains to be 

investigated. Nevertheless, our study demonstrates that 

αB-crystallin can modulate p53 phosphorylation status 

at S-20 and S-37 to inhibit its activity. 

 

It has been well established that p53 can be 

phosphorylated by check kinase 1 (CHK1) at S-20 and 

S-37 [93, 94]. Our results also showed that while in 

vector-transfected cells (pEGFP-HLE), UVA irradiation 

increased CHK1 activity, in αB-crystallin expression 

cells (pEGFP-HαB-HLE), however, both CHK1 protein 

level and activity were down-regulated under UVA 

irradiation (Figure 5). Since CHK1 is activated by ATR 

kinase [95–98], we also examined the differential 

activation of ATR in vector- and HαB-transfected cells. 

Our results demonstrated that while in vector-

transfected cells, pEGFP-HLE, UVA induced 

upregulation of ATR activity from 20% to 50% under 

irradiation with 37.5KJ/m2 to 75 KJ/m2, respectively; in 

αB-crystallin expression pEGFP-HαB-HLE cells, in 

contrast, both ATR protein level and activity were 

slightly down-regulated under UVA irradiation of both 

doses (Figure 6). Together, out results demonstrate that 

αB-crystallin can repress ATR/CHK1/p53 pathway to 

inhibit p53-mediated apoptosis. 

 

αB-crystallin suppression of ATR/CHK1/p53 

contributes to Mab21L1 promotion of survival of 

lens epithelial cells 

 

In the present study, we also observed that in Mab21L1 

expression cells, expression of Bak is relatively higher 
than that in vector-transfected cells (Figure 7), and  

Mcl-1 expression, on the other hand, is relatively lower 

than that in vector-transfected cells (Figure 8). However, 
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Mab21L1-induced upregulation of αB-crystallin can 

override the Bak upregulation and Mcl-1 downregulation 

to promote survival of lens epithelial cells in the absence 

of stress conditions. 

 

Under okadaic acid treatment, however, we observed 

that Bak expression was upregulated and Mcl-1 

expression was down-regulated in vector-transfected 

cells. In contrast, in Mab21L1 expression cells, Bak 

expression was significantly down-regulated and Mcl-

1 was significantly upregulated (Figures 7A, 7B, 8A, 

8B). Moreover, when Bak was knocked down or Mcl-

1 was overexpressed, okadaic acid-induced apoptosis 

of αTN4-1 cells was significant inhibited (>50%, 

Figures 7C, 7D, 8C, 8D). This OA-induced Bak 

downregulation and Mcl-1 upregulation in Mab21L1 

expression cells is closely related with its promotion of 

αB-crystallin expression. Under the same okadaic acid 

treatment condition, OA induced significant 

downregulation of αB-crystallin in vector-transfected 

cells (Figure 3). In Mab21L1 expression cells, 

however, OA-induced much less downregulation of 

αB-crystallin (Figure 3). Thus, Mab21L1-promoted 

upregulation of αB-crystallin through suppression of 

ATR/CHK1/p53 pathway, can promote survival of 

lens epithelial cells (Figure 9). 

 

MATERIALS AND METHODS 
 

Materials 

 

Various molecular biology reagents were purchased from 

Invitrogen Life Technologies (Gaithersburg, MD, USA). 

All the oligos were purchased from Sangon Biotech Co., 

Ltd. (Shanghai. China) Protein size markers were 

purchased from GenStar Co., Ltd. (Beijing, China). 

Various antibodies were obtained from Cell Signaling 

Technology (Boston, MA, USA); Abcam Inc. 

(Cambridge, MA, USA); Santa Cruz Biotechnology, Inc. 

(Dallas, TX, USA); Sigma-Aldrich (St. Louis, MO, 

USA); Proteintech Co., Ltd. (Wuhan, China); Ray 

Biotech Co., Ltd.  (Beijing, China). 

 

Cell culture, plasmid construction and establishment 

of gene overexpression or knockout stable cell lines 
 

Mouse lens epithelial cell line αTN4-1 and human lens 

epithelial cells (HLE) were cultured in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 

10% fetal bovine serum (FBS; Atlanta Biologicals) and 

1% penicillin/streptomycin in 5% CO2 at 37° C as 

described before [42, 49, 54, 59, 106, 107]. 
 

The CRISPR/Cas9-based gene KO vector pSp 

Cas9(BB)-2A-Puro (PX459) is a gift from Dr. Mengqing 

Xiang in Zhongshan Ophthalmic Center of Sun Yat-sen 

University. The sgRNA sequences used for Bak gene  

KO were: 5’-CAAGTTGTCCATCTCGGGGTTGG-3’ 

(target 1) and 5’ TCTTCACCAAGATCGCCTCCAGG 

3’ (target 2) as described before [49]. The sgRNA was 

inserted into PX459 using the BbsI restriction sites. For 

expression vector, the construction of full-length cDNAs 

of Mab21L1 or Mcl-1 were cloned by PCR. The 

Mab21L1 cDNA was inserted into the expression vector, 

p3xFlag-CMV-10-Mab21L1, at the EcoRI and KpnI 

sites. The Mcl-1 cDNA was subcloned into the pCI-Neo 

Vector, at the EcoR1 and Sal I sites. 

 

For establishment of stable cell lines, αTN4-1 cells were 

transfected with the above plasmids using Lipofectamine 

3000 (Life Technologies) according to the manufacturer’s 

instructions. Forty-eight hours after transfection, cells 

stably expressing the plasmids were selected by  

1.0 μg/mL puromycin for PX459, and 600 μg/ml G418 

for p3×FLAG-CMV-10 and pCI-Neo. About 4 weeks, 

individual clones for the stable cell lines were established 

and confirmed by western blot analysis and DNA 

sequencing [49, 106, 107]. 

 

pEGFP-HLE and pEGFP-HαB-HLE were established as 

described before [54, 106]. These cells were cultured in 

DMEM supplemented with 10% fetal bovine serum 

(FBS; Atlanta Biologicals), 600 μg/ml G418 and 1% 

penicillin/streptomycin in 5% CO2 at 37° C. 

 

UVA irradiation 

 

The UVA irradiation was conducted with similar facility 

described previously [82], which produces an energy 

level of approximately 1 mW cm−2 S−1 with the 

wavelength ranging from 320 to 400 nm. The amount of 

UVA light reaching the lens is between 0.1 and 1 mW 

cm−2 [108]. The total energy received by the lens 

epithelial cells was 37.5 kJ m−2 (3.75 J cm−2), or 75 kJ 

m−2 (7.5 J cm−2). Briefly, the irradiation was conducted 

with an uncovered 100 mm culture dish containing 100% 

confluence HLE cell with 10 ml DMEM plus 10% FBS. 

We conducted UVA irradiation in the presence of culture 

medium to avoid the cellular responses to nutritional 

shock (for example, withdrawal of growth factors in 

serum). Under the present irradiation condition, UVA 

may elicit production of hydrogen peroxide according to 

a previous study [108]. A dose of 75 kJ m−2 corresponds 

to the amount of UVA which our naked skin receives in 

approximately 1.5 hours of exposure to sunshine in a 

typical summer day (90° C) in August at noon time. 

 

Protein extraction and Western blot analysis 

 

Total proteins were extracted by RIPA buffer (1% NP-

40, 1% sodium deoxycholate, 0.1% SDS, 50 mM Tris-

HCl PH8.0, 150 mM NaCl) supplemented with the 
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Protease Inhibitor Cocktail, then cell lysates were 

sonicated and centrifuged at 13000×rpm for 10 min at 

4° C as described [106, 107]. The supernatants were 

transferred to new tubes. Fifty micrograms of total 

proteins in each sample was separated by 10% or 12 % 

SDS-polyacrylamide gel and transferred to PVDF 

membranes. The protein blots were blocked with  

5% nonfat milk in TBST (10 mM Tris HCl, pH8.0, 150 

mM NaCl, 0.05% Tween-20) and further incubated with 

primary antibodies overnight at 4° C. Primary antibodies 

used in western blot were shown in Supplementary Table 

1. The horseradish peroxidase-conjugated secondary 

antibodies (CST; 7077 and 7074) were then applied for 

one hour at room temperature. Immunoreactivity was 

detected with a chemilluminescence detection kit (ECL 

Ultra; New Cell and Molecular Biotech Co., Ltd.) and the 

blots were visualized using a Tanon chemiluminescence 

system (China). 

 

Apoptosis assays 

 

Cell apoptosis was determined by Hoechst staining [38, 

51] and Live/Dead Viability/Cytotoxicity [49]. Cells were 

seeded into 60 mm petri dish (for Hoechst staining) or 

into 6-well plates about 90% confluence, and then treated 

with 100 nM Okadaic acid for different time as indicated 

in the figures to induce cell apoptosis. The apoptotic 

nature of the treated cells was further verified by Hoechst 

staining as previously described [51]. The Live/Dead 

Viability/Cytotoxicity Kit (L3224; Thermo Fisher) was 

used to distinguish live and dead cells [49]. Live cells are 

characterized by the presence of ubiquitous intracellular 

esterase activity, and revealed by calcein AM. The 

polyanionic dye calcein is well retained within live cells, 

producing an intense uniform green fluorescence in live 

cells. EthD-1 enters cells with damaged membranes and 

displays red fluorescence upon binding to nucleic acids, 

thereby producing a bright red color in dead cells and 

EthD-1 is excluded by the membrane of live cells. The 

images were captured with a Zeiss microscope. 

 

Statistics 

 

All results shown are reported as the mean ± standard 

deviation (SD). Significance was calculated using the 

unpaired two-tailed t test. Differences were considered 

statistically significant at P < 0.05. 

 

Data availability statement 

 

All data are available upon reasonable request. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Diagram to show the P3X-Flag-CMV-10-MAB21L1 plasmid. The Human coding sequence of MAB21L1 was 
cloned and inserted into the EcoR1 and Kpn1 restriction enzyme sites of the P3X-Flag-CMV-10 vector. 
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Supplementary Table 
 

Supplementary Table 1. Chemicals and antibodies used in the present study. 

Chemicals and antibodies Vendors and categories 

Okadaic Acid LC Laboratory, O5857 

Anti-Flag Sigma-Aldrich, F1804 

Anti-Mab21L1 Abcam, ab154311 

Anti-GAPDH Proteintec, 60004 

Anti-β-Tubulin Proteintec, 66240 

Anti-β-Actin Proteintec, 66009 

Anti-αB Gift of Dr. Joseph Horwitz from UCLA 

Anti-T-p53 CST, 9282/2524 

Anti-p-p53-S20 CST, 9287 

Anti-p-p53-S37 CST, 9289 

Anti-T-CHK1 CST, 2360 

Anti-p-CHK1-S345 CST, 2348 

Anti-T-ATR CST, 2790 

Anti-p-ATR-S428 CST, 2853 

Anti-Bak CST, 3814 

Anti-Mcl-1 CST, 4572 

 


